Die Kristallstruktur von Baumhauerit*

Von P. ENGEL und W. NOWACKI

Abteilung für Kristallographie und Strukturlehre, Universität Bern

(Eingegangen am 17. Juli 1968)

Abstract

The crystal structure of baumhauerite Pb_{11,6}As_{15,7}Ag_{0,6}S₃₆ is redetermined. The unit cell is triclinic with $a = 22.80 \pm 0.01$ Å, $b = 8.357 \pm 0.005$ Å, $c = 7.894 \pm 0.005$ Å, $\alpha = 90°3' \pm 2'$, $\beta = 97°16' \pm 4'$, $\gamma = 89°55' \pm 2'$. The space group is P1.

Among twelve independent Pb atoms, the eight "paired" (1, 2, 6, 7, 8, 9, 11, 12) are surrounded by nine S atoms, the four "unpaired" (3, 4, 5, 10) are surrounded by seven S atoms. The As atoms are coordinated by S atoms in a trigonal pyramidal configuration. The Pb(4) is partially replaced by As. The As(5) occupies statistically two neighbouring places 5a, 5b. The As(4) is partially replaced by Ag. AsS₃ pyramids form chains of finite length.

Auszug

Die Kristallstruktur von Baumhauerit Pb_{11,6}As_{15,7}Ag_{0,6}S₃₆ wurde neu bestimmt. Die Elementarzelle ist triklin mit $a = 22,80 \pm 0,01$ Å, $b = 8,357 \pm 0,005$ Å, $c = 7,894 \pm 0,005$ Å, $\alpha = 90^{\circ}3' \pm 2'$, $\beta = 97^{\circ}16' \pm 4'$, $\gamma = 89^{\circ}55' \pm 2'$. Die Raumgruppe ist P1.

Von zwölf unabhängigen Pb-Atomen besitzen die acht "gepaarten" (1, 2, 6, 7, 8, 9, 11, 12) neun benachbarte S-Atome, die vier "nicht gepaarten" (3, 4, 5, 10) hingegen sieben. Die As-Atome weisen trigonal-pyramidale S-Koordination auf. Eine Bleiatomlage (4) ist zum Teil von As-Atomen besetzt. Ein As-Atom (5) besetzt zwei benachbarte Lagen (5a,b) statistisch. Ein anderes As-Atom (4) ist teilweise durch Ag ersetzt. Trigonale AsS₃-Pyramiden sind zu Kettenstükken endlicher Länge vereinigt.

Einleitung

Im Jahre 1901 entdeckte SOLLY (1902) im Lengenbach (Binnatal, Kanton Wallis) das Mineral Baumhauerit. Der Name wurde zu Ehren von Baumhauer (Professor in Freiburg) gegeben, der sich durch seine Forschungen an den Lengenbacher Mineralien ausgezeichnet hatte.

^{*} Mitt. Nr. 188. – Teil 43 über Sulfide und Sulfosalze.

Baumhauerit gehört zusammen mit Rathit-I, Rathit-II, Rathit-III, Dufrenoysit und Skleroklas zur gleichen Sulfosalzgruppe. Obschon die Struktur der meisten dieser Mineralien bereits untersucht worden ist, lag bis jetzt einzig von Skleroklas (NOWACKI *et al.*, 1961), Rathit-I (MARUMO und NOWACKI, 1965) und von Dufrenoysit (MARUMO und NOWACKI, 1967) eine genaue Strukturbestimmung vor. Eine Untersuchung von Baumhauerit aus dem Lengenbach von LEBIHAN (1962) weist einige unwahrscheinliche strukturelle Züge auf. So wurde auf Grund des [N(z)-z]-Testes die zentrische Raumgruppe $P\overline{1}$ angenommen. An unserem Institut untersuchte Kristalle zeigten jedoch durchwegs einen starken piezoelektrischen Effekt. Zudem weist die Struktur unendliche Ketten von AsS₃-Pyramiden längs der *b*-Achse auf. Bereits 1961 hatten IITAKA und NOWACKI gezeigt, daß solche unendliche Ketten bei As-Sulfosalzen nicht existieren können.

Eine neue Strukturuntersuchung an Baumhauerit wurde durchgeführt, um genaue strukturelle Prinzipien, wie sie für Rathit-I aufgestellt wurden, für ein weiteres Mineral dieser Sulfosalzgruppe nachzuweisen.

Experimentelles

Baumhauerit vom Lengenbach, Kanton Wallis, wurde untersucht. Von der Stufe L 3127, welche bereits chemisch und röntgenographisch identifiziert worden war, wurde ein Bruchstück auf Piezoelektrizität geprüft. Der Kristall zeigte einen starken Effekt, was auf das Fehlen eines Symmetriezentrums hinweist. Da nur wenig Material zur Verfügung stand, konnte eine Dichtebestimmung nicht durchgeführt werden. Der Wert von 5,3 g cm⁻³ (Giușča, 1930) für den Lengenbacher Baumhauerit wurde übernommen. Das gleiche Bruchstück wurde weiter geteilt. An einem Teilstück wurde später eine Mikrosondenanalyse (Nr. 251) durchgeführt. Aus zwei weiteren Bruchstücken konnten zwei Kugeln mit r = 0,116 mm und r = 0,113 mm geschliffen werden. Die durch den Schleifvorgang zerstörte Oberfläche ließ sich mit konzentrierter Salpetersäure auflösen. Anschließend wurden beide Kugeln in konzentrierter Amoniaklösung gewaschen. An der zweiten Kugel wurde am Ende der Messung eine weitere Mikrosondenanalyse (Nr. 253) durchgeführt. Die Ergebnisse aller Analysen sind in Tab. 1 zusammengestellt. Die Nachweisbarkeitsgrenze unserer Mikrosonde für Silber liegt bei 1%/0. In einer Analyse (Nr. 251) konnte der Silbergehalt mit 1,4% bestimmt werden. In den anderen Analysen (Nr. 108, 252, 253) ist der Silbergehalt nicht sicher.

P. ENGEL und W. NOWACKI

Analysen	Pb	Ag	As	8	Σ
Nr. 108– 4. 6. 66	48,9%/0	$< 1^{0/0}$	26,5%	23,8 %/0	99,2º/0
251-19. 2. 68	48,5	1,4	26,3	22,8	99,0
252 - 20.2.68	48,8	< 1	26,3	23,1	98,2
253-4.3.68	49,3	< 1	26,2	23,5	99,0

Tabelle 1. Chemische Zusammensetzung des Baumhauerits

Die Analysen wurden mit der Elektronenmikrosonde Typ Cameca durch-geführt.

Analysen:

Nr. 108 Stufe L 3127, röntgenographisch von C. NICCA(†) identifiziert; Analytiker G. BURRI.

251 Stufe L 3127; Analytiker: H. RUDOLF.

252 Wiederholung von Nr. 108; do.

253 Stufe L 3127; do.

Beide Kugeln wurden röntgenographisch untersucht. Zur Bestimmung der Gitterkonstanten wurden 135 Reflexe mit $\theta > 54^{\circ}$ aus Rückstrahlaufnahmen vermessen. Die Filme wurden mittels Linien einer Pulveraufnahme von Si geeicht. Aus diesen Reflexen ergaben sich mit der Methode der kleinsten Quadrate die besten Gitterkonstanten. Die Elementarzelle ist triklin mit $a = 22,80 \pm 0,01$ Å, $b = 8,357 \pm 0,005$ Å, $c = 7,894 \pm 0,005$ Å, $\alpha = 90^{\circ}3' \pm 2'$, $\beta = 97^{\circ}16' \pm 4'$, $\gamma = 89^{\circ}55' \pm 2'$. Die Raumgruppe ist P1. Mit dem Supper-Pace Autodiffraktometer wurden anschließend von beiden Kristallen mit CuK α -Strahlung insgesamt 12770 Reflexe vermessen. Die Intensitäten wurden für Absorption und Lorentz-Polarisation korrigiert. Gleichzeitig wurde jedem Reflex ein Gewicht zugeordnet:

$$egin{aligned} &w=rac{1}{\sigma^2(F_0)}\ &\sigma^2(F_0)=rac{\sigma^2(F_o^2)}{4F_o^2}\,;\;\sigma^2(F_0^2)=\left(rac{\partial F_o^2}{\partial P}
ight)^2\,\sigma^2(P)+\left(rac{\partial F_o^2}{\partial B}
ight)^2\,\sigma^2(B)\ &+\left(rac{\partial F_o^2}{\partial Lp^{-1}}
ight)^2\,\sigma^2(Lp^{-1})+\left(rac{\partial F_o^2}{\partial T}
ight)^2\,\sigma^2(T) \end{aligned}$$

mit P = Peak count, Lp = Lorentz-Polarisation,B = Background count, T = Transmission.

Reflexe mit $I < 2,33 \sigma(I)$ wurden als nichtbeobachtet kodifiziert. Anschließend wurden die Intensitäten der beiden Kristalle gemittelt. Es verblieben 5590 gemeinsame Reflexe.

