Ammonium alunites

STEPHEN P. ALTANER,* JOAN J. FITZPATRICK,** M. DENNIS KROHN, PHILIP M. BETHKE, DANIEL O. HAYDA, JAMES A. GOSS, ZOE ANN BROWN
U.S. Geological Survey, Reston, Virginia 22092, U.S.A.

ABSTRACT

A new mineral, ammonioalunite \([\text{ideal composition } \text{NH}_4\text{Al}_2\text{(SO}_4)_4\text{(OH)}_6] \), has been found in a sample from the hot-springs setting at The Geysers (Sonoma County), California. Chemical analysis yields 33.0% Al_2O_3, 36.0% S_03, 12.2% H_2O, 5.3% (NH_4)_2O, 0.19% K_2O, 0.17% Na_2O, and 11.6% SiO_2. After subtraction of the silica as an amorphous impurity, the mineral has the following chemical formula: \((\text{NH}_4)_0.92\text{K}_{0.02}\text{Na}_{0.02}\text{Al}_{2.88}\text{(SO}_4)_2.00\text{(OH)}_{6.00}\)\(^{0.45}\)^-, assuming a stoichiometric sulfate content. Within the analytical uncertainties, this analysis approximates to a stoichiometric composition. Synthetic ammonioalunite has high H_2O and low Al and NH_4 contents and yields the following chemical formula: \((\text{NH}_4)_{0.84}(\text{H}_3\text{O})_{0.16}\text{Al}_{2.80}\text{(SO}_4)_2.00\text{(OH)}_{6.83}\)\(^{0.32}\), assuming 2.00 SO\(^2-\) anions, electrostatic neutrality, and that excess H_2O exists as H_3O\(^+\) and as H_2O in AlO_2(OH)_4 octahedra. X-ray, thermogravimetric, and mid-infrared data all support the presence of H_2O\(^+\) in synthetic ammonioalunite. Structural H_2O was not directly observed in the synthetic ammonioalunite. Ammonioalunite is rhombohedral, space group \(R\overline{3}m\) or \(R3m\), \(a = 7.013(1) \text{ Å}, and c = 17.885(5) \text{ Å}. The five strongest X-ray diffraction lines are \([d (\text{Å})] (I_{rel}) (hkl)\): 3.023(100)(113); 5.049(93)(012); 2.996(50)(021); 1.917(32)(303); 2.353(31)(107). Based on mid-infrared data, the NH\(_4\)\(^+\) molecule appears to have undistorted \(T_d\) symmetry in the alunite structure. Diagnostic near-infrared bands associated with NH\(_4\)\(^+\) make possible the remote detection of NH\(_4\)-bearing alunite.

Three NH\(_4\)-rich alunite samples (30–50 mol% NH\(_4\)) were also found near the fossil hot-spring locality with mercury-gold mineralization in the Ivanhoe district, Elko County, Nevada. These NH\(_4\)-rich alunites occur with opal and quartz, and one occurs with low-ammonium alunite. NH\(_4\)-rich alunite is indicative of the following restricted chemical environment: acidic solutions less than 100 °C with abundant NH\(_4\)\(^+\) and SO\(^-\), and little K\(^+\).

INTRODUCTION

The alunite group of minerals is represented by the formula \(AR_3(SO_4)_2(OH)_6\), where A refers to univalent cations such as K\(^+\), Na\(^+\), and NH\(_4\)\(^+\) in twelvefold coordination and R refers to Fe\(^3+\) and Al\(^3+\) in octahedral coordination. Between Fe (jarosite) and Al (alunite) end members, little solid solution is observed, but considerable solid solution is observed between the K and Na end members within either the alunite or jarosite series (Parker, 1962; Brophy et al., 1962; Brophy and Sheridan, 1965). Although ammoniojarosite has been reported (Shannon, 1927; Hendricks, 1937), little solid solution between K\(^+\) and NH\(_4\)\(^+\) end members has been observed, nor has NH\(_4\)\(^+\) substitution in natural alunites been reported.\(^1\) In this study we characterize ammonioalunite\(^2\) from The Geysers (Sonoma County), California, and synthetic ammonioalunite. In addition, we describe alunites with intermediate NH\(_4\)\(^+\) substitution from the Ivanhoe deposit (Elko County), Nevada, low-ammonium alunites from several localities, and environmental conditions necessary for the formation of ammonioalunite.

