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Crystal chemistry and petrology of coexisting galaxite and jacobsite
and other spinel solutions and solvi'
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Abstract

Galaxite (Gx:MnAlzO+) and jacobsite ("ID:MnFezO+)-rich spinels occur together in the
metamorphosed manganese deposit near Bald Knob, North Carolina. They show limited
mutual solubility with lz-lgVa Jb in Gx and 19-22% Gx in Jb. The implied solvus is
consistent with syntheses oflshida et al. (1977) along the Gx-"ID pseudobinary. Refinement
of the structure of one galaxite (Gxg5JbrcSpaGhr) reveals that Mn is located on tetrahedral
sites and Al on octahedral sites and that galaxite is therefore a normal spinel. All available
data suggest that jacobsite is also a normal spinel at low temperatures, and the solvus
between galaxite and jacobsite does not seem to be caused by differences in normality/in-
verseness. Chemical and experimental data available for (Mg,Zn,Mg,Fe2*XFe3*,Al)zOa
spinels suggest that the ferrites (acobsite, franklinite, magnesioferrite and magnetite) show
extensive solid solution and are separated from aluminate solid solutions (galaxite, gahnite,
spinel (s.s.) and hercynite) by wide solvi at metamorphic temperatures.

Introduction

The manganese deposit near Bald Knob, North Caroli-
na contains a wide range of unusual manganese minerals
which have equilibrated under amphibolite facies meta-
morphic conditions (Winter et al.,l98l). The deposit was
originally described by Ross and Kerr (1932). We have
subsequently carried out extensive mineralogical-petro-
logical studies of the several mineral groups occurring
there (Peacor et al., 1974; Winter et al., 1981 , in prep.;
Simmons et al.,l98l). The spinel group minerals (galaxite
and jacobsite) found at Bald Knob are relatively simple in
composition and therefore serve as a source of insights
into the crystal-chemical and phase relations of spinels.
This paper is a description of the mineralogy and petrolo-
gy of those manganese spinels.

Only a limited amount of experimental data are avail-
able regarding the nature of solvi among spinels at low to
moderate temperatures. Turnock and Eugster (1962) ex-
perimentally determined the magnetite-hercynite solvus
showing complete solid solution above 870"C and a wide
miscibility gap below 600"C. These two spinels are largely
inverse and normal, respectively. The area of complete
solution probably represents a continuum ofcation distri-
butions, but the occurrence ofthe solvus must be related
in part to ordering into the inverse versus the normal
cation distribution. Experiments on the binaries

I Contribution No. 375 from the Mineralogical Laboratory,
Department of Geological Sciences, the University of Michigan.

Fe3Oa-Fe2TiO+ (Vincent et al., 1957; Price, 1981; Linds-
ley, 1981) and FqOa-ZnFezO+ (Valentino and Sclar,
1982) suggest that the solvus observed in natural materi-
als must form below 500-600'C. Experiments in the
systems MnFe2Oa-MnAlzO+ (Ishida et al., 1977) and
ZnFe2O4-ZnAlzOr (Carvalho, 1978) reveal extensive mis-
cibility gaps at metamorphic temperatures of 500-7fi)'C
with the crest of the solvi located at 900-1 100'C. Experi-
ments of Muan et al. (1972\ on the ternaries FeAl2Oa-
Fe2TiOa-FeCr2Oa and MgAl2Oa-Mg2TiOa-MgCr2Oa show
solvi extending to more than 1300"C between the alumi-
nate and titanate species but with complete solution at ?
> 1000"C engendered with addition of 30-40Vo of the
chromites. There are no experiments on the join
MgAl2Oa-Fe3Oe and one must turn to natural occur-
rences to estimate the form of this solvus.