Bestimmung der Substruktur

Baumhauerit besitzt eine Pseudoperiode von $\frac{1}{2}b$. Die Reflexe mit ungeradem k sind durchwegs schwach. Mit allen Reflexen wurde vorerst eine dreidimensionale Pattersonsynthese berechnet. Aus dieser Synthese konnten acht Bleilagen aus den markanten (Pb—Pb)-Maxima leicht bestimmt werden. Die Koordinaten dieser acht Bleilagen sind

Tabelle 2. Koordinaten der Blei-, Arsen- und Schwefelatome des Baumhauerits aus der Minimumfunktion M_8

Atom	x	y	z	Atom	x	\boldsymbol{y}	z
Pb(1)*	0,000	0,000	0,000	S(5)	0,135	0,000	0,290
Pb(2)*	0,000	0,500	0,000	S(6)	0,135	0,500	0,290
Pb(3)	0,150	0,000	0,720	S(7)	0,225	0,250	0,610
Pb(4)	0,150	0,500	0,720	S(8)	0,225	0,750	0,610
Pb(5)	0,315	0,250	0,900	S(9)	0,245	0,000	0,000
Pb(6)	0,315	0,750	0,900	S(10)	0,245	0,500	0,000
Pb(7)*	0,475	0,250	0,625	S(11)	0,340	0,250	0,330
Pb(8)*	$0,\!475$	0,750	0,625	S(12)	0,340	0,750	0,330
Pb(9)*	0,575	0,250	0,165	S(13)	0,360	0,000	0,700
Pb(10)*	0,575	0,750	0,165	S(14)	0,360	0,500	0,700
Pb(11)*	0,895	0,000	0,460	S(15)	0,445	0,250	0,035
Pb(12)*	0,895	0,500	0,460	S(16)	0,445	0,750	0,035
As(1)	0,050	0,250	0,440	S(17)	0,500	0,000	0,385
As(2)	0,050	0,750	0,440	S(18)	0,500	0,500	0,385
As(3)	0,165	0,250	0,150	S(19)	0,535	0,000	0,880
As(4)	0,165	0,750	0,150	S(20)	0,535	0,500	0,880
As(5)	0,305	0,000	0,470	S(21)	0,595	0,250	0,580
As(6)	0,305	0,500	0,470	S(22)	0,595	0,750	0,580
As(7)	0,415	0,000	0,180	S(23)	0,665	0,000	0,285
As(8)	0,415	0,500	0,180	S(24)	0,665	0,500	0,285
As(9)	0,620	0,000	0,755	S(25)	0,685	0,250	0,840
As(10)	0,620	0,500	0,755	S(26)	0,685	0,750	0,840
As(11)	0,715	0,250	0,550	S(27)	0,775	0,000	0,815
As(12)	0,715	0,750	0,550	S(28)	0,775	0,500	0,815
As(13)	0,735	0,000	0,110	S(29)	0,875	0,000	0,045
As(14)	0,735	0,500	0,110	S(30)	0,875	0,500	0,045
As(15)	0,855	0,250	0,860	S(31)	0,805	0,250	0,315
As(16)	0,855	0,750	0,860	S(32)	0,805	0,750	0,315
S(1)	0,025	0,000	0,590	S(33)	0,930	0,250	0,745
S(2)	0,025	0,500	0,590	S(34)	0,930	0,750	0,745
S(3)	0,095	0,250	0,920	S(35)	0,970	0,250	0,250
S(4)	0,095	0,750	0,920	S(36)	0,970	0,750	0,250

Die mit einem Stern versehenen Koordinaten wurden als Überlagerungspunkte verwendet

in Tab. 2 durch Sterne markiert. Mit diesen acht Bleilagen als Überlagerungspunkte wurde anschließend eine dreidimensionale Minimumfunktion M_8 berechnet. Die Auflösung war sehr gut. Neben den bereits bestimmten Bleilagen ergaben sich vier weitere Bleilagen. 16 mittelstarke Maxima konnten den Arsenatomen zugeordnet werden. Sogar 36 Schwefellagen kamen eindeutig heraus. Alle Maxima liegen in den Ebenen mit $y = 0, \frac{1}{4}, \frac{1}{2}, \frac{3}{4}$. Die gefundenen Koordinaten sind in Tab. 2 zusammengestellt. Je zwei Atome treten paarweise in y und $y + \frac{1}{2}$ auf (sog. "gepaarte" Atome). Mit diesen Lagen wurden Strukturfaktoren berechnet. Der *R*-Wert für alle Reflexe betrug $480/_0$, für die Reflexe hol $28^{\circ}/_{0}$. Vor allem die Reflexe mit ungeradem k zeigten schlechte Übereinstimmung. Die anschließend berechnete Differenz-Fourier-Synthese ergab für die beiden Bleilagen Pb(3) und Pb(6) stark negative Werte. Diese beiden Lagen wurden daher durch Arsenatome ersetzt. Die erhaltene Struktur ist angenähert zentrisch und entspricht dem Strukturvorschlag von LEBIHAN. Dieses Strukturmodell ließ sich noch bis zu einem R-Wert von $34^{0}/_{0}$ verfeinern. Eine gute Übereinstimmung der Reflexe mit ungeradem k konnte nicht erzielt werden. Die erhaltene Formel Pb₁₀As₁₈S₃₆ ergibt die prozentuale Verteilung Pb 45,3%, As 25,5%, S 25,2%. Ein Vergleich mit den Mikrosondeanalysen zeigt keine gute Übereinstimmung.

Bestimmung der Überstruktur und Verfeinerung

Da mit dem bisherigen Modell die Verfeinerung nicht gelang, wurde versucht, die Überstruktur zu bestimmen. Es wurde nun zusätzlich eine Pattersonsummation nur mit den Überstrukturreflexen berechnet. Mit den beiden "ungepaarten" Bleilagen [Pb(4) und Pb(5) der Substruktur, Tab. 2] als Überlagerungspunkte wurde vorerst eine Minimumfunktion M_2 berechnet. Nach verschiedenen Versuchen konnten anschließend zwei weitere Minimumfunktionen M_3 und M_4 berechnet werden. Zuletzt blieben vier strake Maxima an den vier Überlagerungspunkten von M_4 übrig. Diese vier Lagen, in Tab. 3 mit Pb(3), Pb(4), Pb(5) und Pb(10) (siehe auch Fig.1) bezeichnet, wurden mit Bleiatomen besetzt. Für die Arsenatome konnten aus M_4 keine eindeutigen Lagen bestimmt werden. Die bisherigen Lagen der Arsen- und Schwefelatome wurden beibehalten. Der Inhalt der Elementarzelle ist somit Pb₁₂As₁₆S₃₆, wie von MARUMO (unpubl., 1966; vgl. NowACKI, 1967) vermutet worden war. Dieser neue Strukturvorschlag wurde nun mit Differenz-Fourier-Summationen verfeinert. Der R-Wert von vorerst $430/_0$ sank in der Folge auf

Atom	x	σx	y	σy	z	σz	Β ₁₁ σ	B ₁₁	$B_{22} \sigma B$	322	B ₃₃ σB ₃₃	$2B_{12} \sigma 2$	B_{12}	$2B_{13} \sigma 2$	B13	$2B_{23} \sigma 2$.	B_{23}	Be- setzung
Pb(1)	99722	4	01 234	12	00207	13	00113	2	00761 1	14	00894 18	00004	6	00126	7	00224	19	
Pb(2)	98 837	5	51371	13	99218	17	00114	2	00924 1	15	$01440\ \ 21$	-00166	7	00320	9	-00821	23	
Pb(3)	14993	4	49630	12	70959	15	00090	2	00818 1	14	01088 19	00015	6	00040	7	00324	19	
Pb(4)	19567	8	72499	20	21280	23	00130	3	008592	20	0079824	00026	10	00013	12	-00066	31	0,62
Pb(5)	31 987	4	24012	12	91 001	17	00 0 8 9	1	00793 1	14	$00759\ 16$	00017	5	00046	6	-00220	17	
Pb(6)	46758	5	26389	14	63551	17	00133	2	00968 1	5	$01408\ 22$	00123	$\overline{7}$	00244	9	00874	24	
Pb(7)	46689	4	75931	12	61771	13	00108	2	00775 1	14	$00779 \ 17$	00038	6	00085	$\overline{7}$	-00098	18	
Pb(8)	57264	5	25874	13	16392	17	00131	2	00830 1	15	$01355\ 21$	00 097	7	-00133	9	-00656	23	
Pb(9)	57147	5	76397	13	16169	17	00119	2	00745 1	4	0086917	00056	6	00079	$\overline{7}$	00258	18	
Pb(10)	71343	4	28134	12	55976	13	00082	1	00797 1	14	$00805\ 17$	00052	6	00059	6	00165	17	
Pb(11)	89142	5	01788	12	44725	16	00124	2	00773 1	15	$01333\ 21$	00 097	7	00095	9	-00232	22	
Pb(12)	89673	5	52598	13	47379	16	00153	2	00937 1	16	$01220\ \ 21$	-00156	7	00001	9	00436	23	
As(1)	06130	10	20034	29	45754	31	00058	3	00586 2	27	$00430\ \ 31$	-00021	14	00 0 2 0	16	-00083	42	
As(2)	04867	10	75391	28	42989	34	00057	3	00452 2	25	$00684\ \ 35$	00005	14	00109	17	00 08 1	44	
As(3)	16496	12	25819	32	16911	39	00078	4	00654 3	30	00964 41	-00056	16	00209	21	-00240	53	
As(3')	17436	29	69306	74	16244	83	00096	11	00806 7	79	00696 96	-00104	45	00007	52	00072	135	0,4
As(4a)	15871	32	96457	83	82314	80	00126	12	00962 8	33	$00179 \ 75$	-00275	50	-00174	4 8	00527	125	$0,\!4$
As(4b)	15613	14	98658	36	76606	43	00099	4	008963	35	$01109\ 48$	-00135	19	00067	23	-00343	63	0,9
As(5a)	28989	23	75031	52	88082	61	00118	9	00344 4	L7	0050864	-00026	31	00158	38	00309	17	0,5