Ammonioalunite was initially discovered in a single specimen from the Smithsonian Institution (NMNH 145596) in Washington, D.C. The specimen was labeled ammoniojarosite from The Geysers, California; however, it actually is a physical mixture of ammonioalunite, ammoniojarosite, and amorphous silica. This type material is preserved at the Smithsonian Institution under the same accession number. Later field mapping using a hand-held near-infrared radiometer revealed the presence of ammonium-bearing material later identified as ammonioalunite (Krohn and Altaner, 1987a). The Geysers, California, locality occurs in the Franciscan Formation and was initially described by Vonsen (1946) as containing alunite. Three specimens of NH\(_4\)-rich alunite (>10 but <50 mol% NH\(_4\) substitution) from Ivanhoe, Nevada, represent part of a larger petrologic study of NH\(_4\)-bearing minerals at hot-springs deposits (Krohn and Altaner, 1987b).
METHODS

Ammonioalunite was synthesized using methods outlined by Parker (1962). Reagent-grade (NH₄)₂SO₄ was added to four times as much Al₂(SO₄)₃·18H₂O and dissolved in 200 mL of distilled water. This mixture was reacted at 150 °C in a Teflon-lined autoclave vessel for 2 d. Synthesized ammonioalunite was washed and separated by centrifuging and decanting.

The natural ammonioalunite from The Geysers was initially treated to separate ammonioalunite from the admixed ammoniojarosite. High-speed centrifuging and magnetic and density separation failed to separate the minerals; however, a chemical treatment normally used to dissolve iron oxides, citrate-dithionate-bicarbonate treatment (Jackson, 1974), totally dissolved the jarosite phase. We could not separate the amorphous silica from the ammonioalunite.

X-ray diffraction (XRD) data were determined using a Guinier-Hägg camera, a Philips-Norelco powder diffractometer, and a Siemens fully automated D-500 powder diffractometer. CuKα radiation was used in all cases and NBS-SRM 640a Si was added as an internal calibrant. The d spacings and unit-cell parameters were calculated from the corrected data using the cell-refinement program of Appleman and Evans (1973). The effects of NH₄ substitution on the powder pattern intensities were investigated using the POWD12 algorithm of Smith et al. (1983), with refined atomic positions for alunite of Menchetti and Sabelli (1976), and unit-cell parameters of ammonioalunite. Scattering factors for NH₄ were taken from Wright (1973).

Elemental abundances were determined by the following techniques: Al, Fe, Si, and Na by inductively coupled Ar-plasma spectrometry, K by atomic absorption spectrometry, H and N by a C-H-N analyzer and S by a Leco S analyzer. Estimated analytical uncertainties for each element are 1–2% of the amount present for Al, Si, and S, 3–4% for N and H, and 10–20% for K and Na.

Samples for mid-infrared analysis were first treated to remove carbonate using an 80 °C sodium acetate (1N) solution (Jackson, 1974) because carbonate contains a band that interferes with the NH₄ band at 1430 cm⁻¹ (7.0 μm). Pellets were made using 1 mg of sample and 300 mg of KBr, dried in a 80 °C oven, and analyzed with a Nicolet 5DX-B FTIR spectrometer. Visible and near-infrared spectral data were collected using a Beckman UV 5240 spectrophotometer equipped with an integrating sphere and Halon as a reflectance standard.

Thermogravimetric data were recorded with a Perkin-Elmer System 4 TGA. Data were collected using an oxygen purge at a heating rate of 20 °C/min.

PHYSICAL AND OPTICAL PROPERTIES

Ammonioalunite is grayish white in color with a vitreous luster and a white streak. Grains are too small to determine cleavage or fracture with any certainty. Its aggregate hardness was estimated by gently rubbing a fine-grained powder between cleavage faces of both gypsum and calcite. Its estimated hardness is between 2 and 3. Its measured density (Dₘ) is 2.4 g/cm³ as compared with its calculated X-ray density (Dₓ) of 2.58 g/cm³. Dₘ values are low because of the presence of an amorphous silica impurity (~12% of sample). In thin section, ammonioalunite is colorless. Crystals are euhedral with characteristic rhombohedral morphology and are generally smaller than 20 μm (Fig. 1). Both ammonioalunite and NH₄-bearing alunite usually occur in masses or aggregates mixed with siliceous minerals such as quartz and opal. Ammonioalunite does not fluoresce under ultraviolet light. Ammonioalunite is nearly insoluble in cold, dilute HCl, is slowly soluble in cold, dilute H₂SO₄, and decomposes in 1N KOH. The mineral is uniaxial positive with indices of refraction of ω = 1.590(4) and ε = 1.602(4) (±0.005) at λ = 5896 Å (Na light). Calculation of the compatibility index (Mandarino, 1981) yields a value of 0.023 using the recalced chemistry, the X-ray density, and the observed indices of refraction.