Surprisingly few examples exist of observations on
naturally occurring two-phase spinels despite the fact that
such observations may have the advantage of demon-
strating equilibrium cation distributions at relatively low
temperatures. Studies of minerals in lunar basalts have
revealed high-temperature solvi in the system (Mg,
Fe2*)Alzoo-(Mg,Fe2*)Crzo+-(Mg,Fe2*)2Tio4 (Hag-
gerty, 1971, l972a,b,c; El Goresy et al., 1972, 1976;
Nehru et al., 1974). Muir and Naldrett (1973) and Berg
(1976) analyzed coexisting spinels and magnetites from
igneous rocks, finding a wide miscibility gap in the system
Fe3Oa-MgAl2Oa which contracts with increasing Cr in
solid solution. Plaksenko (1980) describes incipient exso-
lution in chrome spinels from ultramafic rocks. Kuno
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(1960) and Bowman (1978) report analytical data on
metamorphic spinel-magnetite pairs which equilibrated at
ca. 700oC and show even less mutual solution. The
system MgAl2Oa-Fe3Oa appears to have a wide, symmet-
rical miscibility gap from temperatures of less than
I100"C. Manganese and zinc spinels have both ferrite and
aluminate representatives in nature but the solubilities
involving Mn ys. Zn, arrd Al ys. Fe3+ are still poorly
understood. Franklinite (ZnFezOi has extensive misci-
bility at high temperatures with jacobsite (MnFezO+) and
magnetite (Deer et al., 1963). Frondel and Klein (1965)
and Carvalho (197E) have described exsolution blebs of
gahnite in franklinite consistent with the existence of a
low-temperature solvus in this system. We have exam-
ined many franklinite samples and found one with similar
blebs with compositions of a complex aluminate (Mg,
Zn,Mn,Fe2+)(Al,Fe3+)2O4 in a matrix of franklinite
(Zn,Mn)Fe2Oa; the phases are thus multi-component and
do not contribute to general conclusions regarding solvi.

Galaxite (MnAlzO+) is known from only a few localities
and only limited data are available on its miscibility with
other spinels. Hirowatari (1969) and Chopin (1980) have
reported the existence of two-phase jacobsite-galaxite

mixtures. At Bald Knob galaxite is restricted to carbon-
ate-rich rocks undersaturated in silica which also contain
tephroite or the Mn-humites-manganhumite, alleghan-
yite or sonolite (Ross and Kerr, 1932; Winter et al.,1983).
The color ofgalaxite is variable in thin-section and ranges
from golden-yellow to deep red to red-black apparently as
a function of iron content. When deep red it is easily
confused with associated pyrophanite but that mineral is
anisotropic and has higher reflectivity. While routinely
examining polished sections, we noticed a second ten to
twenty micron-sized opaque phase with higher relief and
higher reflectivity coexisting with galaxite. Qualitative
microprobe analysis suggested that it was jacobsite with
some Al in solution. The mineral assemblages noted in
each sample are:

635: manganhumite- sonolite- spessartine-kutnahorite-
galaxite-kellyite-jacobsite

BK6: alleghanyite-kutnahorite-galaxite-jacobsite-pyro-
phanite- alabandite-cattierite-kellyite- stilpnomelane-
fluorapatite

BK I I : alleghanyite-kutnahorite-galaxite-jacobsite-pyro-
phanite-alabandite-cattierite-caryopilite-kellyite

Table l. Electron microprobe analyses ofjacobsite and galaxite from near Bald Knob, N. C.

Sanple
Mi neral
Oxide l{tl

B//.22
Gx Jb

635 BK6-1
Gx Gx

K6-2 Kll K14
Jb Gx Jb Gx Jb Gx

Ti02
At2ca
vro"
'Fer03
^Fe0

ttln0
7n0
Co0
Mgo
sum

Cations/3 Cations

<0.05  <0.05

56.  3
0 .14

46 .0
0 .0

39.  I
0.43
0.25
0.83 1.47

101 .7  102 .1

0 .37  0 .67
10 .4  49 .3
0 .66  0 .87

57.6 12.5
3 . 3  5 . 8

29.8 32.1
<0.05 <0.05
0 .2L  0 .62

0 .02  1 .30
102.4 103.2

0.01 0.01
0 .43  1 .70
0.01 0.02
1 .55  0 .27
0 .10  0 .14
0.90 0.79
0.00 0.00
0.00 0.01
0.00 0.06

9 .4  0 .13
6.? 44.5
0 . 5 8  n . d .