Tabelle 3. Koordinaten und Temperaturfaktoren für die Gleichung $T = exp - (h^2B_{11} + k^2B_{22} + l^2B_{33} + hk2B_{12} + hl2B_{13} + kl2B_{23})$ mit den Standardabweichungen der Atome von Baumhauerit

Die Werte sind mit 10⁵ multipliziert

Tabelle 3. (Fortsetzung)

Atom	x	σx	y	σy	z	σz	B ₁₁	σB_{11}	B_{22}	σB_{22}	B ₃₃ a	7 B ₃₃	$2B_{12} \sigma^2$	B_{12}	$2B_{13}$ σ	$2 B_{13}$	$2B_{23}$ σ	$2B_{23}$	Be- setzung
As(5b)	29995	32	71492	80	84185	94	0011	0 11	0064	9 72	00684	90	00083	44	0025	6 52	0048	7 127	0,4
As(6)	30542	10	01312	27	47445	31	0005	33	0051	$0\ 26$	00513	33	00012	14	00.08	6 16	0009	4 42	
As(7)	29058	12	43084	30	46697	34	0010	34	00 59	6 29	00522	34	00069	16	00 00	6 19	0018	$3 \ 47$	
As(8)	40611	10	94175	27	16754	31	0005	83	0049	$0\ 26$	00464	32	00 031	14	0001	2 16	0011	4 42	
As(9)	41722	10	50234	27	19231	31	00.04	53	0047	$0\ 26$	00541	33	-00032	13	0002	0 16	-0013	4 43	
As(10)	61603	10	01319	27	75859	32	0004	93	0051	$0\ 26$	00559	33	-00029	14	-0001	1 16]-0003	2 44	
As(11)	62678	10	56462	29	75108	32	0004	73	0063	$6\ 28$	00506	32	-00071	14	0006	9 16	-0026	0 44	
As(12)	74321	11	76258	29	50637	32	00.06	1 3	0056	9 27	00529	33	-00094	14	-0002	9 17	-0008	0 45	1
As(13)	74033	13	06375	36	14174	39	0008	8 4	01 09	3 37	00772	40	-00290	19	0019	8 21	-0089	4 59	
As(14)	72534	11	49807	29	12387	33	0005	33	0056	4 27	00590	34	00002	14	-0000	$5 \ 16$	0011	6 45	
As(15)	84991	10	27018	28	87 513	33	0005	43	0047	$8\ 26$	00649	35	-00044	14	-0003	6 17	0001	9 45	
As(16)	83885	12	79852	35	87979	35	0007	4 4	0107	0 36	00506	35	00163	18	0008	4 18	0046	1 52	
S(1)	02865	22	97509	60	59175	68	0005	97	0061	1 53	00621	67	-00014	30	-0001	7 35	0005	5 95	
S(2)	02245	22	56137	60	59133	68	0006	1 7	0070	3 58	00589	67	00018	31	-0003	5 36	0015	3 98	
S(3)	11987	25	05341	65	30102	75	00.09	$2 \ 8$	0070	1 61	00798	76	00017	34	0018	0 41	-0008	0 104	
S(4)	12148	23	47452	65	27470	75	0007	3 8	0073	7 59	00878	77	00 092	33	00 09	2 39	0015	0 107	
S(5)	10880	29	23524	65	91 820	76	0015	7 10	0127	8 77	00749	79	-00411	44	0004	1 46	0004	9 1 1 9	
S(6)	10840	25	76606	65	94260	78	00.09	19	0105	6 72	00646	73	00075	38	-0004	1 40	0024	6 113	
S(7)	23442	23	26714	62	60294	72	0005	8 7	0072	258	00766	74	00037	31	0001	3 37	-0009	8 102	
S(8)	22878	29	75214	75	62364	80	0012	9 10	00 90	8 70	00 809	83	-00174	41	0007	0 47	0056	2 118	
S(9)	24210	26	97248	70	00874	80	00 09	09	0078	2 63	00900	83	-00049	36	-0000	2 42	-0012	0 113	

Atom	x ox	$y \sigma y$	$z \sigma z$	$B_{11} \sigma B_{11}$	$B_{22} \sigma B_{22}$	B ₃₃ σB ₃₃	$2B_{12} \sigma 2B_{12}$	$2B_{13} \sigma 2B_{13}$	$2B_{23} \sigma 2B_{23}$
8(10)	24525 31	53125 76	00604 86	00149 11	00814 68	00908 86	-00131 42	-00192 49	00294 118
5(11)	$34561\ 25$	23122 65	3459973	00098 8	00704 60	00653 71	$00067 \ 34$	00149 40	00095 100
5(12)	35025 25	80361 63	33524 76	00092 8	0059455	$00752\ 73$	-00072 33	00137 40	-00296100
8(13)	$37067\ 23$	00586 58	$71405\ \ 65$	00078 7	$00557\ 53$	$00479 \ 63$	$00166 \ 30$	-00085 35	-00175 91
S(14)	$36052\ 26$	$49747 \ 63$	68640 72	00109 9	00614 58	0066973	-00105 35	-00008 41	$-00075\ 101$
8(15)	$44361 \ 22$	$30565\ 62$	02747 64	00062 7	0073156	$00457\ 63$	-00077 31	00073 34	00045 93
8(16)	43934 23	72109 61	$02981\ 68$	00079 8	00608 56	$00580\ 66$	00004 31	00053 37	-0010394
8(17)	48623 22	99017 58	35120 63	00070 7	$00567\ 53$	00443 62	-00033 30	-00043 34	00084 88
8(18)	$49779 \ 23$	50618 56	$38695\ 62$	00094 8	00458 50	$00391\ 60$	00097 30	-0003934	-00068 86
5(19)	5352124	00532 63	89730 76	00084 8	0060456	0086278	00051 33	00168 41	-00011 103
(20)	54584 23	52126 61	8740572	00062 7	00619 56	$00735 \ 71$	-00046 30	00123 37	00167 97
5(21)	58648 21	20691 60	5747764	00046 7	0069255	00488 62	-00007 30	00006 33	00001 91
(22)	5938723	78990 61	58332 67	00074 7	$00645\ 56$	00539 67	00052 31	00106 36	00042 95
8(23)	$66578\ 23$	$02063\ 60$	29441 68	00074 7	$00625\ 55$	00586 68	00018 31	00053 36	00102 96
(24)	65989 23	50208 61	31701 64	00073 7	0071057	00407 62	00001 31	00010 35	00055 91
8(25)	6854926	28847 60	96032 73	00123 9	00495 55	$00687\ 71$	-0014934	00166 42	-00191 98
8(26)	$68119\ 22$	71020 59	95805 71	00063 7	$00551\ 53$	$00687\ 69$	00008 30	-00025 36	00071 94
8(27)	$78756\ 24$	96410 60	68141 71	00103 9	$00426\ 50$	$00701 \ 72$	00096 31	00020 40	00012 94
(28)	79002 23	55828 59	65943 73	00068 7	00541 55	00822 74	00000 31.	-00058 38	-00084 99
(29)	79464 22	23463 61	$32297\ 64$	00055 7	00676 56	00519 65	-00001 30	00091 34	-00105 93
\$(30)	80247 28	78171 74	2972074	$00126 \ 10$	01018 72	00520 70	-00254 42	00090 3	-00511111
8(31)	8748922	04028 59	0387663	00065 - 7	00546 51	00464 63	-0009928	-00007 34	-00097 88
(32)	$87454\ 24$	46814 65	05413 71	00090 8	00661 57	00615 69	00078 33	00033 38	00161 98
(33)	92923 23	2659560	72923 69	00085 8	00575 55	00651 69	-00011 32	00022 38	00214 96
8(34)	92304 23	76875 61	75643 63	00071 7	00659 55	$00382\ 61$	-00047 31	00031 33	-00164 89
8(35)	9809022	2439058	27336 65	00069 7	00576 53	00539 65	00110 30	00010 34	-0005991
\$(36)	96679 25	76363 65	23661 70	00103 9	$00735 \ 60$	00482 65	-00003 34	-00071 38	-0004998

Tabelle 3. (Fortsetzung)

19°/₀. Im Verlaufe dieser Verfeinerung zeigte es sich, daß die Bleilage Pb(4) nur zu 62°/₀ besetzt ist. Die Verfeinerung der Struktur wurde anschließend mit der Methode der kleinsten Quadrate weitergeführt. Nach vier Zyklen sank der *R*-Wert auf 12,4°/₀. Da die Bleiatome einen großen anomalen Streuanteil besitzen ($\Delta f' = 4$ und $\Delta f'' = 10-9$), wurde von jetzt an die anomale Streuung berücksichtigt. Der Beitrag eines Atoms *r* zum reellen und imaginären Anteil der Strukturamplitude wird

$$x_r = (f_r - \Delta f'_r) T \cos 2\pi (hx + ky + lz) - \Delta f''_r T \sin 2\pi hx + ky + lz)$$

und

$$eta_r = (f_r - arDelta f_r') \, T \sin 2 \pi \, (hx + ky + lz) + arDelta f_r'' \, T \cos 2 \pi \, (hx + ky + lz)$$
 .

