© Д. чл. Ю. П. МЕНЬШИКОВ,* почетный член А. П. ХОМ<u>ЯКОВ,** почетный</u> член Дж. ФЕРРАРИС,*** Е. БЕЛЛУЗО,*** А. ГУЛА,*** <u>Е. А. КУЛЬЧИЦКАЯ</u> *

ЭВЕСЛОГИТ (Ca,K,Na,Sr,Ba)₄₈ [(Ti,Nb,Fe,Mn)₁₂(OH)₁₂Si₄₈O₁₄₄](F,OH,Cl)₁₄ — НОВЫЙ МИНЕРАЛ ИЗ ХИБИНСКОГО ЩЕЛОЧНОГО МАССИВА, КОЛЬСКИЙ ПОЛУОСТРОВ, РОССИЯ ¹

Yu. P. MENSHIKOV, A. P. KHOMYAKOV, G. FERRARIS, E. BELLUSO, A. GULA, <u>E. A. KULCHITSKAYA</u>. EVESLOGITE, (Ca,K.Na,Sr,Ba)48[(Ti,Nb,Fe,Mn)]2(OH)]2Si48O]44](F,OH,Cl)]4, A NEW MINERAL FROM THE KHIBINY ALKALINE MASSIF, KOLA PENINSULA, RUSSIA

* Геологический институт Кольского научного центра РАН, 184200, Апатиты, ул. Ферсмана, 14 ** Институт минералогии, геохимии и кристаллохимии редких элементов, 121357, Москва, ул. Вересаева, 15 *** Туринский университет, I-10125, Турин

Eveslogite was found on Mt Eveslogchorr, Khibiny alkaline massif, Kola peninsula, Russia, and named for the type locality. It occurs as an anchimonomineral eveslogite veinlet cross-cutting poikilitic nepheline syenite. The mineral forms plicated fine-fibrous (0.05—0.005 mm across) aggregates outwardly resembling yuksporite, from which it differs in its X-ray powder diffraction pattern, unit-cell parameters, IR spectrum, etc. Color lightbrown, yellow. Semitransparent. Streak white. Luster vitreous. Cleavage by {001} and {010} is perfect. Brittle. Mohs' hardness 5. D (meas.) 2.85 g/cm³, D (calc.) 2.93 g/cm³. Biaxial (–), $n_p = 1.631$, $n_m = 1.641$, $n_g = 1.647$, 2V (calc.) = 82°. Wet chemical analysis gives (wt. %): Na₂O 4.59, K₂O 8.53, Rb₂O 0.20, CaO 18.60, SrO 2.75, BaO 2.84, MnO 1.00, FeO 0.88, Fe₂O₃ 0.23, Al₂O₃ 0.32, TiO₂ 6.52, ZrO₂ 0.35, Nb₂O₅ 6.56, Ta₂O₅ 0.25, SiO₂ 41.96, H₂O 2.85, F 2.72, Cl 0.42, —O=(F,Cl)₂ 1.24, Total 100.33. Empirical formula at Si + Al = 48: (Ca_{22.60}K_{12.32}Na_{10.08}Sr_{1.80}Ba_{1.28} Rb_{0.16}) ± 48.24(Ti_{5.56}Nb_{3.36}Mn_{0.96}Fe6³_{3.4}Fe³_{2.20}Zr_{0.20}Ta_{0.08}) ≥ 11.20 (Sia_{7.56}Al_{0.44}) ≥ 48.00 (D1)_{3.96}(DH)_{20.64}F_{9.76}Cl_{0.80}] ≥ 170.56 . Simplified formula: (Ca₈K, Na₈Sr₈Ba₁(Ti, Nb, Fe, Mn)_{1.2}(OH)_{1.2}Si₁₈₀O₁₄₄](F,OH,Cl)₁₄. Monoclinic, space group P2/m (?), a = 14.069 (3), b = 24.937 (5), c = 44.31 (2) Å, $\gamma = 95.02$ (4)°, V = 15486 (13) Å³, Z = 4. Eveslogite and its closest analogue yuksporite were subjected to comparative electron- and X-ray powder diffraction study, and, on this base, both were classified as heterolayered titanosilicates with astrophyllite-like structures.

