4. CXIV

1985

Вып. 2

НОВЫЕ МИНЕРАЛЫ

УДК 549.3

Д. чл. Н. С. РУДАШЕВСКИЙ, д. чл. Ю. П. МЕНЬШИКОВ, А. Г. МОЧАЛОВ, Н. В. ТРУБКИН, Н. И. ШУМСКАЯ, д. чл. В. В. ЖДАНОВ

КУПРОРОДСИТ CuRh₂S₄ И КУПРОИРИДСИТ CuIr₂S₄ — НОВЫЕ ПРИРОДНЫЕ ТИОШПИНЕЛИ ПЛАТИНОВЫХ ЭЛЕМЕНТОВ ¹

Китайскими учеными на примере маланита Cu (Pt, Ir)₂S₄ (Yu Tsu-Hsiang e. a., 1974; Zhiizhong e. a., 1978; Fleisher e. a., 1980) было показано, что элементы платиновой группы могут образовывать соединения группы тиошпинелей (Воган, Крейг, 1981). Кроме того, в платиновой минерализации ряда районов мира, связанной с ультрамафитами, неоднократно определялись сульфиды Ir, Rh, Pt, Cu, Fe и Ni, имеющие стехиометрию, близкую к тиошпинелям (Бегизов и др., 1975; Жданов, Рудашевский, 1980; Johan, Legendre, 1980; Cabri e. a., 1981). Обычно они присутствуют в виде очень мелких включений в Fe-Pt твердых растворах, что не позволяло провести полное детальное исследование этих минералов.

В платиновой минерализации из аллювиально-делювиальных отложений, связанных с альпинотипными гипербазитами ряда районов Дальнего Востока СССР (Разин и др., 1979; Жданов, Рудашевский, 1980), и в платиновой минерализации щелочно-ультраосновных массивов Кондёр, Инагли и Чад Алданского щита (Рожков и др., 1962; Рудашевский и др., 1983) обнаружены два новых сульфида с обобщенными формулами CuRh₂S₄ и CuIr₂S₄. Они имеют широко варьирующий химический состав: определены многочисленные составы в ряду CuRh₂S₄ — CuIr₂S₄ — маланит Cu (Pt, Ir, Rh)₂S₄. Новые минералы по физическим свойствам близки к маланиту и относятся к структурной группе природных тиошпинелей: кубические, Fd3m, Z=8, $a_0 \simeq 9.2$ Å. По химическому составу крайних членов изоморфных рядов эти минералы получили названия купрородсит (cuprorhodsite) и купроиридсит (cuproiridsite).

Химический состав. Новые минералы обычно присутствуют в виде мелких (первые микроны—0.15 мм) включений в Fe-Pt твердых растворах. Химический состав обоих минералов в пределах отдельных зерен обычно однороден (рис. 1 и 2). В то же время химический состав изученных сульфидов широко варьирует по содержанию нескольких минералообразующих элементов. Колебания состава могут быть существенными для нескольких включений в пределах даже одного зерна-хозяина (табл. 1, ан. 14—17, ан. 30—32 и др.). Расчет количественных анализов, однако, во всех случаях показывает практически одинаковые соотношения трех кристаллохимически различных групп атомов — (Cu++Fe+Ni+Co): (Rh+Ir+Pt): S=1:2:4. Все составы изученных сульфидов могут быть представлены в виде суммы трех миналов: купрородситового CuRh₂S₄, купроиридситового CuIr₂S₄ и маланитового CuPt₂S₄ (табл. 1, рис. 3). Анализ табл. 1 и расположения фигуративных точек

¹ Рассмотрено и рекомендовано к опубликованию Комиссией по новым минералам и названиям минералов Всесоюзного минералогического общества 10 января 1983 г. Утверждено Комиссией по новым минералам и названиям минералов Международной минералогической ассоциации 28 сентября 1983 г.

сульфидов на диаграмме показывают, что существуют практически непрерывный ряд составов CuRh₂S₄—CuIr₂S₄—Cu (Pt, Ir)₂S₄, т. е. от купрородсита до купроиридсита и от него до маланита. Обращает на себя внимание

Рис. 1. Картины сканирования в характеристических рентгеновских лучах включений купрородсита (1) в изоферроплатине (2). Обр. К2, участок 100×100 мкм.

существенная примесь в купрородсите, иногда и в купроиридсите Fe и изредка Ni (табл. 1, ан. 1—11), что позволяет предположить существование в природе железистого и никелистого аналогов этих новых минералов.