T bedeutet den Temperaturkoeffizienten. Für den R-Wert ergab sich keine wesentliche Verbesserung. Der isotrope Temperaturfaktor B für die Bleiatome sank jedoch im Mittel um 0,9 Å². Zwei weitere Zyklen mit der Methode der kleinsten Quadrate senkte den R-Wert auf $10,60/_0$. Zur Kontrolle wurde eine weitere Differenz-Fourier-Summation berechnet. Es zeigte sich, daß neben den Lagen Pb(4), As(4) und As(5) noch große Maxima vorhanden waren. Der Versuch, diese Atome gegen die Maxima zu verschieben, ließ den R-Wert um $1,2^{0}/_{0}$ steigen. Wurde hingegen eine statistische Verteilung auf die beiden benachbarten Lagen angenommen, so sank der *R*-Wert auf $9,4^{0}/_{0}$. Mit zwei weiteren Differenz-Fourier-Summationen konnten die Besetzungszahlen bestimmt werden. Neben die Pb(4)-Lage, die zu $62^{0}/_{0}$ besetzt ist, kommt die As(3')-Lage mit der Besetzung von 40%/o eines Arsenatomes. Die As(4)-Lage wird in eine As(4a)-Lage mit einer Besetzung $von 40^{0}/_{0}$ und eine As(4b)-Lage mit einer Besetzung von $90^{0}/_{0}$ aufgeteilt. Es wird angenommen, daß diese Lage durch Silber zu $63^{0}/_{0}$ besetzt ist. Die As(5)-Lage wird in eine As(5a)-Lage mit einer Besetzung von $50^{\circ}/_{0}$ und eine As(5b)-Lage mit einer Besetzung von $40^{\circ}/_{0}$ aufgeteilt.

Es wurden nun noch anisotrope Temperaturfaktoren eingeführt. Der *R*-Wert senkte sich auf $4,5^{0}/_{0}$. Die entgültigen Koordinaten und die anisotropen Temperaturfaktoren sind in Tab. 3 zusammengestellt*. In Tab. 4 sind die Hauptachsen der Vibrationsellipsoide angegeben. Die Strukturbestimmung ergibt für den von uns untersuchten Baumhauerit die Formel Pb_{11,6}As_{15,7}Ag_{0,6}S₃₆. Die Zusammensetzung in Gewichtsprozenten hierfür ist Pb 50,2⁰/₀, As 24,4⁰/₀, Ag 1,3⁰/₀,

^{*} Eine $(khl, |F_o|, |F_c|)$ -Tabelle wird wegen ihrer Länge nicht abgedruckt; sie kann Interessenten auf Wunsch zur Verfügung gestellt werden.

Atom	$B_{isotr.}$	Achse	В	Länge	$\cos \alpha_1$	$\cos \alpha_2$	$\cos \alpha_3$
	2,20Å ²	1	$2,51{ m \AA}^2$	0,178Å	0,479	0,512	0,712
		2	2,25	0,169	0,831	0,524	0,182
		3	1,82	0,152	-0,280	-0,680	0,677
Pb(2)	2,75	1	1,82	0,152	0,814	0,578	0,034
		2	1,89	0,155	-0,472	0,629	0,615
		3	4,53	0,239	0,334	-0,517	0,787
Pb(3)	2,28	1	1,80	0,151	0,871	-0,332	0,361
		2	2,96	0,193	-0,149	0,520	0,840
		3	2,07	0,162	-0,467	-0,786	0,404
Pb(4)	2,36	1	2,82	0,189	0,921	0,302	-0,245
		2	2,36	0,173	-0,322	0,945	-0,044
		3	1,90	0,155	0,218	0,120	0,968
Pb(5)	1,97	1	1,81	0,151	0,970	-0,242	0,014
		2	2,40	0,174	0,219	0,849	-0,479
		3	1,69	0,146	0,103	0,468	0,877
Pb(6)	2,92	1	2,44	0,175	0,959	-0,147	-0,242
		2	4,44	0,237	0,282	0,563	0,776
		3	1,87	0,154	0,022	-0,812	0,582
Pb(7)	2,09	1	2,35	0,172	0,708	0,697	0,106
		2	1,81	0,151	-0,328	0,459	0,825
		3	2,10	0,163	0,624	-0,549	0,554
Pb(8)	2,85	1	1,82	0,151	0,047	0,853	0,518
		2	2,25	0,168	-0,836	0,317	-0,446
		3	4,48	0,238	-0,545	-0,412	0,729
Pb(9)	2,21	1	2,57	0,180	0,717	0,545	0,433
		2	2,32	0,171	-0,674	0,388	0,627
		3	1,74	0,148	0,174	-0,742	0,646
Pb(10)	1,96	1	1,60	0,142	0,886	-0,352	0,299
		2	2,37	0,173	0,194	0,871	0,449
		3	1,90	0,155	-0,419	-0,339	0,841
Pb(11)	2,66	1	2,72	0,185	0,835	0,422	0,350
		2	1,86	0,153	-0,497	0,852	0,158
		3	3,39	0,207	-0,232	-0,307	0,922
Pb(12)	2,95	1	2,08	0,162	0,357	0,852	-0,381
		2	4,05	0,226	-0,676	0,518	0,522
		3	2,71	0,185	0,643	0,071	0,762

Tabelle 4. Achsenlängen und Richtungscosinus (bezogen auf die Achsen a, b, c*)der Vibrationsellipsoide im Baumhauerit

P. ENGEL und W. NOWACKI

			Tabelle 4.	(Fortsetzun	<i>ig)</i>		
Atom	$B_{isotr.}$	Achse	В	Länge	$\cos \alpha_1$	$\cos \alpha_2$	$\cos \alpha_3$
As(1)	$1,30{ m \AA}^2$	1 2 3	1,23 Å ² 1,66 1.00	0,124 Å 0,145 0 115	0,930 -0,123 0 345	0,057 0,978 0,197	-0,362 -0,163 0.917
As(2)	1,35	1 2 2	1,00 1,06 1,24	0,115 0,116 0,125 0,148	0,949 -0,168 0,266	0,113 0,971 0,208	-0,293 -0,167 0.941
As(3)	1,89	1 2 3	1,79 1,29 1,68 2,70	0,148 0,128 0,146 0,184	0,928 0,061 0,366	0,208 0,088 0,920 -0,380	-0,360 0,385 0,849
As(3')	1,99	1 2 3	1,59 2,60 1.79	0,142 0,181 0,150	0,570 -0,613 -0.545	0,243 0,760 -0.601	0,784 0,209 0,583
As(4a)	1,97	1 2 3	1,60 4,12 0,18	0,142 0,228 0,048	$0,696 \\ -0,697 \\ 0,170$	0,717 0,670 0,189	0,017 0,254 0,966
As(4b)	2,42	1 2 3	1,65 2,49 3,12	0,144 0,177 0,198	$0,754 \\ -0,618 \\ 0,216$	0,573 0,463 -0,674	0,317 0,633 0,705
As(5a)	1,51	1 2 3	$2,48 \\ 1,47 \\ 0,59$	0,177 0,136 0,087	$0,950 \\ -0,232 \\ -0,207$	-0,009 0,642 -0,766	0,311 0,729 0,608
As(5b)	1,86	1 2 3	2,93 1,70 0,95	0,192 0,146 0,109	0,639 -0,664 -0,385	$0,478 \\ 0,737 \\ -0,476$	0,600 0,120 0,790
As(6)	1,24	1 2 3	0,97 1,51 1,24	0,111 0,138 0,125	$\begin{array}{c c} 0,874 \\ 0,229 \\ 0,427 \end{array}$	0,064 0,817 -0,571	-0,481 0,527 0,700
As(7)	1,70	1 2 3	$2,26 \\ 1,73 \\ 1,11$	0,169 0,148 0,118	$\begin{array}{c c} 0,935 \\ -0,277 \\ 0,217 \end{array}$	$0,349 \\ 0,812 \\ -0,466$	-0,047 0,511 0,857
As(8)	1,24	1 2 3	0,98 1,45 1.28	$0,111 \\ 0,135 \\ 0.127$	0,506 0,244 -0.826	-0,424 0,905 0,006	$0,750 \\ 0,347 \\ 0,562$
As(9)	1,20	1 2 3	0,88 1,22 1,49	0,105 0,124 0,137	$ \begin{array}{c c} 0,881 \\ -0,473 \\ 0,001 \end{array} $	$ \begin{array}{c c} 0,341 \\ 0,633 \\ -0,694 \end{array} $	0,327 0,612 0,719
As(10)	1,28	1 2 3	0,92 1,44 1,48	0,108 0,135 0,137	$ \begin{array}{c} 0,867 \\ -0,070 \\ -0,492 \end{array} $	0,223 0,939 0,259	$ \begin{array}{c} 0,444 \\ -0,335 \\ 0,830 \end{array} $

