Ч. CVII

1978

Вып. 1

НОВЫЕ МИНЕРАЛЫ И ПЕРВЫЕ НАХОДКИ В СССР

УДК 549.643

В. П. РОГОВА, Ю. Г. РОГОВ, д. чл. В. А. ДРИЦ, Н. Н. КУЗНЕЦОВА

ЧАРОИТ ¹ — НОВЫЙ МИНЕРАЛ И НОВЫЙ ЮВЕЛИРНО-ПОДЕЛОЧНЫЙ КАМЕНЬ

Минерал назван по району находки — среднее течение р. Чары. Месторождение чароита локализуется в пределах Мурунского массива сиенитов, находящегося на сочленении Алданского кристаллического щита и Сибирской платформы. Южная часть массива (Большой Мурун) прорывает архейские кристаллические сланцы и гнейсы, северо-восточная часть (Малый Мурун) — кембрийские мергелистые известняки и до-

Рис. 1. Тонковолокнистые агрегаты чароита. Прозрачный шлиф, ник. скрещ., увел. 60.

ломиты. Породы Мурунского массива принадлежат к мезозойскому магматическому комплексу Алданского щита и по петрохимическим особенностям сходны с породами интрузий Центрально-Алданского района (Билибин, 1959). Формирование массива происходило в три фазы. Наиболее ранними образованиями являются покровы трахитов и псевдолейцитовых трахитов, имеющие ограниченное распространение. Покровы эффузивов прорываются интрузивными щелочными породами, представленными нефелиновыми и эгириновыми сиенитами, слагающими основную часть массива. Магматический этап завершается внедрением дайкового комплекса, в составе которого присутствуют щелочные пегматиты, псевдолейцитовые тингуаиты, сельвсбергиты и грорудиты. В пределах Малого

¹ Рассмотрено и рекомендовано к опубликованию Комиссией по новым минералам и названиям минералов Всесоюзного минералогического общества 27 октября 1976 г. Утверждено Комиссией по новым минералам и названиям минералов Международкой минералогической ассоциации 22 июня 1977 г.

Муруна характерно широкое развитие псевдолейцитовых эффузивных, интрузивных и жильных пород как меланократовых, так и лейкократовых (Рогова, 1966).

В псевдолейцитовых породах в переменных количествах присутствуют калиевой полевой шпат, кальсилит, меланит, эгирин, апатит, редкий минерал из группы цирконосиликатов — вадеит (Рогова, Сидоренко, 1964).

В краевых частях массива, а также в пределах зон тектонических нарушений развиты широкие полосы калишпатовых метасоматитов. В обогащенных калием метасоматитах на контакте с известняками возникли своеобразные калиево-кальциевые минералы: чароит, канасит и тинаксит (Рогов и др., 1965). Температура гомогенизации газовожидких включений в тинаксите 400° С. Чароитовые и калишпатовые метасоматиты эгиринизированы.

Чароит является главным породообразующим минералом в метасоматитах и составляет 50—90% породы (рис. 1), иногда развивается по периферии пластинчатых кристаллов канасита или выполняет промежутки между ними.

Цвет чароита сиреневый разных оттенков до фиолетового. Плотность 2.54, твердость (ПМТ-3, нагрузка 50 гс, 12 измерений) 412±6 кгс/мм². Чароит образует тонковолокнистые агрегаты со

Рис. 2. Оптическая ориентировка чароита.

стеклянным блеском, в агрегатах с параллельноволокнистым строением наблюдается шелковистый отлив. Минерал в кислотах не растворяется. При раздавливании образуются удлиненные обломки с прямолинейными ограничениями. Спайность средняя в трех направлениях. Угол между плоскостями призматической спайности 124°, угол между плоскостями призматической и пинакоидальной по {001} спайности 104°.