Рис.'2. Картины сканирования в характеристических рентгеновских лучах включений купроиридсита (1), срастающихся с минералом (Rh, Ir)₂S₃ (2) в изоферроплатине (3). Обр. 3, участок 100×100 мкм.

Нахождение. Зерна Fe-Pt твердых растворов, содержащие включения купрородсита и купроиридсита, обычно неокатанные или слабо окатанные, угловатой и комковидной формы, размер 0.2—4.5 мм, основную часть их составляет фракция 0.5—1.5 мм. Fe-Pt твердые растворы по составу и рентгенометрическим данным обычно отвечают изоферроплатине Pt_3Fe . Включения новых минералов округлые или полигональные, неправильной или изометрической формы. Они сопровождаются самородным Os, иридосмином (Os, Ir), лауритом RuS_2 , эрликманитом OsS_2 , куперитом PtS, сперрилитом PtAs₂, маланитом Cu (Pt, Ir, Rh)₂S₄ и неназванным минералом (Rh, Ir)₂S₃, также включенными (размер включений до 300 мкм) в зернах изоферроплатины. Сульфиды, как правило, нарастают на пластинчатые кристаллы Fe-Pt твердых растворов. В одном из зерен изоферроплатины (Дальний Восток СССР) установлены округлые включения (5— 80 мкм), сложенные мелкозернистым агрегатом купрородсита, халькопирита, борнита, Fe-Pt твердого раствора и неназванного минерала $CuPd_4S_2$ (обр. K1).

Физические свойства. Купрородсит и купроиридсит удавалось наблюдать только под микроскопом. Отдельные частички порошка этих минералов имеют металлический блеск, железо-черный цвет.

В отраженном свете в полированных шлифах новые сульфиды на фоне изоферроплатины имеют серый цвет, они темнее лаурита, куперита, сперрилита, минерала (Rh, Ir)₂S₃. По сравнению с лауритом и куперитом кажутся буроватыми. Оптически изотропны, внутренние рефлексы отсутствуют. Спайность не наблюдалась.

Купрородсит и купроиридсит, судя по относительному рельефу зерен, обладают средней твердостью. Они чрезвычайно хрупкие, что затрудняет измерение их твердости. Особенно хрупким оказывается купроиридсит. При нагрузке 50 г на зернах этого минерала не удается получить отпечаток без трещин хрупкого разрыва. Значение твердости изученных новых минералов и маланита с учетом низкой точности измерений (из-за плохого качества отпечатков) практически не различаются: для купрородсита 446-532 кгс/мм², $H_{\rm cp} = 498 \pm 30$ кгс/мм² (n=6, P=50 г); для купроиридсита 479-797 кгс/мм², $H_{\rm cp} = 578 \pm 140$ кгс/мм² (n=5, P=30 г), для маланита 445-479 кгс/мм², $H_{\rm cp} = 462$ кгс/мм² (n=2, P=20 г).

Купрородсит и купроиридсит стандартными реактивами и царской водкой (даже горячей) не травятся.