188

Atom	$B_{isotr.}$	Achse	В	Länge	$\cos \alpha_1$	$\cos \alpha_2$	$\cos \alpha_3$
As(11)	$1,31{ m \AA}^2$	$\frac{1}{2}$	0,87Ų 1,99 1,07	0,105Å 0,159 0,116	$0,970 \\ -0,222 \\ -0,092$	$0,240 \\ 0,878 \\ 0,412$	-0,010 -0,422 0,906
As(12)	1,40	1 2 3	0,88 1,83 1,48	0,106 0,152 0,137	0,698 -0,605 -0,381	0,429 0,781 0,453	$0,572 \\ 0,152 \\ 0,805$
As(13)	2,21	1 2 3	1,10 4,22 1,32	0,118 0,231 0,129	0,511 0,386 0,767	0,612 0,790 0,009	0,603 -0,475 0,640
As(14)	1,39	1 2 3	1,03 1,70 1,43	0,114 0,147 0,134	0,869 -0,241 -0,430	-0,120 0,742 -0,658	0,478 0,624 0,616
As(15)	1,37	1 2 3	0,95 1,36 1,80	0,109 0,131 0,151	0,837 -0,189 -0,512	0,344 0,911 0,225	0,423 -0,365 0.828
As(16)	1,90	1 2 3	1,32 3,35 1.05	$0,129 \\ 0,206 \\ 0,115$	0,952 0,290 0.091	-0,248 0,914 -0.319	-0,176 0,281 0.943
S(1)	1,50	$\frac{1}{2}$	1,11 1,78 1,60	0,118 0,150 0,142	0,850 -0,363 -0.379	$ \begin{array}{c} 0,027 \\ 0,751 \\ -0.658 \end{array} $	0,524 0,550 0,649
S(2)	1,57	$\frac{1}{2}$	1,03 2,03 1.65	0,114 0,160 0,144	0,737 -0,096 -0.668	-0,178 0,926 -0.331	0,651 0,363 0,666
S(3)	1,90	1 2 3	2,28 1,99 1,44	0,170 0,158 0,135	$\begin{array}{c} 0,619 \\ 0,251 \\ -0.743 \end{array}$	-0,094 0,964 0.247	0,779 0,083 0.621
S(4)	1,88	$egin{array}{c} 1 \\ 2 \\ 3 \end{array}$	1,34 2,94 1,36	0,130 0,193 0,131	0,843 0,236 -0,481	-0,501 0,665 -0,552	0,189 0,707 0,680
S(5)	2,89	1 2 3	1,81 5,00 1,85	0,151 0,252 0,153	0,499 0,673 0,544	0,422 0,738 -0,525	0,756 0,032 0,653
S(6)	2,17	1 2 3	1,28 3.05 2,17	$0,127 \\ 0,196 \\ 0,166$	$0,504 \\ 0,168 \\ -0,846$	$ \begin{array}{c} -0,235 \\ 0,970 \\ 0,052 \end{array} $	0,830 0,172 0,529
S(7)	1,17	1 2 3	1,16 1,81 2,16	0,121 0,151 0,165	$0,961 \\ -0,106 \\ -0,253$	-0,146 0,582 -0,799	0,232 0,805 0,544

Tabelle 4. (Fortsetzung)

P. ENGEL und W. NOWACKI

Atom	$B_{isotr.}$	Achse	B	Länge	$\cos \alpha_1$	$\cos \alpha_2$	$\cos \alpha_3$
S(8)	$2,33{ m \AA}^2$	1 2 3	2,33 Ų 3,53 1,31	0,172 Å 0,211 0,129	$0,704 \\ -0,616 \\ -0,351$	$ \begin{array}{r} 0,306 \\ 0,711 \\ -0,632 \end{array} $	0,639 0,337 0,690
S(9)	2,10	1 2 3	$1,64 \\ 2,26 \\ 2,40$	0,144 0,169 0,174	$0,767 \\ -0,489 \\ -0,413$	0,387 0,868 -0,308	0,510 0,076 0,856
S(10)	2,60	1 2 3	4,12 2,04 1,65	$0,228 \\ 0,160 \\ 0,144$	0,807 0,356 0,469	-0,338 0,932 -0,125	-0,482 -0,057 0,873
S(11)	1,83	$egin{array}{c} 1 \\ 2 \\ 3 \end{array}$	2,33 1,76 1,39	0,172 0,149 0,133	$0,691 \\ -0,480 \\ -0,539$	$\begin{array}{c} 0,593 \\ 0,803 \\ 0,045 \end{array}$	$0,411 \\ -0,352 \\ 0,840$
S(12)	1,77	1 2 3	1,35 1,60 2,36	$0,130 \\ 0,142 \\ 0,173$	0,055 - 0,846 - 0,528	$0,798 \\ -0,280 \\ -0,532$	0,599 0,451 0,660
S(13)	1,48	1 2 3	2,49 1,10 0,85	0,177 0,118 0,104	$0,719 \\ -0,235 \\ 0,653$	$0,598 \\ 0,687 \\ -0,411$	-0,352 0,687 0,635
S(14)	1,89	1 2 3	2,54 1,37 1,76	0,179 0,131 0,149	$0,896 \\ 0,426 \\ -0,117$	-0,397 0,660 -0,637	-0,193 0,618 0,761
S(15)	1,47	1 2 3	1,26 2,14 1,00	0,126 0,164 0,112	$0,707 \\ -0,319 \\ -0,630$	0,226 0,947 -0,225	$0,669 \\ 0,017 \\ 0,742$
S(16)	1,58	1 2 3	1,62 1,76 1,36	0,143 0,149 0,131	$\begin{array}{c} 0,969 \\ 0,230 \\ -0,080 \end{array}$	-0,183 0,905 0,383	$0,161 \\ -0,357 \\ 0,919$
S(17)	1,40	1 2 3	1,45 1,81 0,94	$0,135 \\ 0,151 \\ 0,109$	$0,571 \\ -0,697 \\ 0,431$	0,790 0,609 0,061	-0,220 0,376 0,899
S(18)	1,41	1 2 3	2,24 1,11 0,89	0,168 0,118 0,106	$\begin{array}{c} 0,899 \\ -0,371 \\ 0,230 \end{array}$	0,382 0,924 0,000	-0,212 0,088 0,973
S(19)	1,81	1 2 3	2,29 1,36 1,78	$0,170 \\ 0,131 \\ 0,150$	$0,480 \\ -0,787 \\ -0,385$	$0,135 \\ 0,501 \\ -0,854$	$0,866 \\ 0,358 \\ 0,348$
S(20)	1,58	1 2 3	$1,13 \\ 1,54 \\ 2,06$	0,119 0,139 0,161	0,956 0,049 0,287	$ \begin{array}{ c c c c c } 0,142 \\ 0,780 \\ -0,608 \\ \end{array} $	$\begin{array}{c c} -0,254 \\ 0,624 \\ 0,739 \end{array}$

Tabelle 4. (Fortsetzung)

Atom	B _{isotr} .	Achse	B	Länge	$\cos \alpha_1$	$\cos \alpha_2$	$\cos \alpha_3$
S(21)	$1,37{ m \AA}^2$	1	$0,92 { m \AA}^2$	0,108 Å	0,904	0,023	0,426
<i>、 ,</i>		2	1,93	0,156	-0.028	0,999	0.007
		3	1,26	0,126	-0,425	-0,018	0,904
S(22)	1,53	1	1,50	0,138	0,628	-0,515	0,582
		2	1,92	0,156	0,471	0,848	0,242
		3	1,16	0,121	-0,618	0,122	0,775
S(23)	1,57	1	1,52	0,138	0,977	-0,154	-0,144
		2	1,80	0,151	0,195	0,921	0,336
		3	1,38	0,132	0,081	-0,357	0,930
S(24)	1,50	1	1,55	0,140	0,987	0,028	-0,157
		2	1,99	0,158	-0,016	0,997	0,073
		3	0,97	0,111	0,158	-0,070	0,984
S(25)	1,83	1	2,84	0,189	0,853	-0,375	0,361
		2	1,14	0,120	0,320	0,924	0,204
		3	1,53	0,139	0,410	-0,058	0,909
S(26)	1,53	1	1,17	0,122	0,827	-0,188	0,528
		2	1,53	0,139	0,259	0,963	-0,063
		3	1,88	0,154	-0,497	0,190	0,846
S(27)	1,69	1	2,32	0,171	0,928	0,300	-0,217
		2	1,06	0,115	-0,326	0,940	-0,094
		3	1,69	0,146	0,176	0,158	0,971
S(28)	1,68	1	1,22	0,124	0,840	0,161	0,516
		2	1,50	0,138	-0,205	0,978	0,028
		3	2,30	0,170	-0,500	-0,129	0,855
S(29)	1,41	1	1,34	0,130	0,540	0,197	0,818
		2	1,92	0,155	-0,028	0,975	-0,216
		3	0,99	0,112	-0,841	0,093	0,532
S(30)	2,23	1	1,92	0,156	0,788	0,515	-0,335
		2	3,75	0,218	-0,600	0,761	-0,244
		3	1,00	0,113	0,128	0,394	0,909
S(31)	1,34	1	0,89	0,106	0,585	0,468	0,661
		2	1,81	0,151	-0,634	0,772	0,014
		3	1,32	0,129	-0,504	-0,428	0,749
S(32)	1,74	1	2,15	0,165	0,679	0,716	0,157
		2	1,74	0,148	-0,638	0,472	0,607
		3	1,33	0,130	0,360	-0,513	0,778
S(33)	1,66	1	1,67	0,145	0,818	0,459	0,345
	1	2	1,32	0,129	-0,079	0,685	-0,724
		3	1,98	0,158	-0,569	0,564	0,596

Tabelle 4. (Fortsetzung)

Atom	B _{isotr.}	Achse	В	Länge	$\cos \alpha_1$	$\cos \alpha_2$	cos a ₃
S(34)	1,14Å ²	$\frac{1}{2}$	$1,42{ m \AA}^2$ 1.93	0,134Å 0.156	0,951 -0,229	0,275 0.933	-0,138 -0.199
		3	0,88	0,105	0,073	0,231	0,970
S(35)	1,46	1	2,00	0,159	0,636	0,742	-0,206
		$\frac{2}{3}$	1,08	0,117 0.128	-0,769 -0.037	0,599	-0,217 0.953
8(96)	1 09	1	9.97	0,179	0.049	0,251	0,955
5(50)	1,64	$\frac{1}{2}$	2,37 2,05	0,173 0,161	-0,942 -0,077	0,059	-0,529 -0,039
		3	1,03	0,114	0,325	0,062	0,943

Tabelle 4. (Fortsetzung)

S 24,9%. Ein Vergleich dieser Werte mit den Ergebnissen der Analyse in Tab. 1 zeigt, daß der Bleigehalt $1\%/0}$ zu groß und der Arsengehalt 2%/0 zu klein ist.