Оптические свойства чароита изучены в иммерсионных препаратах и в прозрачных шлифах. Минерал двуосный, положительный, в шлифах бесцветен. В толстых обломках в иммерсионных препаратах плеохроирует: Ng — бесцветный, Np — розовый. Дисперсия оптических осей переменная. Показатели преломления измерены в оптически ориентированных срезах: $Ng=1.559\pm0.002$, $Nm=1.553\pm0.002$, $Np=1.550\pm0.002$, Ng-Np==0.009, $2V=28-30^{\circ}$ (измерен на столике Е. С. Федорова). Удлинение положительное, $cNg=5^{\circ}$, Np=b (рис. 2). Оптические свойства позволяют предположить, что минерал имеет моноклинную сингонию. По физическим свойствам новый минерал отличается от близкого к нему по химическому составу канасита (Дорфман и др., 1959).

Для химического анализа (табл. 1) отбирали тонкие, прозрачные под бинокуляром чешуйки нового минерала. Однородность чароита была подтверждена электронномикроскопическим исследованием (метод суспензий): агрегаты минерала состоят из однородных удлиненных частиц прямоугольной формы (рис. 3). Спектральным анализом в минерале установлены следующие примеси: десятые доли процента свинца, лантана и марганца, тысячные доли циркония и иттрия. Барий, стронций и марганец в чароите распределены равномерно (рис. 4). Ан. 3 (табл. 1) рассчитывали на следующую формулу: (Ca_{1.57}Na_{0.51}K_{0.93}Sr_{0.03}Ba_{0.07})_{3.11}[Si₄O₁₀]× [(OH)_{0.58}F_{0.20}]_{0.78}·0.72H₂O, Z=18.

Если предположить, что Al₂O₃, обнаруженный в ан. 1 и 2 (табл. 1), связан с механической примесью анортоклаза, то получаем следующие формулы чароита:

ah. 1 – $(Ca_{1.78}Na_{0.38}K_{1.07}Sr_{0.04}Ba_{0.1})_{3.35}$ [Si₄O₁₀] (OH) · 0.52H₂O, ah. 2 – $(Ca_{1.68}Na_{0.38}K_{0.70}Sr_{0.09}Ba_{0.09})_{2.92}$ [Si₄O₁₀] [(OH)_{0.61}F_{0.17}]_{0.78} · 1.00H₂O.

лимический состав чароита (ан. 1—5) и канасита (ан. 1 и 2)								
	Чароит			Канасит, Хибинский массив (Дорфман и др., 1959)				
Компоненты	1	2	3	1	2			
SiO,	56.30	56.38	56.88	56.08	55.71			
TiO,	_	·	-	0.10	0.06			
Al	1.85	1.07	-	0.55	0.20			
Fe ₂ O ₃			0.12	1.41	0.72			
FeÕ	—	_		0.71	0.36			
MgO			_	0.05	0.26			
CaO	20.44	20.70	20.95	20.95	20.39			
BaO	3.30	3.12	2.52					
SrO	0.90	2.20	0.90					
MnO			·	0.38	0.41			
Na ₂ O	2.45	2.44	3.77	8.01	7.08			
K ₂ Ö	10.50	8.26	10.36	8.47	10.63			
H_2O^+	3.80	5.13	4.40	1.11	1.25			
$H_{2}^{-}O^{-}$		—	·	0.49	0.60			
F	Не опр.	0.75	0.92	2.21	2.17			
Cl	—		-	0.22				
CO_2	—		_	0.20				
P_2O_5	-		-	0.04	0.08			
Сумма	99.54	100.05	100.82	100.98	99.92			
$-\dot{O}=F_2$		0.32	0.39	0.96	0.91			
Сумма	99.54	99.73	100.43	100.02	99.01			

Химический состав чароита (ан. 1—3) и канасита (ан. 1 и 2)

Примечание. Аналитики чароита К. П. Глебова (ан. 1), А. В. Быкова (ан. 2) и Н. Н. Кузнецова (ан. 3).

В формулах чароита число одновалентных анионов одинаково (небольшие различия обусловлены изоморфизмом между гидроксилом и F), очень близки их суммы (K+H₂O), значительно более заметна разница

Рис. 3. Электронномикроскопическое изображение частиц чароита.