Новый поликомпонентный титаносиликат состава (Ca,K,Na,Sr,Ba)₄₈[(Ti,Nb,Fe, Mn)₁₂(OH)₁₂Si₄₈O₁₄₄](F,OH,Cl)₁₄ установлен авторами (Ю. П. М. и А. П. Х.) на горе Эвеслогчорр Хибинского щелочного массива (Кольский полуостров) и назван эвеслогитом (eveslogite) по месту находки. Исследование минерала, имеющего тонковолокнистое строение, было затруднено отсутствием монокристаллов, пригодных для рентгеноструктурного анализа, а также его значительным сходством с другим структурно неизученным волокнистым титаносиликатом — юкспоритом, относительно широко распространенным в том же районе Хибин. Это определило необходимость проведения детального сравнительного кристаллохимического изучения эвеслогита и юкспорита, выполненного коллективом итальянских и российских ученых с применением комплекса высокоразрешающих приборов и методов. Как показали результаты выполненного исследования, эвеслогит представляет собой ранее неизвестный титаносиликат с астрофиллитоподобной структурой, существенно отличающийся от его ближайшего аналога юкспорита по параметрам элементарной ячейки и рентгенограмме порошка.

Основные характеристики эвеслогита и доизученного юкспорита сопоставлены в табл. 1.

Описываемый минерал встречен в двух точках горы Эвеслогчорр. В одной из них, более детально изученной авторами, он слагает анхимономинеральную эвеслогитовую жилу, секущую гнейсовидные рисчорриты, в другой образует скопления обломков эвеслогитовой породы в аллювиальных отложениях. Коренной выход эвеслогитовой жилы, имеющей мощность 5—15 см, прослежен по склону на 3.7 м;

¹ Рассмотрено и утверждено Комиссией по новым минералам и названиям минералов Международной минералогической ассоциации 6 ноября 2001 г.

Таблица l

Свойства	Эвеслогит*	Юкспорит**			
Формула	$(Ca,K,Na,Sr,Ba)_{48}[(Ti,Nb,Fe,Mn)_{12} (OH)_{12}Si_{48}O_{144}](F,OH,Cl)_{14}$	(K,Na) ₁₂ (Ca,Na,Sr,Ba) ₄₀ [(Ti,Fe) ₁₂ (OH) ₁₈ Si ₄₈ O ₁₄₄](OH,F,Cl) ₁₆			
Сингония	Моноклинная	Триклинная			
Пространственная группа	P2/m?	P-1			
<i>a</i> (Å)	14.069(3)	16.50(5)			
<i>b</i> (Å)	24.937(5)	25.21(4)			
<i>c</i> (Å)	44.31(2)	21.11(3)			
α (°)	90	100.4(3)			
β (°)	90	110.0(4)			
γ (°)	95.02(4)	90.4(1)			
V (Å ³)	15486(13)	8093(5)			
Ζ	4	2			
<i>D</i> (г/см ³)	2.85(2)	3.05-3.10			
Интенсивные линии на рентгенограмме порошка, d (Å)(I)	2.835(100) 3.127(65) 2.990(59) 3.110(52) 12.33(51) 2.940(45) 6.199(42)	2.796(100) 3.104(90) 2.999(90) 2.915(70) 6.219(55) 4.183(35) 3.191(35)			
	3.054(39) 2.798(35)	2.742(35) 2.157(35)			
N_p	1.631(2)	1.644			
N_m	1.641(2)	Нет данных			
Ng	1.647(2)	1.660			
2 <i>V</i> (°)	(-)82	(+)4676			
Цвет	Светло-коричневый, желтый	Розовый, желтый			

Сравнительная характеристика эвеслогита и юкспорита Comparative characteristics of eveslogite and yuksporite

Примечание. * данные настоящей работы; * * пересмотренные данные по юкспориту из Мурунского массива (Коневидр., 1985).

азимут падения 270°, ∠30—40°. В жильной массе эвеслогита отмечены спорадические включения нефелина, калиевого полевого шпата, биотита, фторапатита, щербаковита, эвдиалита и астрофиллита.