44.2 18.7
5 . 9  0 . 7

33 .5  36 .3
0 .62  n .d .
0 . 7 L  n . d .
0 .19  1 .44

101 .3  101 .8

0.26 0.00
0 .27  L .57
0 .01  n .d .
1 .20  0 .42
0 .18  0 .02
1 .03  0 .92
0 .02  n .d .
0 .02  n .d .
0.01 0.07

<0.05 0.34
45 .  1  9 .7
0 .25  0 .39

16.6 57.6
L . 4  3 . 1

35.7 29.2
0 .10  0 .13
0.84 0.62
0.53 <0.05

100.5 101.1

0.00 0.01
1 .62  0 .38
0.00 0.01
0 .38  1 .46
0.04 0.09
0.92 0.83
0.00 0.00
0.02 0.02
0.02 0.00

Ti
AI
v
1F.3*

1F.2*

14n

7n

Co

Irlg

0.00
1 .90
0.00
0 .10
0.00
0 .95
0.01
0.00
0.04

49.4
0.  14

14 .5
1 . 4

33 .5
0 .  97
0.  70

0.00
1 . 7 7
0.00
0 .23
0 .03
0.86
0 .02
0.02
0 .07

0 .38
8.  14
n . d .

59.  5
0 . 5

32.L
n .  d .
n .  d .
0 .03

100.6

0.01
0.  35
n .  d .
1 .62
0 .02
0.  99
n . d .
n .  d .
0.01

< 0.05
50.5
0 .20
9 . 0
5 . 9

30 .4
0 .61
I  .07
0 .92

98.6

0.00
1 .80
0.00
0 .20
0 . 1 5
0 .77
0.01
0.03
0.04

LFez+fte3+ calculated to yield o=4
n.d. = not determined
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BK 14: manganhumite-sonolite-kutnahorite-galaxite-(a-
cobsite) - alabandite - stilpnomelane - caryopilite -
kellyite-fluorapatite

BK22: alleghanyite-kutnahorite-galaxite-jacobsite-ala-
bandite-cattierite-cobaltite-kellyite-fl uorapatite.

A consideration of the solubility limits of galaxite and
jacobsite as represented by those Bald Knob samples,
their cation distribution and the nature of the solvus
between them comprises the subject matter of this note.

Chemical analysis

Electron microprobe analyses were obtained under
operating conditions ofan accelerating potential of 15 kV,
an emission current of 150 nA, a sample current of 0.01
pA and using digitized beam current. Standards used
were synthetic TiO2, Al2O3, V2O5, Mn2O3, MgAl2Oa,
Fe2O3, CorS+, ZnS and NiS. Spectrometer data were
corrected for atomic number, fluorescence, absorption
and drift efects using the program EMPADR VII written
by Rucklidge and Gasparrini (1969). Analyses of the
spinels are given in Table l. The totals deviate by 2-3%
from l00Vo when Fe2* is estimated by the equation Fe2*
: Vs(Al+ V + lFe) + 4/3(Ti) - %(Mn+ Mg + Zn + Co\
generating four oxygens for spinels normalized to three
cations. While imperfect, these estimates and totals are
judged adequate for the purposes of this paper.

The jacobsite and galaxite show a relatively symmetri-
cal miscibility gap with about l2-20Vo mutual solution of
each component. Only minor amounts of additional com-
ponents are generally present in solid solution. We have
plotted our analyses along with those reported by
Hirowatari (1969) and Chopin (1980) in the system
MnAl2Oa-MnFe2O4-MgAl2Oa-MgFe2Oa (Fig. 1). They
define a reasonable miscibility gap when the analyses are
combined with the binary experiments of Kwestroo
(1959) and of Ishida et al., (1977\. Ross and Ken's (1932)
analysis of Bald Knob galaxite falls slightly within the
inferred solvus. Few other analyses are available which
are reasonably represented by the composition space of
Figure 1. Most jacobsites have either Fe3Oa, ZnFe2Oa, or
Mn3Oa in solid solution. Spinel analyses are also plotted in
the composition space MnAl2Oa-MnFe2Oa-ZnAl2Oa-
ZnFe2Oa (Fig. 2). A relatively symmetrical solvus separat-
ing Mn, Zn aluminates from Mn, Zn ferrites can be
inferred by combining our data with the binary experi-
ments and observations of Ishida et al. (1977) and of
Carvalho (1978). Ignoring the substantial Fe2*, the titan-
ian jacobsite of BK-6 is plotted in the composition space
MnAl2Oa-MnFe2Oa-Mn2TiOa for comparison with data
of Fukuoka and Hirowatari (1980) and of Fukuoka (1981)
(Fig. 3). It can be seen that there is substantial solution
between MnFe2Oa and Mn2TiO4 at metamorphic tem-
peratures. It is anticipated that a new spinel mineral
species with dominant Mn2TiO4 will eventually be found
in a metamorphosed titaniferous manganese deposit.