X-RAY CRYSTALLOGRAPHY

XRD data for ammonioalunite are consistent with a space group of R3m (166) previously reported for alunite (Wang et al., 1965; Menchetti and Sabelli, 1976). The noncentrosymmetric space group, R3m, cannot be ruled out as a possibility from powder work alone. Table 1 lists unit-cell parameters for alunite and jarosite with Na, K,
and NH₄ in the alkali site. As has already been observed in the jarosite minerals, the c-axis spacing increases from 16.75 Å for natroalunite, to 17.22 Å for alunite, and finally to 17.86 Å for ammonioalunite. This is due to the increasing size of the ionic radii of each cation in twelve-fold coordination (Na⁺ = 1.39 Å, K⁺ = 1.64 Å, and NH₄⁺ > 1.69 Å; Khan and Baur, 1972; Shannon, 1976). The 1.69-Å value represents the ionic radius of NH₄⁺ in ninefold coordination (Khan and Baur, 1972); therefore, the effective ionic radius of NH₄⁺ in twelve-fold coordination must be larger than 1.69 Å. The a-axis spacing is relatively unaffected by these substitutions. However, the cell volumes of three NH₄-bearing alunites examined in this study show a linear increase with the mole fraction of NH₄⁺ in the A site (Fig. 2).

The c-axis spacing for synthetic ammonioalunite is somewhat smaller than that of the natural specimen because the natural specimen contains almost complete NH₄⁺ substitution and the synthetic sample appears to contain significant hydronium (H₃O⁺) substitution. In an XRD study of synthetic hydronium-substituted jarosites, Kubisz (1970) determined the ionic radius of H₃O⁺ to be intermediate between Na⁺ and K⁺. Deviatkina and Pal’chik (1985) have reported an enlarged c-axis dimension for a synthetic ammonioalunite (c = 17.42 Å, a = 7.029 Å, V = 745.4 Å³) of unspecified NH₄⁺ concentration. Interpolation of their reported cell volume between the data points of Figure 2 indicates that the NH₄⁺ concentration of their synthetic ammonioalunite may have been less than 50 mol%. Presumably, H₃O⁺ substitution accounts for the deficiency of alkali in the A site.

Numerous investigators have noted that synthetic alunites and jarosites contain H₃O⁺ (Parker, 1962; Brophy and Sheridan, 1965; Kubisz, 1970; Fielding, 1980). In this study, infrared, chemical, and thermal data support the presence of H₃O⁺ in synthetic ammonioalunite. Heating to 300 °C for 2 h resulted in an increase in the c-axis dimension of synthetic ammonioalunite to a value similar to that of natural ammonioalunite. We interpret this behavior to indicate partial decomposition of the hydronium-substituted alunite structure to nearly pure ammonioalunite. NH₄Al(SO₄)₂ and Al₂(SO₄)₃ were also produced as breakdown products of this heat treatment.

Calculated and measured d values, as well as measured d

Table 1. Unit-cell parameters for alunites and jarosites with Na, K, and NH₄ in the alkali site

<table>
<thead>
<tr>
<th>Mineral</th>
<th>a (Å)</th>
<th>c (Å)</th>
<th>c/a</th>
<th>V (Å³)</th>
<th>Reference*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natroalunite</td>
<td>7.010(1)</td>
<td>16.748(4)</td>
<td>2.389</td>
<td>712.7</td>
<td>1</td>
</tr>
<tr>
<td>Alunite</td>
<td>7.020(2)</td>
<td>17.223(6)</td>
<td>2.453</td>
<td>735.0</td>
<td>1</td>
</tr>
<tr>
<td>Ammonioalunite (natural)</td>
<td>7.013(1)</td>
<td>17.855(5)</td>
<td>2.596</td>
<td>760.5(3)</td>
<td>2</td>
</tr>
<tr>
<td>Ammonioalunite (synthetic)</td>
<td>7.011(1)</td>
<td>17.797(5)</td>
<td>2.538</td>
<td>757.5(2)</td>
<td>2</td>
</tr>
<tr>
<td>Natrojarosite</td>
<td>7.327(2)</td>
<td>16.834(4)</td>
<td>2.370</td>
<td>773.3</td>
<td>1</td>
</tr>
<tr>
<td>Jarosite</td>
<td>7.315(2)</td>
<td>17.224(6)</td>
<td>2.365</td>
<td>798.1</td>
<td>1</td>
</tr>
<tr>
<td>Ammoniojarosite</td>
<td>7.327(2)</td>
<td>17.50(3)</td>
<td>2.388</td>
<td>812.0</td>
<td>3</td>
</tr>
</tbody>
</table>