Эвеслогит слагает плойчатые, местами смятые в складки волокнистые и тонкоигольчатые агрегаты, отдельные индивиды которых длиной до 3—5 см имеют сечение порядка 0.05—0.005 мм (рис. 1). Волокна ограничены плоскостями весьма со-

Рис. 1. Плойчатый агрегат эвеслогита. Fig. 1. Plicated fibrous aggregate of eveslogite.

Рис. 3. Дериватограмма эвеслогита. Навеска 268.95 мг, потеря массы 8.50 мг = 3.16 %. Fig. 3. Derivatogram of eveslogite. Weighed portion 268.95 mg, lost mass 8.50 (3.16%).

вершенной по {001} и совершенной по {010} спайности, уплощены по {001} и вытянуты вдоль оси *а*. Цвет минерала светло-коричневый или желтовато-коричневый, черта белая. В тонких сколах просвечивает, под микроскопом прозрачный. Блеск стеклянный или шелковистый. Хрупкий. Излом занозистый. Твердость 5 по шкале Мооса. Плотность, измеренная объемометрическим методом, 2.85(2) г/см³, вычисленная для эмпирической формулы 2.93 г/см³. В кислотах (HCl и HNO₃) при комнатной температуре не растворяется.

Оптически двуосный, отрицательный. Показатели преломления определены иммерсионным методом: $n_p = 1.631(2)$, $n_m = 1.641(2)$, $n_g = 1.647(2)$, $2V(выч) = 82^\circ$. Оптическая ориентировка: a = Np, c = Nm, $b \land Ng = 5^\circ$ в тупом углу γ . Слабо плеохроирует по схеме $Ng \approx Nm > Np: Ng$ и Nm — бледно-желтый, Np — бесцветный. В ультрафиолетовых лучах не люминесцирует.

ИК-спектр минерала (рис. 2) содержит следующие максимумы поглощения (подчеркнуты наиболее сильные, аналитик Н. В. Чуканов, в см⁻¹): 420, <u>437</u>, 456, <u>520</u>, 578, 632, 659, 687, 712, 772, <u>884</u>, <u>952</u>, <u>1064—1078</u>, <u>1104—1117</u> и дополнительно в высокочастотной области (на рисунке не показано) слабые максимумы 1570, 1660, 3300, 3510 и 3620. По общему характеру данный спектр довольно близок ИК-спектру юкспорита, однако в сравнении с последним спектр эвеслогита имеет целый ряд индивидуальных особенностей. Так, синглетам 1068 и 1107 см⁻¹ в спектре юкспорита отвечают дублеты 1064—1078 и 1104—1117 см⁻¹ в спектре эвеслогита, что в сочетании с другими данными свидетельствует о кристаллохимической индивидуальности сравниваемых минералов при наличии между ними тесного структурного родства.

Согласно результатам термографического анализа (рис. 3), плавление эвеслогита происходит при температуре около 950 °C; потеря массы вещества в диапазоне 100—1000 °C составляет 3.16 %, что примерно соответствует суммарному содержанию в минерале воды и хлора — 2.85 и 0.42 мас. % соответственно (см. ниже).

Результаты мокрого химического анализа эвеслогита, выполненного Е. А. Кульчицкой из навески 3 г, представлены в табл. 2 вместе с литературными данными о составе юкспорита из Хибинского и Мурунского массивов. Принадлежность эвеслогиту выявленных в нем изоморфных примесей Sr, Ba, Fe, Mn, Al, Zr, Nb и Ta проконтролирована на микрозонде независимо А. И. Ледневым и Г. Н. Нечелюстовым. Пересчет полученных результатов на основе Si+Al = 48 (Z = 4) приводит к эмпирической формуле (Ca_{22.60}K_{12.32}Na_{10.08}Sr_{1.80}Ba_{1.28}Rb_{0.16})_{248.24}(Ti_{5.56}Nb_{3.36}Mn_{0.96}Fe_{0.84}³⁺ Fe_{0.20}Zr_{0.20}Ta_{0.08})_{211.20}(Si_{47.56}Al_{0.44})₂₄₈[O_{139.36}(OH)_{20.64}F_{9.76}Cl_{0.80}]_{2170.56}. Кристаллохимическая формула эвеслогита, основанная на данных табл. 2 и результатах сравнительного исследования структурных моделей ряда родственных гетерослоистых титаносили-