	04	Минерал, массив								
Анализ	Ооразец	(регион)	Rh	Ir	Pt	Cu	Fe	Ni		
1	К1	Купрородсит, Даль- ний Восток СССР	40.8	Не обн.	14.1	9.87	3.95	0.91		
2 3	XXV-2 V-4	Купрородсит, Чад Купрородсит, Даль-	39.6 37.0	10.3 3.72	6.8 18.0	7.55 6.33	5.31 3.04	Не обн. 2.51		
4 5	К2 К2	ний восток СССР То же » »	$\begin{array}{c} 27.7\\ 26.2 \end{array}$	28.9 31.2	4.00 3.88	6.61 6.03	4.38 4.85	Не обн. » »		
6 7 8	K2 K2 K4	>> >> >> >> >> >>>>>>>>>>>>>>>>>>>>>>>	$23.2 \\ 25.7 \\ 19.4$	34.2 31.4 28.0	$3.92 \\ 3.93 \\ 15.6$	$\begin{array}{c} 6.45 \\ 6.36 \\ 10.9 \end{array}$	4.31 4.51 0.58	0.02 Не обн. » »		
9 10	К4 К4	» » » »	19.4 19.1	28.2 29.1	15.2 13.5	10.7 7.78	0.59 2.61	0.05		
11 12 13	ллу-5 XXV-10 XVI-11	купроиридсит, чад То же Купроиридсит, Кон- дёр	6.05 6.90 9.50	48.9 43.7 42.0	10.5 15.20 11.6	7.41 9.63 10.3	3.17 0.97 0.52	0.27 0.50 Не обн.		
14 15 16	XVI-11 XVI-11 XVI-11	To me » » » »	$12.4 \\ 7.55 \\ 5.92 \\ 5.72 \\ $	39.6 37.9 31.3	11.4 18.7 30.3	9.33 9.58 10.7	$\begin{array}{c} 0.35 \\ 0.67 \\ 0.20 \end{array}$	» » » »		
17 18	к5 К5	» » Купроиридсит, Даль- ний Восток СССР	5.73 11.3	29.8 37.6	30.0 14.8	10.5 11.5	0.17 Не обн.	» » » »		
19 20 21	K5 K5 K5	То же » » » »	8.31 11.5 9.41	$36.6 \\ 36.1 \\ 34.3$	20.4 17.1 21.8	11.2 11.0 9.97	» » 0.12 0.20	» » 0.10 Не обн.		
22 23 24	К5 К5 К5	» » » » » »	10.8 10.1 11.0	35.9 33.6 32.4	18.0 19.3 21.7	11.2 11.3 10.6	0.20 Не об н. » »	» » » »		
25 26 27	K3 K3 K3	» » » » · · · · · · · · · · · · · · · ·	$0.44 \\ 0.42 \\ 0.18$	35.4 35.2 35.0	$32.2 \\ 32.4 \\ 32.9$	10.3 10.3 10.5	» » » »	* * * *		
28 29 30	K3 K3	» » » »	0.28	34.1 34.9	32.8 32.6	10.4 10.4	» » » »	* * * *		
30 31 32	33	» » » »	4.77 5.06	31.7 31.0	30.0 30.0	10.1 10.5 10.2	$\begin{array}{c} 0.42\\ 0.42\\ 0.38\end{array}$	0.07 0.04		
33 34	XXVI-13 XXVI-11	Купроиридсит, Инаг- ли То же	3.53 4.30	35.9 34.0	26.0 27.0	10.0 10.4	0.56	Не обн.		
35 36	XXVI-3 XXVI-8	» » » »	4.07 10.7	33.2 28.4	30.4 23.9	10.9 10.6	0.20 0.51	0.06 0.78		
37 38	12/13-2	Маланит, Дальнии Восток СССР То же	9.81 10.2	17.6 17.3	36.7 36.9	11.5 11.7	не оон. » »	Не оон. » »		
39 40	12/13-1 12/13-1	» » » »	11.0 5.63	17.1 25.7	$36.7 \\ 34.9 \\ 24.7 \\ 7$	11.6 11.6	» » 0.04	* * * *		
41 42 43	12/13-1 12/13-1 XVI-2	» » » » Маланит, Кондёр	6.01 5.15 12.8	25.6 28.2 20.6	34.7 31.8 31.5	11.8 11.3 10.8	0.06 0.15 0.07	* * * * * *		
44 45 46	XVI-2 XVI-2 XVI-2	То же » » » »	10.9 10.6 10.6	19.3 21.0 21.6	34.9 33.1 32.4	10.7 11.3 10.6	0.11 0.15 0.10	» » » »		
47 48 49	XVI-2 XVI-3 XXVI-7	» » » » Маланит, Инагли	10.3 8.9 6.74	$\begin{array}{c} 22.0 \\ 25.0 \\ 30.0 \end{array}$	33.1 30.0 30.7	11.3 10.6 9.83	$0.06 \\ 0.37 \\ 1.27$	* * * * * *		
		l · · · · ·		1	1	1 . I		1		

Химический состав купрородсита,

Примечание. Анализы выполнены на микрозонде «Камека», условия анализа рассмотрены

В табл. 2 приведены значения коэффициентов отражения и цветовые характеристики купрородсита, купроиридсита и маланита. Они соответствуют для всех рассматриваемых минералов нейтральному серовато-белому цвету. Коэффициенты цветности их практически совпадают с коэффициентами цветности источника света, что указывает на отсутствие ка-