* 1 = Menchetti and Sabelli (1976). 2 = This study. 3 = Smith and Lampert (1973).
TABLE 3. Weight percent oxide analyses and structural formulae

<table>
<thead>
<tr>
<th></th>
<th>Stoichiometric*</th>
<th>Synthetic**</th>
<th>Natural</th>
<th>Normalized Natural†</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al₂O₃</td>
<td>38.9</td>
<td>36.5</td>
<td>33.0</td>
<td>37.95</td>
</tr>
<tr>
<td>SO₃</td>
<td>40.74</td>
<td>40.95</td>
<td>35.96</td>
<td>41.35</td>
</tr>
<tr>
<td>(NH₄)₂O</td>
<td>6.62</td>
<td>5.39</td>
<td>5.39</td>
<td>6.20</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.19</td>
<td>0.22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.04</td>
<td>0.17</td>
<td>0.20</td>
<td></td>
</tr>
<tr>
<td>H₂O</td>
<td>17.34</td>
<td>12.24</td>
<td>14.08</td>
<td></td>
</tr>
<tr>
<td>SiO₂</td>
<td>11.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>100.0</td>
<td>100.4</td>
<td>98.8</td>
<td>100.0</td>
</tr>
</tbody>
</table>

* Stoichiometric sample: NH₄Al₂(SO₄)₂(OH)₆
** Synthetic sample: [(NH₄)₀.84(H₂O)₀.16][Al₂.₈₀(SO₄)₂.₀₀(H₂O)₀.₈₃(OH)₅.₄₀]
† Normalized natural sample: [(NH₄)₀.₉₂Na₀.₀₂K₀.₀₂][Al₂.₅₅(SO₄)₂.₀₀(OH)₵.₀₅]

intensities, for natural and synthetic ammonioalunite are given in Table 2. XRD patterns of ammonioalunite and alunite contain numerous differences in d spacing and relative intensity of peaks. Two particularly diagnostic differences include an increase in the (012) interplanar spacing from 4.98 Å in alunite (Menchetti and Sabelli, 1976) to 5.04 Å in ammonioalunite and a decrease in the (113)/(012) intensity ratio from about 2.2 in alunite to about 1 in ammonioalunite. The change in the (113)/(012) intensity ratio is predicted by calculated intensities for the K and NH₄ end members.

CHEMICAL DATA

The natural ammonioalunite specimen contains an amorphous silica component. However, after subtraction of SiO₂ and normalization to a total oxide content of 100%, the chemical analysis is similar to that of stoichiometric ammonioalunite (Table 3). Within the analytical uncertainties (particularly the analysis for H₂O), this analysis approximates that calculated from the stoichiometric composition. The number of cations per unit cell was calculated assuming 2.00 SO₄⁻ anions per unit cell and that H⁺ not associated with NH₄⁺ exists as OH⁻. The second assumption produced a small negative charge. In this sample, NH₄⁺ occupies 92% of the total A sites, with K⁺ plus Na⁺ totaling 4% of the A sites and vacancies totaling the remaining 4%. Hence, this natural ammonioalunite sample is nearly the ideal NH₄⁺ end member.