	Эвес	логит*	Юкспорит			
Компонент	мас. %	Si + Al = 48	Хибины**, мас. %	Мурун***, мас. %		
Na ₂ O	4.59	10.08	6.17(4.91-7.60)	3.84		
K ₂ O	8.53	12.32	7.04(6.37-7.33)	6.15		
Rb ₂ O	0.20	0.16	0.22	_		
CaO	18.60	22.60	18.40(14.70-22.55)	18.90		
SrO	2.75	1.80	3.17(2.93-3.39)	5.87		
BaO	2.84	1.28	4.78(2.04-7.52)	8.60		
MgO	Сл.	_	1.07(сл2.81)			
MnO	1.00	0.96	0.30(0.09-0.82)	0.29		
FeO	0.88	0.84	_	—		
Fe ₂ O ₃	0.23	0.20	0.34(0.13-0.56)	0.75		
Al ₂ O ₃	0.32	0.44	0.35(0.31-2.37)	0.07		
SiO ₂	41.96	47.56	39.13(38.91-39.32)	38.40		
TiO ₂	6.52	5.56	8.89(8.74-11.09)	11.00		
ZrO ₂	0.35	0.20	1.02(0.00-1.41)			
Nb_2O_5	6.56	3.36	4.64(4.20-5.08)			
Ta ₂ O ₅	0.25	0.08	0.12(0.11-0.13)	—		
H ₂ O	2.85	20.64	2.47(1.78-3.00)	2.20		
F	2.72	9.76	3.13(2.92-3.22)	3.05		
Cl	0.42	0.80	0.66(0.53-0.80)	0.80		
$-O=(F,Cl)_2$	1.24		1.47	1.46		
Сумма	100.33		100.21	99.07		

Химический состав эвеслогита и юкспорита Chemical composition of eveslogite and yuksporite (wt %)

П р и м е ч а н и е. ^{*} мокрый химический анализ; Cl — по данным микрозондового анализа; дополнительно определены Cs₂O 0.02, Li₂O 0.004, REE₂O₃ 0.17, S_{общ} 0.02 % (данные настоящей работы); ^{**} среднее содержание по данным четырех химических анализов; в скобках — пределы вариаций; дополнительно определены Cs₂O 0.018, Li₂O 0.002, REE₂O₃ 0.21, CO₂ 0.14 % (Костылева-Лабунцова и др., 1978); ^{***} в сумму анализа входят также V₂O₅ + Ta₂O₅ 0.61 % (Конев и др., 1985).

катов (см. ниже), может быть представлена в виде $(Ca,K,Na,Sr,Ba)_{48}[(Ti,Nb,Fe,Mn)_{12}(OH)_{12}Si_{48}O_{144}](F,OH,Cl)_{14}$ при Z = 4 или $(Ca,K,Na,Sr,Ba)_{24}[(Ti,Nb,Fe,Mn)_6 (OH)_6Si_{24}O_{72}](F,OH,Cl)_7$ при Z = 8.

Рентгенограмма порошка эвеслогита индивидуальна (табл. 3). При некоторой близости к рентгенограмме юкспорита (табл. 4) она характеризуется целым рядом особенностей (табл. 1), вполне достаточных для однозначной идентификации минерала.

Тонковолокнистый характер агрегатов эвеслогита исключал применимость к его изучению методов монокристального рентгеноструктурного анализа. Этот пробел удалось в значительной мере восполнить комплексным исследованием с использованием данных электронной дифрактометрии. Сопоставление геометрии электронных микродифракций (SAED) от ориентированных частиц минерала с данными порошковой рентгенографии дало возможность определить параметры его элементарной ячейки и отнести эвеслогит к моноклинной сингонии. С использованием тех же методов были определены параметры элементарной ячейки юкспорита, сопоставленные с эвеслогитовыми в табл. 1. Юкспорит оказался представителем минералов триклинной, а не ромбической сингонии, как принималось ранее (Конев и др., 1985).