Sämtliche Berechnungen wurden entweder auf der IBM 1620- oder auf der Bull Gamma 30S-Rechenmaschine (nach eigens dazu entwickelten Programmen) der Universität Bern ausgeführt.

Beschreibung der Struktur

Die Struktur des Baumhauerits besteht aus zwei verschieden dicken Schichten parallel (100) mit bleiglanzähnlicher Struktur. Zwischen diesen Schichten liegt je eine Grenzzone der Zusammensetzung PbS₄ (Fig.1). Alle in der Einleitung erwähnten Mineralien derselben Sulfosalzgruppe wie Baumhauerit besitzen prinzipiell den gleichen Aufbau. Die bleiglanzähnlichen Schichten unterscheiden sich bei den verschiedenen Strukturen durch ihre Ausdehnung und durch die Anzahl der Bleiatome. Bei den bleireichen Arten sind bestimmte Arsenlagen durch Blei ersetzt. Wesentlich ist ebenfalls

Fig. 1. Baumhaueritstruktur, PbS₄-Grenzschicht

Die Kristallstruktur von Baumhauerit

Fig. 2. Baumhaueritstruktur, Projektion //b

Fig. 3. Baumhaueritstruktur, Projektion //c

die Art der Abfolge dieser Schichten. Die Struktur des Baumhauerits kann als eine Kombination der Strukturen von Rathit-I, Dufrenoysit und Skleroklas beschrieben werden.

Die dickere Schicht in Baumhauerit in Fig.2, links durch die Bleiatome 1, 2, 11, 12 und rechts durch Bleiatome 6, 7, 8, 9 begrenzt, besitzt den gleichen Aufbau wie die entsprechende Schicht in Rathit-I und Dufrenoysit. Ihre Dicke beträgt 13,10 Å (Dufrenoysit:

Z. Kristallogr. Bd. 129, 1-4

P. ENGEL und W. NOWACKI

 $\frac{1}{2}b = 12,87$ Å). Die Zelle, gebildet von den Atomen Pb(1) und Pb(9') [9' ist das um *b* nach unten verschobene, mit 9 identische Atom] mit *a'* = 13,16, *b* = 8,357, *c* = 7,894 Å, $\alpha = 90^{\circ}3'$, $\beta = 91^{\circ}40'$ und $\gamma = 99^{\circ}0'$ entspricht der halben Zelle von Rathit-I ($\frac{1}{2}a = 12,58$, *b* = 7,94, *c* = 8,47 Å; $\beta = 100^{\circ}28'$). Die Pb(4)-Lage ist nur zu $62^{0}/_{0}$ besetzt. Die entsprechende Lage ist im Dufrenoysit ganz durch Blei belegt, während sie in Rathit-I vollständig von Arsen besetzt ist, das jedoch eine ungewöhnliche Koordination aufweist [Rathit-I: As(3)]. Die Arsen-bzw. Silberlagen 4*a* und 4*b* sind in Dufrenoysit durch eine Bleilage ersetzt, in Rathit-I ist die gleiche Aufspaltung vorhanden [Rathit-I: As(5a), As(5b)]. In Baumhauerit sind in dieser Schicht 2,6, in Dufrenoysit vier und in Rathit-I zwei Bleiatome pro Zelle vor-

Siebener-Koordination des Bleiatoms Neuner-Koordination des Bleiatoms

handen. Es muß angenommen werden, daß die Struktur dieser Schicht in Baumhauerit der mittleren Struktur aus einer Kombination von Dufrenoysit und Rathit-I entspricht. Für diese Annahme spricht auch die zum Teil starke thermische Anisotropie der Arsen- und Schwefellagen. Da keine entsprechenden Überstrukturreflexe beobachtet wurden, ist eine periodische Anordnung auszuschließen. Ob die einzelnen Schichten im Kristall für sich strukturell homogen sind, ist nicht entschieden.

Die zweite, dünnere Schicht mit einer Dicke von 9,52 Å ist von gleichem Aufbau wie im Skleroklas (Skleroklas: $\frac{1}{2}a = 9,81$ Å). Die Bleilage Pb(10) ist im Skleroklas durch Arsen belegt.

Die Bleiatome in den Grenzzonen der Zusammensetzung PbS_4 besitzen eine Neuner-Koordination durch Schwefelatome (Fig. 4b). Solche Koordinationspolyeder sind zu prismatischen Säulen parallel b zusammengefügt. Die PbS_4 -Schicht besteht aus PbS_6 -Säulen, die sich jeweils längs einer Kante berühren (Fig. 1). Von den drei Schwefelatomen, die in einer Ebene senkrecht zu den Prismenflächen liegen,

Fig. 5. Baumhaueritstruktur; trigonale AsS_3 -Pyramiden sind durch gemeinsame Ecken zu einer Gruppe endlicher Größe vereinigt

Fig. 6. Baumhaueritstruktur, As_5S_{11} -Kettenstück

Fig. 7. Baumhaueritstruktur, As_4S_9 -Kettenstück

gehören zwei ebenfalls zu zwei benachbarten Säulen, während das dritte frei ist.

In den Beschreibungen der Strukturen von Rathit-I (MARUMO und NOWACKI, 1965) und von Dufrenoysit (MARUMO und NOWACKI, 1967)

13*

sowie in der Übersicht (NOWACKI, 1967) wird der Grenzzone die Zusammensetzung PbS₃ und nicht PbS₄ zugeschrieben. Es rührt dies daher, daß dort das eine "freie" S-Atom nicht zur Grenzschicht, sondern zur bleiglanzähnlichen Zwischenschicht gezählt wurde. Bis zu einem gewissen Grade ist die Abgrenzung der beiden Schichten gegeneinander und die Zuteilung der Grenzatome zu einer von ihnen eine Ermessensfrage.

Die Zwischenschichten bestehen aus Bleiglanzlamellen mit einer Breite von a(PbS), die schräg zur Schicht angeordnet sind. Die Ebene (223) von Bleiglanz liegt parallel der Schichtebene. Die einzelnen Lamellen sind gegeneinander in der Richtung [011] von PbS um a(PbS)/2 $\sqrt{2}$ verschoben. Daraus ergibt sich für die Metallagen eine Siebener-Koordination durch die Schwefelatome (Fig. 4a). Die Arsen-

Fig. 9. Baumhaueritstruktur, deformiert oktaedrische Koordination des Silberatoms

atome sind aus diesen Lagen herausgerückt und besitzen eine trigonalpyramidale Koordination von drei Schwefelatomen. Diese AsS₃-Pyramiden sind stufenartig zu Kettenstücken endlicher Länge verbunden, indem sie jeweils ein gemeinsames Schwefelatom besitzen (Fig. 5, 6, 7 und 8). Die Pb(4)-Lage und die Lagen As(4a) und As(5a) schließen sich gegenseitig aus, da die Abstände Pb(4)—As(4a) und Pb(4)—As(5a) zu klein sind. As(4a) und As(5a) besitzen denn auch eine komplementäre Besetzungszahl zu Pb(4). As(3'), As(4a) und As(5a) verbinden jeweils zwei As₃S₇-Kettenstücke zu größeren Gruppen zusammen (Fig. 5). Die Größe hängt von der Besetzung dieser drei Lagen ab. Die Koordination des Silberatoms ist in Fig. 9 dargestellt. In Tab. 5 sind Abstände und Bindungswinkel vereinigt.