Synthetic ammonioalunite contains high H₂O and low (NH₄)₂O and Al₂O₃ contents compared to stoichiometric ammonioalunite was (Table 3). The structural formula of synthetic ammonioalunite was calculated assuming electrostatic neutrality and 2.00 SO₄⁻ anions. Electrostatic neutrality was maintained by assigning part of the excess H₂O to H₂O⁺ in the A site, and the remainder was assigned to H₂O substitution for OH⁻ in AlO₂(OH)₆ octahedra. In this study, H₂O was not directly observed in the structure of synthetic ammonioalunite; however, using ¹H and ²H nuclear-magnetic-resonance analysis of synthetic K- and Na-alunites, Ripmeester et al. (1986) concluded that structural H₂O exists in synthetic alunites and satisfies the deficiencies in Al³⁺-site occupancy. In addition, Kubisz (1970) listed three pieces of data that support H₂O for OH⁻ substitution in synthetic alunites and jarosites: (1) infrared evidence from deuterated samples, (2) unit-cell variations with heating, and (3) deficiencies of about 10% Al or Fe³⁺ from perfect stoichiometry in Parker's (1962) and Kubisz's (1970) analyses. In addition, Fielding (1980) observed a 6% Al deficiency in synthetic hydronium-substituted alunites. For each Al vacancy there were about 3.2 H atoms in excess of those assigned as OH⁻ and H₂O⁺. This H⁺ could exist as H₂O in AlO₂(OH)₆ octahedra or as OH⁻ in SO₄ tetrahedra. This problem could be addressed by neutron-diffraction and further spectroscopic studies.

THERMAL ANALYSIS

Previous investigators have determined that alunite undergoes OH⁻ loss around 500 °C and SO₄ loss above 600 °C (Slansky, 1973; Fielding, 1980). The natural ammonioalunite undergoes significant weight loss at three different temperature regions (Fig. 3A): (1) rapid weight loss at 495 °C (~16 wt%), (2) moderate weight loss at 600 and 720 °C (~8 wt%), and (3) rapid weight loss at 830 °C (~26 wt%). After heating to 450 °C for 1 h, the sample
is X-ray amorphous. Based on the abundance of volatile components in this sample, we interpret the initial weight loss at 490 °C to be due to degassing of NH₄⁺ plus OH⁻, and subsequent weight loss to be due to SO₃ degassing.

The weight-loss intervals for synthetic ammonioalunite (Fig. 3B) differ significantly from that of natural ammonioalunite in that weight loss occurs at 300 °C and more continuous weight loss occurs above 400 °C (reflected by broad peaks in the TGA spectrum). We attribute the 300 °C weight loss to H₂O° degassing. As previously mentioned, heating of synthetic ammonioalunite to 300 °C yields Al₂(SO₄)₃ and NH₄Al(SO₄)₂ thermal by-products. These compounds are stable above 450 °C and have different TGA curves compared with those of ammonioalunite, accounting for the differences in the TGA curves between natural and synthetic ammonioalunite above 400 °C.

Infrared Analysis

The free ammonium ion has four fundamental vibrational modes: ν₁ near 3040 cm⁻¹ and ν₂ near 1700 cm⁻¹ are Raman active; ν₃ near 3140 cm⁻¹ and ν₄ near 1400 cm⁻¹ are infrared active. In mid-infrared (MIR) spectra of NH₄-bearing minerals, ν₄ occurs as an absorption band near 1430 cm⁻¹ (N–H bend) and ν₃ occurs as 1 to 3 absorption bands near 3300, 3070, and 2850 cm⁻¹ (N–H stretch) (Erd et al., 1964; Vedder, 1965; Chourabi and Fripiat, 1981). Chourabi and Fripiat (1981) concluded that the presence of two distinct N–H stretching bands indicates a distorted, trigonal point symmetry (C₃ᵥ) of the NH₄⁺ molecule caused by heterogeneous negative layer charge in NH₄-bearing beidellite. The presence of only one N–H stretching band indicates an undistorted tetrahedral configuration (Tₐ) of NH₄⁺ allowed by homogeneous layer charge in NH₄-bearing montmorillonite. In ammonioalunite the bending vibrational band for NH₄⁺ occurs near 1440 cm⁻¹ and there is only one stretching band near 3310 cm⁻¹ (Fig. 4), indicating that the NH₄⁺ molecule is undistorted and that the negative charge surrounding the alkali site in alunite is homogeneously distributed.

MIR spectra of synthetic and natural ammonioalunite are similar to each other except that synthetic ammonioalunite has a more intense band near 1650 cm⁻¹ (Fig. 4) that is normally assigned to bending vibrations of water (Wilkens et al., 1974). Using MIR spectroscopy, it is difficult to determine conclusively whether the water is H₂O or H₂O°, but the presence of H₂O° in synthetic ammonioalunite and its absence in natural ammonioalunite is consistent with the stronger band intensity at 1650 cm⁻¹ in the former. The remaining bands in the MIR spectra of ammonioalunite are in locations similar to absorption features already assigned to molecular vibrations in alunite and jarosite, including the band at 3500 cm⁻¹ assigned to O–H stretch, the bands between 2350 and 2150 cm⁻¹ assigned to Al–OH vibrations or SO₄ overtones, and the bands between 1250 and 500 cm⁻¹ assigned to SO₄ bend (Kubisz, 1972).