Таблица З

Результаты расчета рентгенограммы порошка эвеслогита X-ray powder diffraction data for eveslogite

Ι	d _{эксп}	d _{выч}	hkl	Ι	d _{эксп}	d _{выч}	hkl
19	22.04	22.16	002	59	2.990	2.997	23.12
10	14.77	14.77	003	45	2.940	2.941	-24.12
30	14.04	14.01	100	20	2.891	2.892	275
51	12.33	12.42	020	100	2.835	2.833	428
7	11.75	11.77	110	35	2.798	2.798	-460
7	11.11	11.08	004	21	2.777	2.776	-35.10
14	10.48	10.40	112	24	2.755	2.755	277
4	9.89	9.73	-120	22	2.732	2.732	-279
4	8.92	8.92	120	12	2.712	2.712	513
5	7.634	7.633	123	23	2.691	2.690	367
10	7.417	7.419	-130	12	2.658	2.659	-525
6	7.327	7.317	-131	11	2.621	2.620	506
25	6.660	6.681	202	8	2.606	2.606	-387
42	6.199	6.210	040	11	2.565	2.565	25.13
4	5.862	5.859	-214	2	2.514	2.515	06.14
15	5.725	5.725	043	4	2.491	2.491	291
9	5.228	5.233	-233	4	2.459	2.460	239
12	4.974	4.968	050	3	2.402	2.402	289
5	4.855	4.848	233	2	2.358	2.357	386
7	4.714	4.709	053	3	2.255	2.255	-492
16	4.549	4.542	119	6	2.229	2.229	480
28	4.470	4.460	-236	9	2.184	2.183	-645
1	4.283	4.300	-314	6	2.154	2.154	-646
9	4.138	4.136	244	8	2.133	2.134	635
9	3.922	3.922	-163	10	2.113	2.113	-661
4	3.845	3.846	-326	5	2.037	2.037	652
9	3.727	3.724	13.10	3	2.020	2.020	-1.12.5
12	3.571	3.571	308	5	1.998	1.997	-1.12.6
		3.570	-345	3	1.982	1.983	-2.12.5
8	3.542	3.540	22.10	4	1.967	1.967	0.12.7
7	3.485	3.484	343	4	1.931	1.931	4.10.3
13	3.354	3.354	23.10	3	1.911	1.911	-3.12.5
11	3.266	3.265	-415	3	1.896	1.896	666
7	3.190	3.192	-434	4	1.886	1.886	590
65	3.127	3.127	-426	6	1.872	1.873	-1.13.5
52	3.110	3.112	-364	6	1.854	1.854	-1.13.6
39	3.054	3.053	13.13				[

 Π р и м е ч а н и е. Условия съемки: порошковый дифрактометр высокого разрешения Phillips, Си $K_{\!\alpha}$ -излучение.

Анализ данных о параметрах элементарных ячеек эвеслогита и юкспорита в сочетании с другими данными позволил выявить взаимное структурное родство обоих минералов и их тесную кристаллохимическую связь с гетерослоистыми (HOH)-титаносиликатами, имеющими общую формулу $A_3Y_7[X_2O_{2+p}Si_8O_{24}]O_4^{'}$ (Ferraris, 1997). В этой формуле: А — крупные катионы, образующие сетки между трехслойными пакетами HOH; Y — октаэдрические катионы, принадлежащие О-слою

Результаты расчета рентгенограмм порошка юкспорита из Мурунского и Хибинского массивов