Wir danken Herrn Dr. F. MARUMO (jetzt Tokio) für anregende Diskussionen über die Struktur der Bleiarsensulfosalze, dem allzufrüh abberufenen CH. NICCA für eine erste Identifikation der Baumhauerit-

$\begin{array}{c} {\rm Pb}(1){\rm - S}(31) \\ {\rm S}(36) \\ {\rm S}(35) \\ {\rm S}(34) \\ {\rm S}(33) \\ {\rm S}(5) \\ {\rm S}(6) \\ {\rm S}(1) \\ {\rm S}(3) \end{array}$	2,85Å 2,93 2,94 3,15 3,27 3,29 3,34 3,42 3,44	$\begin{array}{c} {\rm Pb}(2){\rm -\!S}(32)\\ {\rm S}(36)\\ {\rm S}(34)\\ {\rm S}(33)\\ {\rm S}(35)\\ {\rm S}(2)\\ {\rm S}(6)\\ {\rm S}(4)\\ {\rm S}(5) \end{array}$	2,73 Å 2,93 3,09 3,12 3,18 3,38 3,52 3,55 3,70	Pb(3)—S(7) S(8) S(5) S(2) S(10) S(6) S(4)	2,91 Å 2,93 2,96 2,99 3,00 3,13 3,42
$\begin{array}{c} {\rm Pb}(4){\rm -S}(10) \\ {\rm S}(6) \\ {\rm S}(4) \\ {\rm S}(9) \\ {\rm S}(8) \\ {\rm S}(3) \\ {\rm S}(12) \\ {\rm As}(5a) \\ {\rm As}(4a) \end{array}$	2,65Å 2,75 2,78 2,90 3,24 3,36 3,59 3,60 3,68	$\begin{array}{c} {\rm Pb}(5){\rm -\!\!-\!S}(13) \\ {\rm S}(15) \\ {\rm S}(7) \\ {\rm S}(14) \\ {\rm S}(9) \\ {\rm S}(10) \\ {\rm S}(11) \end{array}$	2,83 Å 2,91 2,92 3,00 3,02 3,11 3,42	$\begin{array}{c} {\rm Pb(6)}{\rm \!-\!\!S(21)} \\ {\rm S(18)} \\ {\rm S(14)} \\ {\rm S(13)} \\ {\rm S(15)} \\ {\rm S(20)} \\ {\rm S(20)} \\ {\rm S(17)} \\ {\rm S(11)} \end{array}$	2,85Å 2,96 3,19 3,21 3,23 3,24 3,24 3,24 3,27 3,38
$\begin{array}{c} {\rm Pb(7)}{\rm -S(17)} \\ {\rm S(18)} \\ {\rm S(22)} \\ {\rm S(13)} \\ {\rm S(20)} \\ {\rm S(20)} \\ {\rm S(19)} \\ {\rm S(12)} \\ {\rm S(14)} \\ {\rm S(16)} \end{array}$	2,93 Å 2,93 2,95 3,17 3,22 3,26 3,27 3,36 3,41	$\begin{array}{c} {\rm Pb(8)S(24)}\\ {\rm S(23)}\\ {\rm S(15)}\\ {\rm S(19)}\\ {\rm S(20)}\\ {\rm S(25)}\\ {\rm S(21)}\\ {\rm S(18)}\\ {\rm S(17)} \end{array}$	2,99Å 3,00 3,03 3,03 3,17 3,21 3,25 3,32 3,44	$\begin{array}{c} {\rm Pb(9)}{\rm -S(19)}\\ {\rm S(20)}\\ {\rm S(16)}\\ {\rm S(24)}\\ {\rm S(23)}\\ {\rm S(26)}\\ {\rm S(17)}\\ {\rm S(22)}\\ {\rm S(18)}\end{array}$	2,94 Å 3,05 3,08 3,12 3,12 3,17 3,21 3,31 3,38
$\begin{array}{c} {\rm Pb(10)}{\rm -S(29)} \\ {\rm S(24)} \\ {\rm S(28)} \\ {\rm S(21)} \\ {\rm S(23)} \\ {\rm S(27)} \\ {\rm S(25)} \end{array}$	2,82Å 2,82 2,95 2,98 3,12 3,22 3,30	$\begin{array}{c} {\rm Pb(11)}{\rm \!-\!S(29)} \\ {\rm S(30)} \\ {\rm S(33)} \\ {\rm S(31)} \\ {\rm S(1)} \\ {\rm S(27)} \\ {\rm S(35)} \\ {\rm S(34)} \\ {\rm S(36)} \end{array}$	2,92 Å 2,97 3,08 3,20 3,21 3,21 3,21 3,22 3,31	$\begin{array}{c} {\rm Pb(12)}{\rm -S(2)} \\ {\rm S(33)} \\ {\rm S(28)} \\ {\rm S(34)} \\ {\rm S(30)} \\ {\rm S(36)} \\ {\rm S(32)} \\ {\rm S(29)} \\ {\rm S(35)} \end{array}$	2,91 Å 3,00 3,01 3,02 3,22 3,28 3,32 3,47 3,53
$egin{array}{llllllllllllllllllllllllllllllllllll$	2,22Å 2,29 2,33	$egin{array}{llllllllllllllllllllllllllllllllllll$	2,18Å 2,26 2,32	$egin{array}{c} { m As(3)-S(5)}\ { m S(4)}\ { m S(3)} \end{array}$	2,23 Å 2,27 2,31

Tabelle 5. Interatomare Abstände und Bindungswinkel in Baumhauerit

P. ENGEL und W. NOWACKI

As(3')-S(6)	2,23Å	As(4a) - S(9)	2,25Å	As(4b) - S(9)) 2,56Å
S(4)	2,42	S(6)	2.29	S(6) 2,63
$\mathbf{S}(10)$	2,54	$\mathbf{S}(5)$	2,68	$\mathbf{S}(5)$) 2,69
· · ·				S(8) 2,88
				S(1) 3,06
				S(7) 3,31
$A_{S}(5a) = S(8)$	2 31 Å	$A_{s}(5b) - S(8)$	2 23 Å	$A_{S}(6) - S(1)$	3) 2.25Å
S(10)	2,0111	S(10) = S(10)	2,2011	S(1)	1) 2.33
S(10)	2.43	S(14)	2,10	S(1 S(1	2,36
	2,10	(11)	2,01	~(1	2) 2,00
As(7)— $S(7)$	$2,24{ m \AA}$	As(8) - S(17)	$2,22{ m \AA}$	As(9)-S(1	5) 2,22Å
S(14)	2,27	S(12)	2,27	S(1	8) 2,24
S(11)	2,36	S(16)	2,31	S(1	6) 2,33
$A_{s(10)} - S(21)$	2.22 Å	As(11) - S(2)	2.22 Å	As(12) - S(3)	0) 2.27Å
S(19)	2.26	S(26)	2.28	S(2	8) 2.28
S(22)	2,34	S(22)	2,37	S(2	7) 2,33
- (-)	_,			,	
As(13)-S(23)	$2,23{ m \AA}$	As(14) - S(24)	$2,26{ m \AA}$	As(15)-S(3)	2) 2,20Å
S(29)	2,27	S(25)	2,29	S(3	3) 2,26
S(25)	2,58	S(26)	2,35	S(3	1) 2,34
As(16)-S(34)	$2,27{ m \AA}$				
S(27)	2,29				
S(31)	2,46				
S(31) - Pb(1) - S(36)		71.3°	S(32)Pl	b(2) = S(36)	74.9°
0(01) 10(1)	S(35)	70.0	~(-) _,	S(34)	78.9
	S(34)	70,0		$\mathbf{S}(33)$	71,5
	S(33)	68,0		S(35)	68,8
	S(5)	140,0		S(2)	121,4
	S(6)	146,5		S(6)	151,1
	S(1)	115,4		S(4)	129,2
	S(3)	130,0		S(5)	132,9
S(36) - Pb(1) - S(35)		86,8	S(36)-P	b(2) - S(34)	78,3
S(36)-Pb(1)-S(3)		82,8	S(36)Pl	b(2) - S(5)	137,9
S(35) - Pb(1) - S(34)		139,9	S(34)-P	b(2)S(33)	85,5
S(34) - Pb(1) - S(34) - Db(1)	-S(33)	80,8	S(33) - P	b(2) - S(35)	86,3
S(33) - PD(1) - S(5) - Db(1)	-D(D) S(C)	79,3	S(35)P	$D(Z) \rightarrow D(Z)$	140,9 69-9
S(0) = PD(1) - S(0) = Db(1)	າລ(0) ຊ(1)	62.9	S(2) - P S(6) - D	b(2) - b(0) b(2) - S(4)	00,0 60 6
S(0) - F D(1) - S(1) - S(1) - D(1)	ען טרי 19(1)	00,0 114.9	S(4) = D	b(2)S(5)	56 5
o(1) - ru(1)-	·o(ə)	114,4	13(4) — PI	u(⊿)—u(0)	00,0

Tabelle 5. (Fortsetzung)

Tabelle 5. (Fortsetzung) S(7) - Pb(3) - S(8)88,0° S(10) - Pb(4) - S(6)85,5° S(5) 86,8 S(4) 87,9 S(2) 132.9 S(9) 83,1 S(10)81,3 126,5 S(8) S(6) 154,5S(3) 153.6 S(4) 73,9 S(12) 78,4 S(8)-Pb(3)-S(4) 81,4 S(6) - Pb(4) - S(12)140,8 S(5)-Pb(3)-S(2) 86,8 S(4)-Pb(4)-S(9) 155,4 S(2)-Pb(3)-S(10) 143,7 S(9)-Pb(4)-S(8) 116,8 S(10)-Pb(3)-S(6) 73,4S(8)-Pb(4)-S(3) 78,3 S(6) - Pb(3) - S(4)126,4S(3)-Pb(4)-S(12) 107,8 S(8)-Pb(3)-S(5) 156,2S(6) - Pb(4) - S(4)80,4 S(13)-Pb(5)-S(15) 81,8° $72,3^{\circ}$ S(21)-Pb(6)-S(18) 82,8 S(7) 151,9 S(14) S(14) 89,8 S(13) 127,9 S(9) 85,6 S(15) 117,3 S(10) 161,0 S(20) 75,1 S(11) 120,3 S(19) 67,1 S(15)-Pb(5)-S(7) 140,2S(17) 63.9 S(15) - Pb(5) - S(11)S(11) 69,3 126,3 S(7) - Pb(5) - S(14)71,3 S(18) - Pb(6) - S(14)84,9 S(14) - Pb(5) - S(9)156,6 S(18)-Pb(6)-S(11) 81,3 S(9) - Pb(5) - S(10)99,1 S(14)-Pb(6)-S(13) 80,2 S(10) - Pb(5) - S(11)78.6 S(13)-Pb(6)-S(15) 71,5 S(15)-Pb(6)-S(20) 61,3 S(20)-Pb(6)-S(19) 83,7 S(19) - Pb(6) - S(17)83,1 S(17)-Pb(6)-S(11) 69,3 S(17) - Pb(7) - S(18)87.7° S(24)-Pb(8)-S(23) 84.6° S(22) 68,8 S(15) 128,5 S(13) 85,2150,4 S(19) S(20) 137,4 S(20) 83,0 S(19) 88,2 67,3 S(25) S(12) 67,6 S(21) 73,2 S(14) 136,2 S(18) 73,9 S(16) 144,2S(17) 131,1 S(18)-Pb(7)-S(22) 72,0 S(23)-Pb(8)-S(15) 145,5S(18)-Pb(7)-S(16) 127,8 S(23)-Pb(8)-S(17) 80,7 S(22)--Pb(7)--S(13) 132,9 S(15)-Pb(8)-S(19) 70,6 S(13) - Pb(7) - S(20)126,8 S(19)-Pb(8)-S(20) 88,3 S(20) - Pb(7) - S(19)77,5 S(20)-Pb(8)-S(25) 71,2 S(19)-Pb(7)-S(12) 131,9 S(25) - Pb(8) - S(21)121,8 S(12)-Pb(7)-S(14) 69,0 S(21)-Pb(8)-S(18) 62,9 S(14)-Pb(7)-S(16) 63,9 S(18)-Pb(8)-S(17) 79,5