A near-infrared spectrum of ammonioalunite also shows absorption features characteristic of NH₄⁺ in the structure (Fig. 5). Bands at 2.11, 2.02, and 1.52 μm are characteristic of ammonioalunite and have previously been attributed in other minerals to NH₄ overtones and combination tones of MIR vibrational features (Rohleder et al., 1985; Krohn, 1986). Bands at 1.40, 1.45, 1.77, 2.17, and 2.31 μm have been observed in alunite and were attributed to combination tones and overtones of OH and Al–OH vibrational modes (Hunt and Ashley, 1979). The presence of characteristic NH₄ vibrational bands in the near-infrared is particularly important because of the applications to remote sensing. In fact, NH₄-bearing minerals have already been detected using remote-sensing techniques at several mineralized hot-springs deposits (Krohn, 1986; Krohn and Altaner, 1987b).
TABLE 4. Chemical analyses of ammonium sulfate springs at The Geysers, California

<table>
<thead>
<tr>
<th>Locality</th>
<th>NH₄</th>
<th>Na</th>
<th>K</th>
<th>Mg</th>
<th>Ca</th>
<th>SO₄</th>
<th>Cl</th>
<th>SiO₂</th>
<th>pH</th>
<th>T (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Devil’s Kitchen Spring*</td>
<td>1396</td>
<td>12</td>
<td>5</td>
<td>281</td>
<td>47</td>
<td>5714</td>
<td>n.d.</td>
<td>n.d.</td>
<td>2.0</td>
<td>85-92%</td>
</tr>
<tr>
<td>Devil’s Kitchen Spring**</td>
<td>5070</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
<td>305</td>
<td>n.d.</td>
<td>221</td>
<td>1.9</td>
<td>68-70%</td>
</tr>
<tr>
<td>Spring Below Teakettle*</td>
<td>1270</td>
<td>3</td>
<td>1</td>
<td>174</td>
<td>10</td>
<td>4783</td>
<td>n.d.</td>
<td>221</td>
<td>1.9</td>
<td>51-55%</td>
</tr>
<tr>
<td>Boracic Acid Spring*</td>
<td>1355</td>
<td>10</td>
<td>6</td>
<td>574</td>
<td>42</td>
<td></td>
<td>n.d.</td>
<td>379</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td>Bubbling Spring*</td>
<td>732</td>
<td>7</td>
<td>4</td>
<td>419</td>
<td>42</td>
<td>5659</td>
<td>tr.</td>
<td>312</td>
<td>2.2</td>
<td></td>
</tr>
<tr>
<td>Liver Spring*</td>
<td>627</td>
<td>3</td>
<td>6</td>
<td>288</td>
<td>33</td>
<td>3530</td>
<td>tr.</td>
<td>361</td>
<td>1.2</td>
<td>58</td>
</tr>
<tr>
<td>Hot Acid Spring†</td>
<td>32</td>
<td>5</td>
<td>316</td>
<td>22</td>
<td>4540</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Constituents are given in ppm. Analyses also included data on several other constituents not reported here; no S₂O₃, HCO₃, or CO₃ were detected in analyses, no data on H₂S were available except for Hot Acid Spring where it was reported as “excess” (n.d. = not detected; tr. = trace.
* Allen and Day (1927) p. 25, 33; samples collected in 1924.
† Waring (1915) p. 86; sample analyzed in 1888.
§ Temperatures were measured twice during 1925; samples collected in 1924.

Occurrence and Significance of Ammonioalunite

NH₄-rich feldspars and micas have been found in a number of hydrothermal environments including recent gold-mercury hot-spring systems (Erde et al., 1964), volcanicogenic lead-zinc deposits (Sterne et al., 1982), disseminated gold deposits (Krohn, 1986), and pyrophillite deposits (Higashi, 1978). We have described here NH₄-rich alunite from The Geysers, California (92 mol% NH₄), and from the Ivanhoe deposit, Nevada (30–50 mol% NH₄). The Geysers is a modern hot-spring system currently being exploited for geothermal energy and contains extremely NH₄-rich fluids (Table 4). Ivanhoe is a Tertiary hot-spring deposit that was formerly mined for mercury (Granger et al., 1957) and is at present being prospected for gold (Bloomstein, 1984). The three NH₄-bearing alunite specimens from Ivanhoe occur with opal and quartz, and one specimen occurs with alunite. All are in a host rock of hydrothermally altered basalt. Many other alunite samples from this locality contain little NH₄⁺, although these alunites frequently occur with NH₄⁺-bearing feldspar.