Мурун / d _{эксп}		Хибины								
		1	daven	d _{p1.01}			hkl			
	JACH		JACH			P.IU. 4				
10	13.88			13.56				1-10		
20	12.43]	12.36				020		
10	7.427			7.46				13-1		
55	6.219	5	6.25	6.253				0-41		
15	4.996	1	5.03	4.984	4.960			0-43	0-14	
30	4.628	5	4.62	4.616	4.612	4.581		3-11	3-3-1	33-2
35	4.183	2	4.19	4.235	4.200			3-1-4	061	
3	3.963	1	3.96	3.964				41-3		
15	3.716	3	3.72	3.719	3.715	3.704	3.692	242	3 - 5 - 1	3-3-4 3-1-5
3	3.532	1	3.59	3.533	3.527	3.522		070	3-13	025
12	3.473	1	3.47	3.497				064		
20	3.285	1	3.28	3.330	3.298			36—3	0-26	
35	3.191	1	3.17	3.209	3.195			063	351	
90	3.104	8	3.10	3.091	3.087			080	444	
30	3.046	8	3.05	3.046	3.039	3.024		333	045	334
90	2.999	9	3.00	2.990	2.966			37-3	3—71	
70	2.915	6	2.92	2.937	2.927			37—1	3-3-6	
100	2.796	10	2.778	2.786				37—5		
35	2.742	3	2.735	2.779				3-7-3		
33	2.720			2.738				60-2		
33	2.710	6	2.705	2.716	2.700			334	60 - 4	
15	2.674	1	2.671	2.698				3-73		
10	2.582	4	2.580	2.590				065		
10	2.494	1	2.500	2.480	2.476			0-28	0-103	
10	2.436	2	2.444	2.433	2.432			008	3-7-5	
5	2.390	1	2.268	2.370				047		
15	2.188	4	2.192	2.204	2.175			0-29	0103	
35	2.157	2	2.153							
15	2.130	3	2.118							
20	2.105									
15	2.093									
10	2.078	- 3	2.084							
5	2.014									
15	1.985									
3	1.937									
3	1.918	1	1.914							
10	1.903									
30	1.894	7	1.888							
5	1.858	3	1.866	l				l		
		3	1.849							
		1	1.824							
5	1.792		_							
15	1.787	9	1.786							
		1	1.754							
3	1.722	2	1.738							
5	1.709	2	1.708							
10	1.697	5	1.689							
3	1.689		l							

X-ray powder diffraction data on yuksporite from Murunsky and Khibiny massifs

Примечание. Условия съемки: для образца из Мурунского массива (Коневидр., 1985): дифрактометр Дрон-3, Сu-излучение, Ni-фильтр, внутренний стандарт — CaF₂, новое индицирование (см. текст); для образца из Хибинского массива (данные настоящей работы): порошковый диврактометр высокого разрешения Phillips, Cu_{K_a}-излучение.

3 Записки ВМО, № 1, 2003 г.

пакета; X (=Ti,Nb,...) — 5- или 6-координированные катионы, принадлежащие H-слоям; O' — связанные с X и O'' — принадлежащие только O-слою O²⁻, OH⁻, F-Cl⁻, H₂O^o; p = 0, 1, 2 в зависимости от координационного числа X. Среди известных гетерослоистых титаносиликатов наиболее тесным кристаллохимическим родством с эвеслогитом и юкспоритом связаны минералы группы астрофиллита, которые содержат шесть формульных единиц указанного выше состава и характеризуются идеальной формулой $A_{18}Y_{42}[X_{12}O_{12}Si_{48}O_{144}]O_{24}^{o}$ (p = 0). Для интерпретации этой связи использованы следующие данные.

1. Астрофиллит (Ямнова и др., 2000): K₂NaFe₇Ti₂Si₈O₂₆(OH)₄F, триклинный, пространственная группа A1, a = 5.365 (2), b = 11.88 (1), c = 21.03 (2) Å, $\alpha = 84.87$ (6)°, $\beta = 92.25$ (5)°, $\gamma = 103.01$ (4)°, V = 1300.5 (1) Å³. Z = 2.

2. Магнезиальный астрофиллит (Shi e. a., 1998): K₂NaNa(Fe,Mn)₄Mg₂Ti₂Si₈O₂₄ (OH)₄(OH,F)₂, моноклинный, пространственная группа C2, a = 5.322(1), b = 23.129(5), c = 10.370(3) Å, $\beta = 99.55(2)^\circ$, V = 1258.8 Å³, Z = 2.

Оба указанных представителя группы астрофиллита имеют структурный базис ab, параллельный пакету НОН. Базис ab эвеслогита, близкий к таковому юкспорита, примерно в шесть раз больше, чем базис астрофиллита, и в три раза больше, чем базис магнезиального астрофиллита. Кроме того, параметр c ячейки эвеслогита примерно соответствует учетверенной толщине НОН пакета структуры астрофиллита. Данные о химическом составе эвеслогита не отвечают астрофиллитовому отношению (Ti + Nb)/Si = 1/4, однако указанное отношение выполняется, если в группу Ti и Nb включить Fe, Mn и Zr, что позволило нам использовать идеализированную формулу астрофиллита $A_{18}Y_{42}[X_{12}O_{12}Si_{48}O_{144}]O_{24}$ в качестве опорной при выводе формулы изученного минерала из данных о его составе, представленных в табл. 2.