Таблица 1

купроиридсита и маланита

пушропрядсята в маланита													
 			Коэффициенты в формуле, S = 4.00							Миналы, мол.%			
 Co	s	сумма	Rh	Ir	Pt	Cu	Fe	Ni	Co	Rh	Ir	Pt	
0.03	30.4	100.06	1.67		0.30	0.66	0.30	0.06		84.8		15.2	
Не обн. » »	$\begin{array}{c} 29.8\\ 29.0 \end{array}$	$99.36 \\ 99.60$	$1.66 \\ 1.59$	$\begin{array}{c} 0.23 \\ 0.09 \end{array}$	$\begin{array}{c} 0.15\\ 0.41 \end{array}$	$\begin{array}{c} 0.51 \\ 0.44 \end{array}$	0.41 0.24	0.19		81.4 76.1	11.3 4.3	7.3 19.6	
0.11 0.09 0.33 0.18 0.05 Не обн. 0.04 Не обн. » » » »	$\begin{array}{c} 27.6 \\ 27.3 \\ 27.5 \\ 25.4 \\ 25.7 \\ 26.3 \\ 24.6 \\ 24.8 \\ 25.1 \end{array}$	99.0 99.75 99.73 99.58 99.94 99.84 98.58 100.9 101.7 99.12	$\begin{array}{c} 1.24 \\ 1.18 \\ 1.06 \\ 1.16 \\ 0.95 \\ 0.94 \\ 0.91 \\ 0.31 \\ 0.35 \\ 0.47 \end{array}$	$\begin{array}{c} 0.70 \\ 0.75 \\ 0.84 \\ 0.76 \\ 0.74 \\ 0.73 \\ 0.74 \\ 1.33 \\ 1.18 \\ 1.12 \end{array}$	$\begin{array}{c} 0.10\\ 0.09\\ 0.09\\ 0.09\\ 0.40\\ 0.39\\ 0.34\\ 0.28\\ 0.40\\ 0.30\\ \end{array}$	$\begin{array}{c} 0.48 \\ 0.44 \\ 0.48 \\ 0.47 \\ 0.87 \\ 0.86 \\ 0.60 \\ 0.61 \\ 0.78 \\ 0.83 \end{array}$	$\begin{array}{c} 0.36\\ 0.40\\ 0.36\\ 0.38\\ 0.05\\ 0.05\\ 0.23\\ 0.30\\ 0.09\\ 0.05 \end{array}$		0.01 0.03 0.02 	60.8 58.4 53.5 57.7 45.5 45.6 45.7 16.1 18.0 24.9	34.3 37.1 42.2 37.8 35.4 35.4 37.2 69.3 61.0 59.3	4.9 4.5 4.5 19.1 19.0 19.0 14.6 21.0 15.9	
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	$25.1 \\ 24.6 \\ 23.4 \\ 24.2 \\ 24.6$	98.18 99.0 101.82 100.40 99.80	$\begin{array}{c} 0.62 \\ 0.38 \\ 0.32 \\ 0.30 \\ 0.57 \end{array}$	$1.05 \\ 1.03 \\ 0.89 \\ 0.82 \\ 1.02$	$\begin{array}{c} 0.30 \\ 0.50 \\ 0.85 \\ 0.82 \\ 0.40 \end{array}$	$\begin{array}{c} 0.74 \\ 0.79 \\ 0.92 \\ 0.88 \\ 0.94 \end{array}$	$\begin{array}{c} 0.03 \\ 0.06 \\ 0.02 \\ 0.02 \\ - \end{array}$			31.5 19.9 15.5 15.4 28.6	53.3 53.9 43.2 42.3 51.3	15.3 26.2 41.3 42.3 20.1	