Because NH₄⁺ analysis of minerals is nonroutine, we analyzed ten K-rich alunites from seven localities to determine if significant NH₄⁺ substitution occurs in alunite. The (NH₄)₂O content of all of these samples is somewhat low (<800 ppm (NH₄)₂O or <1.2 mol% NH₄⁺, Table 5), yet significantly higher than (NH₄)₂O contents of unaltered igneous rocks (60–80 ppm (NH₄)₂O, Wlotzka, 1972).

Although it appears that NH₄⁺-rich alunite is not common, minor NH₄⁺ substitution for K⁺ is more prevalent than previously recognized. The reason for the rare occurrence of NH₄⁺-rich alunite is probably the unique chemical environment required to produce a high NH₄⁺/K⁺ ratio in the alunite stability field. The environment is restricted because aqueous NH₄⁺ is most abundant in reducing and acidic fluids, while alunite is a common alteration mineral of oxidizing and acidic (acid-sulfate) hydrothermal fluids. In addition, the NH₄⁺/K⁺ ratio in the fluid must be high because NH₄⁺ and K⁺ ions are competing for the same site in alunite.

To understand the chemical conditions favorable for the formation of ammonioalunite, we examined the reported chemistry of the waters at The Geysers, where alunites have been found to contain as much as 92 mol% NH₄⁺. Table 4 lists the chemical analyses of several ammonium sulfate-rich springs. Although the exact locality of the specimen from the Smithsonian Institution (NMMNH 145596) is not known, it obviously formed in the vicinity of these ammonium sulfate springs.

Figure 6 is an fO₂-pH diagram drawn for the conditions found in the Devil’s Kitchen Spring, assuming (1) that the total nitrogen concentration equals the NH₄⁺ concentration (1400 ppm), (2) that the total sulfur concentration equals the SO₄⁻ concentration (5710 ppm), and (3) that the fluids were in chemical equilibrium. This diagram shows the alunite, ammonioalunite, and liquid S stability fields, the dominant fields for the aqueous sulfur and nitrogen species, and contours of NH₄⁺ activity in the N₂ dominant field. No overlap is apparent in Figure 6 between the NH₄⁺- and SO₄⁻-dominant fields; therefore, the Devil’s Kitchen fluids cannot represent chemical equilibrium under the assumption that the total nitrogen concentration equaled the NH₄⁺ concentration. In order to produce a fluid in redox equilibrium with an ammonium concentration of 1400 ppm (10⁻¹¹ m) and a sulfate concentration of 5710 ppm (10⁻¹² m) at a pH of 1.8, the dominant nitrogen species would have to be N₂ and the

TABLE 5. (NH₄)₂O contents (ppm) of K- and Na-rich alunites from different localities

<table>
<thead>
<tr>
<th>Locality</th>
<th>(NH₄)₂O</th>
<th>Occurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marysvale, Utah</td>
<td>190</td>
<td>vein alunite</td>
</tr>
<tr>
<td>Marysvale, Utah</td>
<td>370</td>
<td>replacement alunite, quartz, kaulinite</td>
</tr>
<tr>
<td>Marysvale, Utah</td>
<td>370</td>
<td>natroalunite, quartz</td>
</tr>
<tr>
<td>McLaughlin, California</td>
<td>740</td>
<td>alunite</td>
</tr>
<tr>
<td>Cuprite, Nevada</td>
<td>370</td>
<td>alunite, quartz</td>
</tr>
<tr>
<td>Cuprite, Nevada</td>
<td>560</td>
<td>alunite, quartz</td>
</tr>
<tr>
<td>Goldfield, Nevada</td>
<td>190</td>
<td>alunite, quartz</td>
</tr>
<tr>
<td>Summitville, Colorado</td>
<td>190</td>
<td>alunite, quartz</td>
</tr>
<tr>
<td>Waiotopu, New Zealand</td>
<td>370</td>
<td>alunite, quartz, opal</td>
</tr>
</tbody>
</table>
Fig. 6. Log f_{O_2}-pH diagram at 100 °C for log total sulfur concentration = $-1.2m$, log total nitrogen concentration = $-1.1m$ and the log a_{K^+} = -3.9. The lines with short dashes show the boundaries of the aqueous sulfur species. The heavy-dashed line shows the boundaries of the aqueous nitrogen species with the long-dashed contours representing the activity of NH$_4^+$ (in log molal units) in the N$_2$-dominant field. The thermodynamic data for the alunite-kaolinite line were extrapolated from Hemley et al. (1969); the data for NH$_4$-alunite are from Kelly et al. (1946); other data are from Henley et al. (1984), Barton and Skinner (1979), and Montoya and Hemley (1975).