MgFe20a

t e - '

At + Fe3+

o
MgAlzoa

Mn2+ 
MnAl2oa

Mg *  Mn2*

Fig. l. The composition space MnAl2Oa-MnFe2Oa-MgAl2Oa-
MgFe2Oa with spinel analyses plotted. Closed circles: data on
Bald Knob spinels; open circles: data from other occurrences.
References: Ross and Kerr (1932) Stillwell and Edwards (1951),
Lee (1968), Kuno (1960), Deer et al., (1962), Berg (1976),
Bowman (1978), Carvalho (1978), Chopin (1978), Fukuoka and
Hirowatari (1980), Fukuoka (1981). Spinets with >0.05 Zn,Fe2* ,
Mn3* or Ti per four oxygens are excluded.

Cation ordering

A yellow-colored galaxite from Bald Knob, sample no.
635 (collection of D. R. Peacor), was analyzed and found
to contain approximately 92 moIVo component MnAI2Oa
(Table l), making it the purest naturally occurring galax-
ite which we have been able to obtain. Because we
wished to determine its cation distribution in detail,
crystals were separated for single-crystal X-ray diffrac-
tion. Film data confirmed the existence of extinctions as
consistent with the usual space group for spinels, Fd3nt-.
The unit translation was determined to be a : 8.181(2)A

Mn Fe2Oa
o o
o

ZnFe2Oa

9 ferr i lecc a
I - - - o o -
a - - - - -
c -

a

Fe 3*

Al + Fe3r

a  
- - - - - -

o €
E- oluminote..
t - -

MnAl2O4 
Zn 

ZnAl2Oa

Mnz+ + zn

Fig. 2. The composition space MnAl2Oa-MnFe2Oa-ZnAl2Oa-
ZnFerOo with spinel analyses plotted. Symbols and references the
same as for Fig. l, with additional references: Palache (1935),
Kayupova et al. (1970), Vogel et al., (1976). Spinels with >0.05
Mg,Fe2*,Mn3* or Ti per four oxygens are exluded.
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Mn Fe204 M n A l 2 0 a

Fig. 3. The composition space MnAl2Oa-MnFe2Oa-Mn2TiOa
with spinel analyses plotted. Symbols and references the same as
for Figure l. Spinels with >0.30 Fe2*, or 0.10 Mg,Zn,Mn3l are
excluded.

using data from an internally standardized powder dif-
fractometer pattern.

Three-dimensional intensity data were measured using
a Supper-Pace automated system, employing measure-
ment of background on both sides of a peak and graphite
monochromated MoKa radiation. The crystal used was
an octahedron with an average edge length of approxi-
mately 0.ll mm which was obtained from the same area
of the same specimen as the analyzed material. Data were
corrected for Lorentz-polarization and absorption (/, :
66.5 cm-t) effects. Up to six symmetry-related intensities
were measured to a sin0limit of 0.60. Following averag-
ing of symmetry related values, the final data set consist-
ed of 82 structure amplitudes. Of these, one (044) was
subsequently found to be seriously affected by extinction
and excluded from the refinement, and seven were below
minimum observable values. Refinement was carried out
using the program nrrNn (Finger and Prince, 1975) using
neutral form factors of Doyle and Turner (1968). Form
factors for Al and Mn were used both for the octahedral
and tetrahedral sites, the small amount of Mg being
represented by the Al form factor and the iron and traces
of Co, Ti, V, and Zn by the Mn form factor. Refinement
was carried out by varying the single oxygen coordinate,
anisotropic temperature factors and the occupancies of
the tetrahedral and octahedral sites. The final convention-
al unweighted R-value, excluding unobserved data, is
Z.EVo. Structure factors are listed in Table 22 and final
atomic parameters in Table 3.