общего содержания одно- и двухвалентных катионов. Эти данные позволяют предполагать, что в структуре чароита при увеличении содержания двухвалентных катионов позиции К могут быть заняты молекулами H₂O. Новый минерал отличается от химически близкого канасита (Ca₅Na₄K₂)₁₁ [Si₁₂O₃₀] (OH, F)₄ не только заметными примесями бария,

Таблица 1

стронция и наличием молекулярной воды, но и иным суммарным содержанием катионов, а также дополнительных анионов, приходящихся на один кремниево-кислородный радикал [Si₄O₁₀] — табл. 1.

Сравним ИК спектры чароита и канасита ² из Хибинского массива (рис. 5). Оба минерала обнаруживают триплет в области валентных колебаний Si—O: при этом у канасита пики поглощения примерно равной

Рис. 4. Концентрационные кривые Ва, Sr и Mn по зерну чароита. MS-46 «Камека», аналитик Л. Л. Завьялова.

Рис. 5. ИК спектры чароита (1) и канасита (2).

интенсивности, в то время как у чароита низкочастотный наиболее интенсивный, а высокочастотный имеет минимальную интенсивность. ИК спектры сравниваемых минералов существенно различаются и в области 400—800 см⁻¹, а также в областях колебаний гидроксила. Канасит обла-

дает пиком поглощения при 3600 см⁻¹, но при этом не наблюдается поглощения в области деформационных колебаний воды при 1600—1700 см⁻¹. Этот факт позволяет предположить, что основная часть воды в канасите находится в виде ОН-групп. У чароита в области валентных колебаний гидроксила четыре пика: 3410, 3500, 3550 и 3610 см⁻¹. Кроме того, в области деформационных колебаний наблюдается интенсивный слабо разрешенный триплет: 1590, 1620 и 1650 см⁻¹. Эти особенности ИК спектра чароита позволяют предположить, что в отличие от канасита

Рис. 6. Дериватограмма чароита. 1 — ДТГ (1/10), 2 — ДТА (1t10), 3 — ТГ (навеска 5.25 мг).

большая часть воды в структуре нового минерала находится в молекулярном виде, возможно цеолитного типа с различными энергетическими характеристиками.

Дериватограмма чароита фиксирует несколько эндотермических эффектов (рис. 6). Большая часть воды (~2.4%) теряется до 300° с небольшой

² Обр. 70754 канасита из Минералогического музея АН СССР был любезно предоставлен М. Д. Дорфманом.

⁷ Записки ВМО, вып. 1, 1978 г.

примерно постоянной скоростью. Затем в области 300-600° теряется ~1.3% (максимум при ~330°). С 350 до 1000° наблюдается монотонная потеря веса (~2.0%), на которую накладываются небольшие эндотермические эффекты с незначительной потерей веса (~440, 760 и 970°). ДТА чароита резко отличается от кривой нагревания канасита. Для канасита характерно отсутствие эндотермических эффектов до температур 900°, что согласуется с данными структурного анализа (Чирагов и др., 1969) и ИК спектроскопии этого минерала (вода в канасите содержится только в виде ОН-групп).

Несмотря на близость составов чароита и канасита, их дифрактограммы резко различны (табл. 2). Для того чтобы проиндицировать дифрактограмму чароита и определить параметры его элементарной ячейки, был использован метод микродифракции электронов с применением гониометрического устройства.

Рис. 7. Электронограммы микромонокристаллов чароита с рефлексами hk0(a) $\pi hk\overline{h}$ (b).

Рассматривая две микродифракционные картины чароита (рис. 7), можно отметить, что один из периодов повторяемости решетки чароита совпадает с направлением удлинения плоских лент его микрокристаллов и равен 7.13 Å.