P. ENGEL und W. NOWACKI

S(19)-Pb(9)-S(20)	85,2°	S(29) - Pb(10) - S(24)	84,4°
S(16)	70,5	S(28)	82,4
S(24)	150,3	S(21)	136,1
S(23)	83,5	S(23)	70,2
S(26)	84,6	S(27)	73,8
S(17)	78,2	$\mathbf{S}(25)$	149,2
$\mathbf{S}(22)$	131.5	S(24) - Pb(10) - S(28)	81.8
S(18)	134.2	S(24) - Pb(10) - S(25)	121.3
S(20) = Ph(9) = S(16)	65.3	S(28) - Pb(10) - S(21)	134.5
S(20) = Ph(9) = S(18)	84.6	S(21) - Pb(10) - S(23)	67.8
$S(24)$ _Pb(9)_ $S(23)$	88.1	S(23) - Pb(10) - S(27)	75.6
S(23) Pb(9) $S(26)$	73.3	S(27) - Pb(10) - S(25)	83.5
S(26) = Pb(9) = S(20)	151.8	5(21) -1 5(10) 5(20)	00,0
S(17) - Ph(9) - S(17)	61.2		
S(17) - I D(9) - S(22) S(99) D D(0) S(18)	69.2		
S(22) - FD(9) - S(18)	02,3		
S(29)— $Pb(11)$ — $S(30)$	80,2°	S(2) - Pb(12) - S(33)	73,2°
S(33)	87,6	S(28)	131,3
S(31)	68,8	S(34)	66,4
S(1)	147,9	S(30)	130,2
S(27)	72,6	S(36)	65,7
S(35)	89,2	S(32)	110,6
S(34)	137,8	S(29)	140,4
S(36)	130,2	S(35)	69,1
S(30) - Pb(11) - S(33)	148,2	S(33) - Pb(12) - S(28)	83,3
S(30) - Pb(11) - S(36)	75,2	S(33) - Pb(12) - S(35)	73,5
S(33) - Pb(11) - S(31)	132,3	S(28) - Pb(12) - S(34)	71,2
S(31) - Pb(11) - S(1)	110.4	S(34) - Pb(12) - S(30)	86.2
S(1) - Pb(11) - S(27)	122.3	S(30) - Pb(12) - S(36)	72.4
S(27) = Pb(11) = S(35)	151.9	S(36) - Pb(12) - S(32)	62.8
S(35) - Pb(11) - S(34)	127.7	S(32) - Pb(12) - S(29)	63.0
S(34) - Pb(11) - S(36)	83.4	S(22) - Pb(12) - S(35)	76.0
			, -
S(35) - As(1) - S(3)	103,0°	S(2)-As(2)-S(36)	98,9°
S(35) - As(1) - S(1)	98,3	S(2)— $As(2)$ — $S(1)$	100,2
S(3) - As(1) - S(1)	93,2	S(36)-As(2)-S(1)	98,0
$S(5) = A_{S}(3) = S(4)$	99.6°	$S(6) - A_{S}(3') - S(4)$	99.9°
$S(5) - A_{S}(3) - S(3)$	95 7	$S(6) - A_S(3') - S(10)$	100.0
$S(4) - A_S(3) - S(3)$	100 7	S(4) - As(3') - S(10)	98.8
~(*) ***(*) ~~(*)	,	(*) $(*)$ (0) (10)	00,0
S(9)— $As(4b)$ — $S(6)$	84,3°	S(9)— $As(4b)$ — $S(1)$	$158,2^{\circ}$
$\mathbf{S}(5)$	90,8	S(6) - As(4b) - S(5)	96,1
S(8)	80,6	S(6)-As $(4b)$ -S (8)	91,6
S(7)	85,6	S(6)— $As(4b)$ — $S(1)$	77,4

Tabelle 5. (Fortsetzung)

Tabelle 5. (Fortsetzung)						
S(9)-As(4a)-S(6)	100,3°	S(8)–As(5a)–S(10)	97,3°			
S(9)-As(4a)-S(5)	98,4	S(8) - As(5a) - S(9)	96,2			
S(5)—As(4a)—S(6)	104,1	S(10) - As(5a) - S(9)	100,2°			
S(8)–As(5b)–S(10)	97,3°	S(13)–As(6)–S(11)	97,5°			
S(8)— $As(5b)$ — $S(14)$	96,1	S(13) - As(6) - S(12)	95,3			
S(10)-As(5b)-S(14)	98,3	S(11)- $As(6)$ - $S(12)$	99,2			
S(7)—As(7)—S(14)	100,0°	S(17) - As(8) - S(12)	100,8°			
S(7) - As(7) - S(11)	97,3	S(17) - As(8) - S(16)	99,3			
S(14)—As(7)—S(11)	97,2	S(12)-As(8)-S(16)	96,3			
S(15)-As(9)-S(18)	98,8°	S(21) - As(10) - S(19)	98.1°			
S(15)-As(9)-S(16)	99,5	S(21) - As(10) - S(22)	99.8			
S(16)—As(9)—S(18)	98,6	S(19) - As(10) - S(22)	97,7			
S(20)-As(11)-S(26)	100,4°	S(30) - As(12) - S(28)	99.1 °			
S(20)—As(11)—S(22)	98,8	S(30) - As(12) - S(27)	97.2			
S(26) - As(11) - S(22)	94,7	$S(28) \rightarrow As(12) \rightarrow S(27)$	95,0°			
S(23)-As(13)-S(29)	98,8°	S(24) - As(14) - S(25)	98.2°			
S(23)-As(13)-S(25)	94,0	$S(24) - A_{S}(14) - S(26)$	95.3			
S(29)—As(13)—S(25)	94,5	S(25) - As(14) - S(26)	98,7			
S(32)—As(15)—S(33)	100,6°	S(34) - As(16) - S(27)	99,0°			
S(32)-As (15) -S (31)	103,7	S(34) - As(16) - S(31)	93,5			
S(33) - As(15) - S(31)	96,5	S(27) - As(16) - S(31)	87.8			

Kristalle, der Kommission zur Förderung der wissenschaftlichen Forschung (Projekt Nr. 386) und der Stiftung Entwicklungsfonds Seltene Metalle für ihre Unterstützung, sowie dem Rechenzentrum der Universität Bern (Herren Prof. Dr. W. NEF und Dr. R. R. HÜSSER) für die Möglichkeit der Benützung der Bull Gamma 30S-Rechenanlage bestens.

Literatur

D. GIUȘČA (1930), Die Erze der Lagerstätte vom Lengenbach im Binnental (Wallis). Schweiz. Min. Petr. Mitt. 10, 152-177.

- Y. IITAKA and W. NOWACKI (1961), A refinement of the pseudo crystal structure of scleroclase PbAs₂S₄. Acta Crystallogr. 14, 1291–1292.
- M.-TH. LEBIHAN (1962), Étude structurale de quelques sulfures de plomb et d'arsénic naturels du gisement de Binn. Bull. Soc. franç. Min. Cristallogr. 85, 15-47.
- F. MARUMO and W. NOWACKI (1965), The crystal structure of rathite-I. Z. Kristallogr. 122, 433-456.
- F. MARUMO and W. NOWACKI (1967), The crystal structure of dufrenoysite, Pb₁₆As₁₆S₄₀. Z. Kristallogr. 124, 409-419.
- W. NOWACKI (1967), Überblick über einige Sulfid- und Arsensulfosalz-Kristallstrukturen. Schweiz. Min. Petr. Mitt. 47, 659-681.
- W. NOWACKI, Y. IITAKA, H. BÜRKI and V. KUNZ (1961), Structural investigations on sulfosalts from the Lengenbach, Binn Valley (Ct. Wallis). Part 2. Schweiz. Min. Petr. Mitt. 41, 103-116.
- R. H. SOLLY (1902), Sulpharsenites of lead from the Binnenthal. Part III. Baumhauerite, a new mineral; and dufrenoysite. Min. Mag. 13, 151-171.