<pre>> > +e off. > > ></pre>	23.8 24.9 25.0 24.4 25.1 22.4 22.8 22.4 22.7 22.6 24.3 23.6 23.7 22.3	$\begin{array}{c} 100.31\\ 100.82\\ 100.68\\ 100.52\\ 99.10\\ 100.80\\ 100.74\\ 101.12\\ 101.02\\ 100.28\\ 100.83\\ 98.80\\ 101.06\\ 100.38\\ 98.29 \end{array}$	$\begin{array}{c} 0.44\\ 0.58\\ 0.57\\ 0.55\\ 0.51\\ 0.55\\ 0.02\\ 0.02\\ 0.01\\ 0.02\\ 0.02\\ 0.46\\ 0.25\\ 0.27\\ 0.20\\ \end{array}$	$\begin{array}{c} 1.03\\ 0.97\\ 0.92\\ 0.98\\ 0.90\\ 0.86\\ 1.05\\ 1.03\\ 1.04\\ 1.00\\ 1.03\\ 1.06\\ 0.90\\ 0.87\\ 1.07\end{array}$	$\begin{array}{c} 0.56\\ 0.45\\ 0.47\\ 0.49\\ 0.51\\ 0.57\\ 0.95\\ 0.93\\ 0.97\\ 0.95\\ 0.43\\ 0.84\\ 0.83\\ 0.77\\ \end{array}$	$\begin{array}{c} 0.95\\ 0.89\\ 0.80\\ 0.92\\ 0.92\\ 0.85\\ 0.93\\ 0.91\\ 0.95\\ 0.92\\ 0.93\\ 0.94\\ 0.95\\ 0.92\\ 0.93\\ 0.84\\ 0.90\\ 0.87\\ 0.91\\ \end{array}$				$\begin{array}{c} 21.5\\ 29.0\\ 29.1\\ 27.2\\ 26.6\\ 1.0\\ 1.0\\ 1.0\\ 23.5\\ 12.6\\ 13.7\\ 9.8 \end{array}$	$\begin{array}{c} 50.5\\ 48.5\\ 46.9\\ 48.5\\ 46.9\\ 43.4\\ 52.0\\ 52.0\\ 51.5\\ 50.8\\ 51.5\\ 54.4\\ 45.3\\ 44.2\\ 52.5\end{array}$	27.5 22.5 24.0 24.3 26.5 28.8 47.0 47.0 48.0 47.0 48.0 48.2 47.5 22.1 42.1 37.7	
 >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	23.0 23.1 24.2 24.0	99.52 101.93 99.09 99.71	0.23 0.22 0.55 0.51	0.99 0.96 0.78 0.49	$\begin{array}{c} 0.77 \\ 0.86 \\ 0.65 \\ 1.00 \end{array}$	0.91 0.95 0.88 0.98	0.08 0.02 0.05 	0.01 0.07 —		11.6 10.8 27.8 25.4	49.7 47.0 39.4 24.4	38.7 42.2 32.8 50.2	
>> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >>	24.4 23.6 23.5 23.1 24.6 24.9 24.6 23.8 24.0 24.3 23.6	100.5 101.0 101.47 101.67 99.70 100.37 100.81 100.75 99.10 100.86 99.18 102.14	$\begin{array}{c} 0.52\\ 0.56\\ 0.30\\ 0.32\\ 0.28\\ 0.65\\ 0.55\\ 0.55\\ 0.53\\ 0.46\\ 0.36\\ \end{array}$	$\begin{array}{c} 0.47\\ 0.46\\ 0.73\\ 0.73\\ 0.73\\ 0.56\\ 0.52\\ 0.57\\ 0.61\\ 0.64\\ 0.69\\ 0.85\\ \end{array}$	0.99 0.99 0.97 0.97 0.91 0.84 0.92 0.89 0.90 0.91 0.81 0.86	$\begin{array}{c} 0.97\\ 0.95\\ 0.99\\ 1.01\\ 0.99\\ 0.89\\ 0.87\\ 0.93\\ 0.90\\ 0.95\\ 0.88\\ 0.84\\ \end{array}$				26.2 27.8 14.9 15.8 13.9 31.7 27.6 27.0 26.7 25.8 23.3 17.4	23.8 23.2 36.4 36.0 40.8 27.3 26.1 28.5 29.6 29.8 35.1 41.1	50.0 49.0 48.7 48.1 45.3 41.0 46.3 44.5 43.6 44.4 41.6 41.5	