Вторая особенность полученных электронограмм состояла в том, что рефлексы в них распределены по примитивному прямоугольному мотиву (рис. 7). В этих условиях можно предположить, что период повторяемости, равный 7.13 Å, параллелен удлинению микрокристаллов и совпадает с осью b решетки чароита, а рефлексы на «нулевой» слоевой линии имеют индексы h0l. Периоды повторяемости в направлении, перпендикулярном оси b, оказались равны 31.7 и 18.56 Å для электронограмм, изображенных на рис. 7, а и б соответственно. Кроме того, были получены электронограммы с прямоугольными сетками рефлексов и периодами b=7.13и d (h0l)=13.3 A. Отметим, что один из перечисленных выше периодов совпадает со значением d=31.8 А первого малоуглового рефлекса на дифрактограмме чароита. Естественно было предположить, что $d_{100}{=}31.8$ Å. Поскольку $d_{200} < 18.7$ Å, то межилоскостному расстоянию в 18.7 Å должны соответствовать индексы 101. Вначале испытывали варианты с $l = \pm 1$, так как с увеличением l резко возрастает параметр c. Оказалось, что при l=-1 удается проиндицировать все рефлексы различных электронограмм, если $a \sin \beta = 31.7$, b = 7.13, $d_{\bar{1}01} = 18.5$, $d_{201} = 12.50$ Å. Последующее уточнение параметров элементарной ячейки чароита производили с помощью индицирования дифрактограммы минерала (табл. 2).

В результате получены $a=31.82\pm0.05$, $b=7.13\pm0.03$, $c=22.10\pm0.05$ Å, $\beta=94^{\circ}15'$. Следует отметить, что значение параметра *b* решетки чароита

Таблица Результаты расчета дифрактограмм чароита и канасита							
		Чароит	Канасит, Хибинский массив (по данным авторов)				
1	d _{экспер.}	dpacy.	hkl	I	d _{əkcuep} .		
25 70	31.8 12.45	37.72 12.45	100 201				
20 10	9.8 9.36	9.83 9.39	301 301	3	11.72		
2 10 21 22	7.65 7.37 6.18 6.10	$\begin{array}{c} 7.65 \\ 7.35, \ 7.37 \\ 6.19, \ 6.23 \\ 6.00 \end{array}$	401 003, 302 402, 501 501	4	8.67		
10 6 12	5.37 5.12 4.86	5.34, 5.36 5.12 4.80, 4.94	104, 502 013 242, 242	31	5.86		
12 16 8	4.50 4.57	4.59	5.11	33	4.70		
8 5 30	4.40 4.14 3.98 3.90	4.43, 4.50 4.14, 4.15 3.97, 3.99 3.91	$\begin{array}{c} 603, 701 \\ 214, 603 \\ 405, 305 \\ \overline{}714 \end{array}$	4 34	4.35 4.15		
8	3.70	3.73	711	4	3.81		
16 16 100	3.61 3.56 3.348	3.61, 3.62 3.56 3.348, 3.35, 3.33	$\overline{3}15, 106$ 120 $\overline{8}04, \overline{3}24, \overline{5}45$	3	3.66		
20 25 85	3.27 3.20 3.134	3.25, 3.26 3.20, 3.20, 3.21 3.15, 3.14, 3.134	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.00 9.4E		
30 10 5 50 35	2.97 2.91 2.87 2.79 2.71	2.98, 2.97	10.0.3, 913	13 6 23 100	3.15 3.10 3.00 2.91		
14	2.575			12	2.606		
14 12	$2.477 \\ 2.393$			10	2.509		
10	2.292			21 20	$2.350 \\ 2.304$		
2 2 4	2.204 2.180 2.133		_	4 5	2.181 2.078		
10	1.966				4 055		
10	1.773			4 1 3 2 5 5 5 5 10	$\begin{array}{r} 1.955\\ 1.831\\ 1.770\\ 1.745\\ 1.637\\ 1.564\\ 1.541\\ 1.514\\ 1.503\\ 1.655\end{array}$		
			·	10	1.400		

Примечание. Дрон-2, Си излучение.