Полученная при Z = 4 идеализированная формула эвеслогита имеет вид $(Ca,K,Na,Sr,Ba)_{48}[(Ti,Nb,Fe,Mn)_{12}(OH)_{12}Si_{48}O_{144}](F,OH,Cl)_{14}$ Рассчитанные на той же основе при Z = 2 идеализированные формулы юкспорита из Мурунского и Хибинского массивов (Конев и др., 1985; Костылева-Лабунцова и др., 1978) имеют вид $(K,Na)_{12}(Ca,Na,Sr,Ba)_{40}[(Ti,Fe)_{12}(OH)_3Si_{48}O_{144}](OH,F,Cl)_{16}$ и $(Ca_{24,2}K_{11,0}Na_{14,8}Sr_{4,2}Ba_{2,4}Mg_2)(Ti_{8,4}Nb_{2,2}Zr_{0,4}AlMn_{0,4})Si_{48}O_{164,0}(OH)_{4,0}F_{12,0}Cl_{2,0}$ соответственно.

Как следует из анализа сравнительных данных, приведенных в табл. 2, эвеслогит и юкспорит слабо различимы по химическому составу. Первый из них в несколько большей степени обогащен K, Fe, Mn, Si, Nb и H₂O, второй относительно богаче Sr, Ba и Ti. Таким образом, существенные различия в свойствах эвеслогита и юкспорита, отраженные в табл. 1, в основном обусловлены структурными различиями сопоставляемых минералов. Следует подчеркнуть, что данные минералы, несмотря на их принадлежность к слоистым титаносиликатам астрофиллитоподобного типа, не связаны между собой политипными отношениями. Об этом четко свидетельствуют различия эвеслогита и юкспорита по величине параметров a, b и c их элементарных ячеек.

Более подробно новые данные о юкспорите, его кристаллохимических соотношениях с эвеслогитом и месте этих двух родственных минералов в суперсемействе гетерослоистых титаносиликатов будут рассмотрены в отдельном сообщении.

Эвеслогит — пегматитово-гидротермальный минерал, образующийся на конечных стадиях кристаллизации дифференциатов агпаитовых магм из пересыщенных щелочными, летучими и редкими элементами силикатно-солевых жидкостей. Судя по характеру проявлений, парагенезису минералов и другим особенностям, эвеслогит имеет однотипную с юкспоритом генетическую природу. Не исключено, что этот титаносиликат относительно широко распространен в Хибинском массиве, но до сих пор пропускался из-за сходства с юкспоритом. Вполне вероятной представляется возможность обнаружения эвеслогита в высококалиевых пегматоидах Мурунского и некоторых других щелочных массивов.

Эталонные образцы эвеслогита переданы в минералогические музеи им. А. Е. Ферсмана РАН, Москва (регистрационный номер 2666/1) и Геологического института Кольского научного центра РАН, Апатиты, а также в ряд других музеев. В заключение авторы выражают благодарность А. И. Ледневу, Г. Н. Нечелюстову, С. В. Соболевой, Л. М. Федоровой и Н. В. Чуканову за помощь в получении некоторых важных характеристик изученного минерала.

Работа выполнена при финансовой поддержке РФФИ, гранты 96-05-64344 и 02-05-64152.

Список литературы

Конев А. А., Воробьев Е. И. Сапожников А. Н. и др. Новые данные о юкспорите # Минер. журн. 1985. Т. 7. № 4. С. 74—78.

Костылева-Лабунцова Е. Е., Боруцкий Б. Е., Соколова М. Н. и др. Минералогия Хибинского массива. М.: Наука, **1978.** Т. 2. 586 с.

Ямнова Н. А., Егоров-Тисменко Ю. К., Злыхенская И. В., Хомяков А. П. Уточненная кристаллическая структура триклинного высокожелезистого астрофиллита // Кристаллография. 2000. Т. 45. № 4. С. 642—648. Ferraris G. Polysomatism as a tool for correlating properties and structure. In Merlino S. (ed.): Modular aspects of minerals // EMU notes in mineralogy, 1997. Vol. 1. P. 275--295.