нами ранее (Жданов, Рудашевский, 1980).

ких-либо цветовых оттенков. Величина отражения средняя, варьирующая для зерен минералов различного состава по спектру от 32.0 до 40.0 %. Некоторые колебания абсолютных значений R рассматриваемых минералов могут быть обусловлены различным качеством полировки зерен (мелкие размеры, положение включений на краю зерна минерала-«хозяина»).

Спектральные кривые отражения купрородсита, купроиридсита и маланита простые, но имеют для минералов различного состава разную морфологию (рис. 4): в целом можно заметить, что преобладающие купрородситовый и маланитовый миналы в составе этих минералов обеспечивают

Рис. 4. Кривые дисперсии отражения купрородсита (1 — обр. К1, 2 — обр. К2, 3 — обр. К4), купроиридсита (4 — обр. XXV-5, 5 — обр. К3) и маланита (6 — обр. XVI-2) по данным табл. 2.

аномальный тип дисперсии R (обр. К1 и XVI-2), в то время как преобладание купроиридситового минала, видимо, меняет тип дисперсии R на нормальный (обр. XXV-5).

Электронная микроскопия. Проведено изучение купроиридсита (обр. XXV-3) на электронном микроскопе JEM-100C, снабженном энергодисперсионным спектрометром «Kevex-5100». В электронно-

Таблица 2

Отражение и твердость купрородсита, купроиридсита и маланита

	Минерал, образец											
Длина волны λ,	ĸ	упрородси	ИТ	купров	маланит							
нм	K1	K 2	K 4	XXV-5	КЗ	XVI-2						
460 480 500 520 540 560 620 640 660 680 700 720 740	35.6 35.8 36.4 36.6 36.7 36.8 36.9 37.0 37.0 37.0 37.0 37.0 37.0 37.0 37.1 37.2	$\begin{array}{c} 37.5\\ 37.3\\ 37.2\\ 37.2\\ 37.2\\ 37.0\\ 37.0\\ 37.0\\ 37.0\\ 37.0\\ 37.0\\ 36.9\\ 36.8\\ 36.7\\ 36.6\\ 36.6\\ 36.6\end{array}$	39.5 39.3 39.3 39.2 39.2 39.1 39.1 39.1 39.1 39.0 38.9 38.8 38.8 38.8 38.7 38.6 38.5	35.0 34.4 34.0 33.6 33.4 33.1 32.8 32.6 32.4 32.2 32.1 32.0 32.0 32.0	37.5 37.2 37.1 37.2 37.2 37.5 37.7 37.8 37.8 37.8 37.8 37.8 37.8 37.8	$\begin{array}{r} 34.8\\ 35.3\\ 35.8\\ 36.3\\ 36.5\\ 36.7\\ 36.9\\ 37.1\\ 37.4\\ 37.5\\ 37.6\\ 37.8\\ 37.9\\ 38.1\\ 38.2 \end{array}$						
Хара	 ктери	стика	цвета	поис	точни	ку А						
У Х у λd, нм Pe, %	36.7 0.450 0.408 590 3	$37.0 \\ 0.447 \\ 0.407 \\ 0 \\ 0 \\ 0 \\ 0$	39.1 0.446 0.408 0 0	$\begin{array}{r} 33.0 \\ 0.441 \\ 0.405 \\ 485 \\ 4 \end{array}$	$\begin{array}{c} 37.4 \\ 0.449 \\ 0.406 \\ 500 \\ 0 \end{array}$	$\begin{array}{c} 36.8 \\ 0.453 \\ 0.409 \\ 0 \\ 0 \\ 0 \\ \end{array}$						

Примечание. Отражение измерено на приборе МСФП-1, эталон Si, объектив $21 \times .$

оптических суспензионных препаратах (отобраны с помощью ультразвукового диспергатора конструкции Л. Н. Вяльсова, ИГЕМ АН СССР) купроиридсит представлен обломками монокристаллов неправильной формы размером 0.2—1 мкм (рис. 5, *a*). Состав частиц нового минерала контролировался на ППД. Полученные от тонких участков кристаллов серии микродифракционных картин однозначно индицируются в предположении гранецентрированной кубической элементарной ячейки минерала с $a_0 = = 9.92 \pm 0.04$ Å (рис. 5).

Рис. 5. Результаты электронно-микроскопического изучения (JEM-100 C) частиц купроиридсита.

а — изображение фрагмента монокристалла, б—г — микродифракционные картины, отображающие плоскости обратной решетки соответственно: (110)*, (211)* и (114)*.

Рентгенометрическая характеристика. Из-замалых размеров зерен новых сульфидов они исследовались только методом порошка. Мономинеральный материал извлекался с полированной поверхности образцов на микроскопе «Neophot» с помощью объектива с алмазной пирамидкой. Порошок собирался каплей резинового клея. В табл. З видно, что дебаеграммы купрородсита, купроиридсита и маланита идентичны друг другу. Все отражения на рентгенограмме купрородсита и подавляющее большинство линий дебаеграммы купроиридсита индицируются в предположении гранецентрированной кубической элементарной ячейки, характерной для тиошпинелей, пространственная группа Fd3m, Z=8. На некоторых дебаеграммах купроиридсита и маланита, однако, иногда фиксируются слабые отражения (1—2 линии), которые индицируются только со «смешанными» (четными—нечетными) индексами. Отнести их к определенным минералам не удалось. Присутствие этих линий

4 Записки ВМО, вып. 2, 1985 г.