The analyzed solution from the Devil's Kitchen contains either metastable ammonium, metastable sulfate, or both. Based on Ohmoto and Lasaga's (1982) work, a 100 °C solution at a pH of 2 with a total sulfur concentration of 0.1m should reach 90% equilibrium between aqueous sulfide and sulfate in about 10 yr. Although there are no data on the rate of equilibration between NH$_4^+$ and N$_2$, Giggenbach (1980) determined that there is close to complete attainment of chemical equilibrium between NH$_3$ and N$_2$ under geothermal conditions. However, at temperatures near 140 °C, scatter in his data suggests that equilibration is somewhat sluggish. Thus, for the range of temperatures found at The Geysers (50–100 °C), it is likely that the hot springs contained both metastable ammonium and sulfate.

It is worth noting, based on the limited thermodynamic data for ammonioalunite and on the lack of data on the distribution coefficient for NH$_4^+$ and K$^+$ between aqueous solution and alunite, that the solutions with the above composition are quite capable of producing the ammonioalunite with 92 mol% NH$_4^+$ found at The Geysers. From the thermodynamic data of Kelly et al. (1946), the log equilibrium constant for the reaction 3 kaolinite + 2NH$_4^+$ + 6H$^+$ + 4SO$_4^{2-}$ = 2 ammonioalunite + 6 quartz + 3H$_2$O (1) is estimated to be 36.4 at 100 °C. Given the concentrations of ammonium and sulfate found in the solutions from the Devil's Kitchen Spring at a pH of 1.8, the formation of ammonioalunite would be expected. In addition, it is not surprising that an NH$_4^+$-rich alunite was formed rather than a K-rich alunite, because the NH$_4^+$ and K$^+$ ions, which are competing for the same site in the alunite structure, have an activity ratio of approximately 600 in these solutions.

It is obvious from Figure 6 that the formation of ammonioalunite requires very acid conditions, high concentrations of ammonium and sulfate, and low concentrations of K. Temperatures 100 °C and below seem to favor ammonioalunite formation because with increasing temperature the calculated ammonioalunite stability field and the ammonium-dominant field move (relatively) further apart and, more importantly, equilibrium conditions are most likely. Although the source of the ammonium at The Geysers is not known, the sedimentary rocks of the Franciscan Formation that hosts the system are a likely candidate. Thus, an acid-sulfate hot-springs setting, with associated sedimentary rocks, appears to be one of the most favorable chemical environments for forming ammonioalunite.

Conclusions

1. Extensive substitution of NH$_4^+$ for K$^+$ in the A site of alunite can occur. An occupancy of 92% was observed for the natural sample of ammonioalunite studied here.
2. The most favorable conditions for NH$_4$-rich alunite formation appear to be temperatures less than 100 °C, pH values less than 2, high activities of both NH$_4^+$ and SO$_4^{2-}$, very low activities of K$^+$ and Na$^+$, and O$_2$ values intermediate between oxidizing and reducing conditions.
3. Although NH$_4$-rich alunites may be restricted to a specific chemical environment, small NH$_4$ substitutions in alunite are more common than previously recognized.
4. NIR spectroscopy is a useful identification tool for NH$_4$-bearing minerals and provides a basis for remote-sensing investigations of NH$_4$-bearing minerals.

Acknowledgments

We thank Charles Cunningham, Roger Stoffregen, Paul Powhat, and the National Museum of Natural History for furnishing samples; Geothermal Division of Unocal for allowing us access to The Geysers; Paul Barton for helpful discussions; Richard Erd, Michael Hochella, and Malcolm Ross for thoughtful reviews; Norma Rait for the S analyses; and Karolyn Roberts for typing the manuscript.

References Cited

Barton, P.B., Jr., and Skinner, B.S. (1979) Sulfide mineral stabilities. In

MANUSCRIPT RECEIVED APRIL 2, 1987
MANUSCRIPT ACCEPTED SEPTEMBER 23, 1987