Occupancy values for the tetrahedral site are 0.11(3)
and 0.89 for the Al and Mn form factors, respectively, and
1.03 and -0.03 for the octahedral site. The latter values
are consistent with complete ordering of Al on the
octahedral site, and those for the tetrahedral site also
imply the presence of some Al, taking into consideration

2 To obtain a copy of Table 2, order Document AM-83-216
from the Business Office, Mineralogical Society of America,
2fi[ Florida Ave. N.W., Washington, D.C., 20009. Please remit
$1.fi) in advance for microfiche.

that each form factor represents minor amounts of ele-
ments other than Al and Mn. The total Al (plus Me)
required by these occupancies is slightly greater than that
indicated by the analysis (1.94 Al + MC, per 8 O).
However, there is some variation in composition of
diferent crystals within the specimen serving as a source
for the crystal used for the diffraction data. The results of
the refinement of the occupancy values can therefore be
interpreted as consistent with a complete, or nearly
complete normal cation distribution, with Al and Mn
occupying only the octahedral and tetrahedral sites, re-
spectively.

The cation ordering is also connrmed by the cation-
oxygen distances which are 1.991 (l) and 1.927 (l)A for
the tetrahedral and octahedral sites respectively. This
result differs somewhat from the study of Greenwald er
al. (1954) who found that synthetic MnAl2Oa is approxi-
mately 70Vo normal. This exemplifies the importance of
using natural materials to determine low-temperature
ordering parameters where possible as synthetic materi'
als may have metastable states of order due in part to
relatively rapid rates of formation.

Prediction of cation ordering in jacobsite is somewhat
uncertain. While some writers (Verwey and Heilman,
1947; Gorter, 1950, 1954; McClure, 1957; Dunn et al.,
1965; Burns, 1970; Strunz, 1970) regard jacobsite as
probably inverse, measurements of synthetic materials
show that it is approximately 80-90Vo normal (Hastings
and Corliss, 1956; Harrison et al., 1957; Butler and
Biissem, 1962;Lotgeing, 1964; Sawatzky et al., 1967,
1969; Lotgering and Van Diepen, 1973; Brabers and
Klerk. 1974). Jacobsite has extensive solution with frank-

Table 3. Atomic parameters for galaxite

Tetrohedrolly coordinoted site

(rccuPonc),

temperolure foctor

M-0 = t .eet0)  E

Octohedrol ly coordinoted site

occuPorrcy

temperqture focfors

M-0 = | .e27( t) f

Oxygen

x = 0.2655Q1

lemperoture foctors

0.89(3) Mn + 0.l l Al

Bt |  = 0.007r7r( rs)
Beq = 0.46 A

1.03(2) Al - 0.03 Mn

B t I  = 0 . 0 0 t 0 5 0 6 )

Bl2 = -0.000r8(8)

Beq = 0.28 A-

Bt I = 0.0023009)
qz = -0.0001 l(ls)

Beq = 0.62A-
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linite (ZnFe2Oa) and studies show that these solutions are
normal or close to normal (Knoavitch et al.,1963; Kiinig
1966; Kdnig and Chol, 1968; Morrish and Clark, 1975;
Korneev et al., 1975; Vogel er al., 1976). Jacobsite also
has extensive solution with magnetite at high tempera-
tures (Mason, 1947) but the cation ordering in these
solutions is unknown. Natural jacobsites are most likely
to be normal spinels; the solvus between jacobsite and
galaxite (like that for franklinite and gahnite) involves two
normal spinels and is not driven by differences in cation
distributions.