Таблица 3

Результаты расчета дебаеграмм купрородсита, купроиридсита и маланита

Купрородсит. обр. К2			Купроиридсит, обр. XXV-5			Купроиридсит, обр. КЗ			Маланит, обр. ХІ-2			
I	d _{HSM}	dpacy	I	$d_{\rm HBM}$	dpacy	I	d _{n3m}	d _{pacy}	I	d _{изм}	d _{расч}	hkl
4	5.7	5.7	5	5.7	5.7	- 3	5.8	5.7	5	5.8 3.15	5.7 3.14	111 013
10 4	$3.00 \\ 2.87$	$2.98 \\ 2.85$	10 3	3.00 2.87	2.99 2.86	10 4	$\begin{array}{c} 3.01 \\ 2.87 \end{array}$	$2.99 \\ 2.86$	10 3	3.01 2.89	2.99 2.86	311 222 230
$\frac{1}{7}$	2.480 2.264	$2.470 \\ 2.267$	2* 9 1	2.743 2.489 2.292	2.740 2.477 2.274	$\frac{7}{2}$	2.487 2.292	$2.480 \\ 2.276$	9 2 2	2.492 2.271	2.480 2.276 2.025	400 331 422
$\frac{-}{8}$	 1.904 1.758	1.901 1.747		1.912 1.760	1.907 1.752	89	1.915 1.759	1.909 1.754	9 10	1.916	1.909 1.754	333, 511 440
4 2 3	1.672 1.510 1.488	1.670 1.507 1.489	5 3 4	1.681 1.515 1.490	$\begin{array}{c} 1.675 \\ 1.511 \\ 1.494 \end{array}$	$\begin{array}{c} 4\\ 4\\ 3\end{array}$	1.676. 1.509 1.498	1.677 1.513 1.495	$\begin{array}{c} 4\\2\\3\end{array}$	1.675 1.516 1.495	1.677 1.513 1.495	533 622
4	1.427	1.426	$\frac{4}{6}$	1.436	1.430		1.433 1.391 1.292	1.432 1.389 1.291	$\begin{vmatrix} 3\\2\\6 \end{vmatrix}$	1.430 1.390 1.294	1.432 1.389 1.291	444 551, 711 553, 731
$\frac{1}{2}$	1.233	1.235	1* 2 3	1.263	1.259 1.239 1.444	1* 3 5	1.260 1.237 1.146	1.260 1.240 1.145	1* 2 4	1.264 1.240 1.147	1.260 1.240 1.145	732,651 800 555,751
4 4 5	1.140 1.132 1.102	1.140	1 6	1.140	1.137	35	1.136	1.138	273	1.135 1.109 1.087	1.138 1.109 1.089	662 840 753
 9 ш.	1.035 1.009	1.035 1.008	$\frac{3}{7}$	1.038 1.011	1.039 1.011	$\begin{cases} 3\\ 8 \end{cases}$	1.040	1.040		1.038	1.040	931
		l T	 				1.012 0.997	1.012 0.997 พัศ 1	(р 4 Рйки	$\begin{vmatrix} 1.010 \\ 0.9945 \end{vmatrix}$	0.9970	933
9.88 ± 0.01 9.91 ± 0.01 9.92 ± 0.01 9.92 ± 0.01												
	Объем элементарной ячейки (V ₀ , Å ³)											
964.4 973.2					9	976.2 976.2				5.2		
Рентгеновска 6.74 7.24						ая пл 	отно 7.98	сть	(р _{рентг} ,	г/см°) 7	7.45	-

Примечание. Условия съемки: РКД-57.3, резиновый шарик, d = 0.2 мм, Fe излучеиме, внешний стандарт — NaCl; a₀ рассчитаны по 10—15 последним (в области больших углов 26) отражениям рентгенограммы. Звездочкой отмечены линии, не отвечающие гранецентрированной элементарной ячейке минерала.

на дебаеграммах может быть обусловлено частичной упорядоченностью катионов в структуре изученных минералов в отличие от типичных тиошпинелей. Окончательное решение этого вопроса возможно только при детальном исследовании структуры данных минералов. Меньшие значения a_0 для купрородсита по сравнению с купроиридситом и маланитом находятся в соответствии с известными данными о размерах ионов Rh, Ir и Pt.

Рентгеновская плотность новых сульфидов платиновых элементов максимальна для составов минералов, обогащенных маланитовым миналом, несколько уменьшается для купроиридсита и минимальна для купрородсита (табл. 3).

Купрородсит, купроиридсит, маланит и сопровождающие их сульфиды и арсениды платиновых элементов являются типичными минералами сульфидно-платинового парагенезиса платиноидов в ультрамафитах (Рудашевский и др., 1983).

Авторы искренне благодарны Я. А. Пахомовскому и Л. Н. Вяльсову за практическую помощь при выполнении настоящей работы.

Цементно-полированный шлиф с зернами изоферроплатины, содержащей включения купрородсита и купроиридсита, передан в Горный музей Ленинградского горного института.