7*

Ч. 107

весьма близко к соответствующим параметрам таких минералов, как волластонит, ксонотлит, канасит и ряд других кальциевых силикатов. Объем элементарной ячейки канасита практически точно в 3 раза меньше ячейки чароита. Интересно сравнить состав обоих минералов равного объема:

канасит — $(Ca_{30}Na_{24}K_{12})_{66}$ [Se₇₂O₁₈₀ [OH, F)₂₄, чароит — $(Ca_{28,32}Na_{9,16}Sr_{0.54})_{38,2}$ ($K_{16,72}Ba_{1,14})_{17,96}$ [Si₇₂O₁₈₀] (OH, F)₁₄ · 13H₂O.

Сумма катионов и молекул цеолитной воды в пределах ошибки расчета коэффициентов в формуле чароита близка к сумме катионов в формуле канасита.

Чароитовая порода прочная, плотная, вязкая, хорошо полируется. Красивый цвет (от светло-сиреневых до темно-сиреневых и фиолетовых тонов с шелковистым переливающимся блеском), структурно-текстурные особенности, а также наличие звездчатых включений медово-желтого тинаксита и темно-зеленого эгирина придают камню своеобразие. Тончайшие волокна чароита как бы обтекают округлые зерна, линзы кварца и полевого шпата.

Проведены предварительные испытания чароита, из него изготовлены вазы, кабошоны, кольца, запонки, кулоны. Изделия из чароита демонстрируются с 1974 г. на международных выставках. Образцы чароита с тинакситом отправлены в Минералогический музей АН СССР.

Авторы приносят искреннюю благодарность И. Д. Борнеман-Старынкевич, Э. Ф. Бойтман, И. Л. Лапидесу, В. А. Франк-Каменецкому за ценные советы и помощь при исследовании минерала, К. П. Глебовой и А. В. Быковой за проведение химических анализов.

Литература

Билибин Ю. А. (1959). Послеюрские интрузии Алданского района. Избр. тр. Изд-во АН СССР.

тр. изд-во Ан СССР. Дорфман М. Д., Рогачев Д. Л., Горощенко З. И., Успенская Е. И. (1959). Канасит — новый минерал. Минералы СССР. Тр. Минер. музея АН СССР, вып. 9. Рогов Ю. Г., Рогова В. П., Воронков А. А., Молева В. А. (1965). Тинаксит NaK₂Ca₂TiSi₇O₁₉ (ОН) — новый минерал. ДАН СССР, т. 162, № 3. Рогова В. П. (1966). Псевдолейцитовые породы Мурунского щелочного мас-сива. ДАН СССР, т. 169, № 2. Рогова В. П. Сикоранко Г. А. (4064). Остостоятся с

Рогова В. П., Сидоренко Г. А. (1964). О находке вадеита в интрузивных псевдолейцитовых породах Мурунского массива. Минералы СССР. Тр. Минер. музея АН СССР, вып. 15.

Чирагов М. И., Мамедов Х. С., Белов Н. В. (1969). Окристаллической структуре канасита Са₅Na₄K₂[Si₁₂O₃₀] (OH, F)₄. ДАН СССР, т. 185, № 3.

УЛК 549.355

Д. чл. М. И. НОВГОРОДОВА, А. И. ЦЕПИН, д. чл. М. Т. ДМИТРИЕВА

новый изоморфный ряд в группе блеклых руд

Среди множества минеральных видов и разновидностей блеклых руд с общей формулой $A_{12}X_4S_{13}$, где A — Cu, Ag, Zn, Fe и Hg, X — As, Sb и Ві, теллурсодержащая разновидность — голдфилдит — относилась к числу недостоверных и плохо изученных (Синдеева, 1959; Геохимия..., 1964; Ramdohr, 1975). Этот минерал был открыт в начале века (Ransome и др., 1909), дискредитирован с переводом его в теллуристую разновидность энаргита (Sharwood, 1911) и вновь восстановлен как минеральный вид из группы блеклых руд (Tolman, Ambrose, 1934). Рентгеноструктур-