Shi N., Ma Z., Li G., Yamnova N. A., Pushcharovsky D. Yu. Structure refinement of monoclinic astrophyllite // Acta Crystallogr. 1998. B 54. P. 109-114.

Поступила в редакцию 20 мая 2002 г.

УДК 549.6

3BMO, № 1, 2003 г. Proc. RMS, N 1, 2003

© М. В. СЕРЕДКИН,* Н. И. ОРГАНОВА,* С. В. КРИВОВИЧЕВ,** Т. АРМБРУСТЕР,*** М. М. МОИСЕЕВ,**** Н. В. ЧУКАНОВ,***** В. Н. ЧУКАНОВА,***** П. К. БЕРНС,******* И. М. МАРСИЙ,* Б. Б. ЗВЯГИН,* Н. Н. КОНОНКОВА,***** А. В. СИВЦОВ *

ГЛАГОЛЕВИТ NaMg₆[Si₃AlO₁₀](OH,O)₈ · H₂O — НОВЫЙ МИНЕРАЛ ¹

M. V. SEREDKIN, N. I. ORGANOVA, S. V. KRIVOVICHEV, T. ARMBRUSTER, M. M. MOISEEV, N. V. CHUKANOV, V. N. CHUKANOVA, P. K. BERNS, I. M. MARSIY, B. B. ZVYAGIN, N. N. KONONKOVA, A. V. SIVTSOV. GLAGOLEVITE, NaMg6[Si3Al10](OH,O)8 · H2O, a new mineral

* Институт геологии рудных месторождений, петрографии, минералогии и геохимии (ИГЕМ РАН), 109017, Москва, Старомонетный пер., 35

** С.-Петербургский государственный университет 199164, Санкт-Петербург,

Университетская наб., 7/9

*** Laboratorium fuer Mineralogische und Chemische Kristallografie, Bern Universitaet Bern Switzerland

**** Минералогический музей им. А. Е. Ферсмана РАН, 117071, Москва, Ленинский пр., 18, к. 2 ***** Инерипутуранования инициональной странования и 10/432

*** Институт проблем химической физики, 142432, Московская обл., Черноголовка ****** Институт геохимии и аналитической химии РАН РАН им. Верноголовка

*** Институт геохимии и аналитической химии РАН РАН им. Вернадского, 117975, Москва, ул. Косыгина

******* Dept. of Civil Engineering and Geological Sciences, 156 Fitzpatrick, University of Notre Dame, Notre Dame, IN 46556 U.S.A.

The new mineral — Na-bearing chlorite was found in Kovdor massif, at Kola peninsula. It was named for the memory of A. A. Glagolev — the mineralogist known by his works on massifs of ultramatic-alkaline rocks and carbonatites, e. g. Kovdor. The study of its structure has shown its similarity to chlorite, but with one significant difference: there are Na atoms in the sevenfold coordination between brucite and 2:1 layers. Space group C1, a = 5.354, b = 9.263, c = 14.653 Å, $\alpha = 89.86$, $\beta = 96.984$, $\gamma = 90.93^{\circ}$. Sodium atoms are distributed between three different sites which are unfilled with coefficients 0.28, 0.11 and 0.20. The second peculiarity of the studied crystal structure — the disordering in location of silicate layers relatively to brucite ones. X-ray pattern of glagolevite is similar to pennine, but with the higher value of {001} distances. Its chemical composition was determined with Camebax, empirical formula calculated for Mg + Fe + Mn + Al + Si = 10. The mineral is colorless; hardness 3 to 5. $D_{meas} = 2.66$ (4), $D_{calc} = 2.61$ g/cm³. It is decomposed partly in HCl at the room temperature. Under heating 14.5% of the weight loss. In translucence it is colorless, biaxial positive, $n_p \sim n_m = 1.569$ (2), $n_g = 1.571$ (2), $2V_{Ng} = 17.3^{\circ}$.

¹ Рассмотрено КНМНМ ВМО 30 ноября 2001 г. Утверждено КНМНМ ММА 5 марта 2002 г.