Литература

Бегизов В. Л., Борисенко А. Ф., Усков Е. Д. Сульфиды и природные твердые рас-Бегизов В. Л., Борисенко А. Ф., Усков Е. Д. Сульфиды и природные твердые рас-творы платиноидов из ультрабазитов Гусевогорского массива (Урал). — ДАН СССР, 1975, т. 225, № 6, с. 1408—1411. Воган Д., Крейг Дж. Химия сульфидных минералов. М.: Мир, 1981. 575 с. Жданов В. В., Рудашевский Н. С. Новый тип золото-платиновой минерализации в метасоматитах по базитам. — ДАН СССР, 1980, т. 252, № 6, с. 1452—1456. Разин Л. В., Мочалов А. Г., Разина Т. П., Чубаров В. М. Минералы платиновых массивов

исталлов в аллювиальных россыпях одного из районов гипербазитовых массивов Корякско-Камчатской складчатой области. — Геол. и геофиз., 1979, № 12, с. 72—79. Рожков И. С., Кицул В. И., Разин Л. В., Боришанская С. С. Платина Алданского щита. М.: Изд-во АН СССР, 1962. 119 с.

Рудашевский Н. С., Мочалов А. Г., Жданов В. В. Минеральные парагенезисы пла-

Рудашеский П. С., Мочалов А. Г., Моннов Б. В. Минеральные парагенезисы пла-тиноидов ультрамафитов. — ЗВМО, 1983, вып. 1, с. 3—13. Cabri L. J., Criddle A. J., Laflamme J. H. G., Bearne G. S., Harris D. C. Mineralo-gical study of complex Pt-Fe nuggets from Ethiopia. — Bull Miner., 1981, vol. 104, p. 508—525.

Fleischer M. e. a. New mineral names. — Amer. Miner., 1980, vol. 65, N 3-4, p. 406-408.

Johan Z., Legendre O. Mineralogie des platinoides dans les chromites massives du feuillet ophiolitique de la Nouvelle-Caledonie. Res. princ. result. sci. et techn. ser. geol.

feuilier opnionitique de la Nouvene-Caledonie. Res. princ. result. sci. et tecnn. ser. geoi. nat. — Bur. rech. geol. et miner. Paris; 1980, p. 599. Yu Tsu-Hsiang, Lin Shu-Jen, Chao Pao, Fang Ching-Sung, Huang Chi-Shun. A pre-liminary study of some new minerals of the platinum group, and another associated new one in platinum-bearing intrusions in a region in China. — Acta Geol. Sinica, 1974, N. 2 — 202 242 N 2, p. 202-218.

Zhizhong P., Chiehung C., Lovlov X. Discussion on published articles in the research of new minerals of the platinum-group discovered in China in recent years. — Acta Geol. Sinica, 1978, N 4, p. 326-336.

УДК 549.51

Д. члены Б. В. ЧЕСНОКОВ, Л. Ф. БАЖЕНОВА

СРЕБРОДОЛЬСКИТ Са₂Fe₂O₅ — НОВЫЙ МИНЕРАЛ ¹

Новый минерал — сложный окисел состава Са₂Fe₂O₅ — найден Б. В. Чесноковым летом 1982 г. в терриконах угольных шахт г. Копейска (Челябинский угольный бассейн на Южном Урале). Он получил название сребродольскит (srebrodolskite) в честь известного советского украинского минералога Б. Й. Сребродольского (р. 1927), ряд трудов которого посвящен минералогии горящих терриконов угольных шахт.

Сребродольскит находится в обожженных кусках окаменелого дерева, которые широко распространены в горелых породах терриконов Челябинского бассейна. В отвалах шахт и разрезов куски окаменелого дерева обычная составная часть наряду с кусками аргиллитов, глинистых сланцев, алевролитов, песчаников и конгломератов. Размеры кусков окаменелого дерева обычно около 20×30 см, но нередки куски стволов диаметром до 0.5 м и более. С поверхности цвет этих кусков желтоватый, а в изломе темно-бурый. Состоят такие псевдоморфозы из кальцита, анкерита и переменной примеси битуминозного вещества.

В очагах самовозгорания углесодержащих пород терриконов и других отвалов окаменелое дерево обжигается и его кусок превращается в своеобразный «орех» (рис. 1). Скорлупа «ореха» достигает толщины 2-3 см и состоит из тонкозернистого ангидрита светло-серого или розовато-серого цвета. Ядро «ореха» сложено светло-серой или белой землистой массой,

4*

195

¹ Рассмотрено и рекомендовано к опубликованию Комиссией по новым минералам и названиям минералов Всесоюзного минералогического общества 22 марта 1984 г. Утверждено Комиссией по новым минералам и названиям минералов Международной минералогической ассоциации 28 октября 1984 г.