Status ofjacobsite

The status of jacobsite as a distinct mineral has been
questioned by Mason (1943, 1947) and by Van Hook and
Keith (1958), who described jacobsite as an intermediate
member of the magnetite-high hausmannite series based
on experiments along the join Fe3Oa-Mn3O4. Because
jacobsite is a normal spinel, (Mn2*)lv (Fe3*)yro a, it is not
a disordered solid solution (Mn3r1 Fe.'01)tu
@n'zriFe?j3/uOa nor a compound obtained by combina-
tion of % MnlOa and 2/t FerOa, (Mn3iFel6+7)rv
(Mn33lFe'?fiMnl3lFe:6i)vto4. It is a unique end-member
with distinctive cationic valency and distribution. Ma-
son's (1943) definitions of spinels on the MnrOa-Fe:Or
join should be discarded andjacobsite accepted as a valid
mineral.

Petrology

Galaxite should only be stable in undersaturated rocks
for it should react to form spessartine and an aluminosili-
cate in the presence of quartz:

3MnAl2Oa + 5 SiO2: MnrAlzSi:Or2 + 2Al2SiOs (1)

The instability of galaxite with quartz is an important
factor in explaining its scarcity. Reactions of galaxite with
other manganese silicates may be considered:

MnAI2Oa + 4MnSiO3 = Mn3Al2Si3Or2 + Mg2SiO4 (2)

MnAl2oa + 3MnSio3 
ltnojrotrroorz + Mnco: (3)

Galaxite-rhodonite/pyroxmangite and tephroite-spessar-
tine assemblages are both known at Bald Knob, and three
samples (BK4, BK8, BKl8) have all four phases appar-
ently coexisting. Reaction (2) is apparently bridged by as-
semblages at Bald Knob presumably due to variable solid
solution and could be of great use in metamorphosed
manganese deposits once determined. Reaction (3) will
limit spessartine-rhodochrosite to lower temperatures
and/or CO2-rich fluids, but the reaction cannot be located
until adequate thermodynamic or experimental data are
available for these phases.

Reactions involvingjacobsite are complicated by possi-
ble variations in the oxidation state of iron and perhaps
manganese. Jacobsite will be reduced to a manganwtistite
at oxygen fugacities about one order of magnitude higher

than the reduction of magnetite to wiistite (Ulich et al-,
1966; Shchepetkin and Chufarov, 1972). Jacobsite will
also oxidize to hematite". and a more Mn-rich spinel:

02 + MnFe2Oo = (Fe,Mn)zO: * (Mn,Fe)rOr (4)

The upper limit of oxygen fugacity permitted for jacobsite

is about two orders of magnitude higher than that for
magnetite-hematite (Ono et al.,l97l; Pelton et al.,1979).
Thus jacobsite has the same wide oxidation and reduction
stability as magnetite but shifted to somewhat more
oxidizing conditions. This is in qualitative agreement with
the oxygen fugacities estimated at Bald Knob by Winter
et al. (1981). More complicated reactions involving man-
ganese silicates can be inferred forjacobsite:

MnFezOa + (Mn,Fe)SiOr : (Mn,Fe)zSiO4 + 02 (5)

MnFezOa + (Mn,Fe)SiO, + CO2
: (lt4n,Fe)2Sio4 + (Mn,Fe)CO3 + 02 (6)

but present thermodynamic data are inadequate for calcu-
lation of these reactions. Winter et al. (1981) have shown
that the Bald Knob rocks with jacobsite and galaxite have
formed at relatively low oxygen fugacity (near quartz-
fayalite-magnetite) and high sulfur fugacity (near pyrrho-
tite-pyrite) and with Xco, = 0.5 for T = 575"C and P : 5
kbar. These conditions should be consistent with the left-
hand side ofreactions (4) and (5) sincejacobsite is found
with pyroxmangite at Bald Knob. Other more complicat-
ed oxidation-reduction-carbonation-hydration reactions
may be balanced for various humites, pyroxenoids, car-
bonates and jacobsite. Such reactions probably buffered
the ratios of various fluid species during metamorphism
of the jacobsite-bearing rocks.

Note added in press:
The wt.Vo FezOr of Gx635 in Table I should read 4.6

wt.Vo.
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