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INTRODUCTION

The spinel structure, with general formula AB2O4, is ad-
opted by a variety of materials, including minerals, catalysts, 
superconductors, magnetic materials, and semiconductors. 
Ringwoodite, a spinel-structured polymorph of (Fe,Mg)2SiO4, 
is an important phase in the lower part of the Earth�s transition 
zone, and spinel-structured minerals can be found in various dif-
ferent classes of igneous and metamorphic rocks, and in several 
varieties of meteorite. 

The spinel structure consists of pseudo-close-packed planes 
of oxygen anions, in which there are tetrahedral and octahedral 
interstices where cations can be placed. The A and B cations 
may be distributed across these tetrahedral and octahedral sites 
in different ways. A spinel with the conÞ guration IVAVIB2O4 is 
termed �normal,� while one with the conÞ guration IVBVI(AB)O4 is 
termed �inverse.� The continuum of possible states between these 
two extremes is quantiÞ ed by the inversion parameter, x, which 

deÞ nes the fraction of B cations on tetrahedral sites. Hence, x is 
zero for a normal spinel, 2/3 for a spinel with completely random 
conÞ guration, and 1 for a fully inverse spinel. Alternatively, an 
order parameter Q can be deÞ ned, which has value 1 for the 
normal case, 0 for the random case, and �0.5 for the inverse case. 
The relationship between x and Q is thus Q = 1 � 3x/2.

Considerable research has been conducted into the thermody-
namics of cation ordering in minerals with the spinel structure. In 
particular, the thermodynamic model of O�Neill and Navrotsky 
(1983) has been shown to be very good at describing ordering in 
end-member spinels. The O�Neill-Navrotsky model states that 
the enthalpy of disordering can be represented as a quadratic 
function of the inversion parameter:

∆HD = αx + βx2  (1)

where α and β are coefÞ cients that can be determined for a par-
ticular spinel from experimental data for the cation distribution 
as a function of temperature. 
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The Monte Carlo (MC) simulation technique is a powerful tool for the investigation of thermody-
namic and kinetic phenomena in minerals, and is especially well suited to the study of cation ordering. 
We have performed MC simulations of eight end-member 2-3 spinels (X2+ = Mg, Fe, Zn, Ni; X3+ = Al, 
Fe) using pair interaction parameters, Ji, and chemical potentials, μ, derived from atomistic simulations. 
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as a function of temperature is good for the normal spinels and poor for the inverse spinels. Agree-
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simulation parameters (usually increasing the strength of the tetrahedral-octahedral, T-O, interactions, 
and decreasing the magnitude of μ). 

We have developed an atomistic random-mixing model for cation ordering in spinels and com-
pared it with the macroscopic O�Neill-Navrotsky model. In so doing, we have determined the relative 
contributions of μ, tetrahedral-tetrahedral (T-T), octahedral-octahedral (O-O), and T-O interactions 
to the O�Neill-Navrotsky coefÞ cients α and β. We found that the value of β depends on the relative 
enthalpy contributions of (T-T + O-O) vs. T-O interactions, a useful insight considering the large 
spread of values found experimentally to be taken by β.

We used the thermodynamic integration technique to quantify the entropy, and hence the amount 
of short-range order, present in the spinels studied. We found that there is virtually no short-range 
order in the normal spinels. There is signiÞ cant short-range order in the inverse spinels, though in the 
experimentally accessible temperature range, the contribution of this short-range order to the entropy 
is comparatively small. At very low temperatures, we Þ nd that the octahedral cations in the inverse 
spinels become ordered, reducing the symmetry to P4122, in agreement with other simulated Þ ndings 
for 2-3 spinels and experimental Þ ndings for 4-2 spinels.
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where n is the number of sites per formula unit. Hence the 
resulting expression for the free energy relative to the perfectly 
ordered spinel (x = 0) is
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It was initially suggested that the majority of spinels could be 
described using a �universal� value of β = �20 kJ/mol (O�Neill 
and Navrotsky 1984). Experimental studies have since shown 
that β can adopt a wide range of both positive and negative values 
[e.g., +19.7 kJ/mol for FeAl2O4 (Harrison et al. 1998); +4.7 kJ/
mol for MgAl2O4 (Redfern et al. 1999); �18.4 kJ/mol for NiAl2O4 
(O�Neill et al. 1991); �21.7 kJ/mol for MgFe2O4 (O�Neill et al. 
1992); �34.1 kJ/mol for ZnFe2O4 (O�Neill 1992)]. 

In this work, we examine cation ordering in spinels via a 
Monte Carlo simulation approach. Several types of Monte Carlo 
simulations have been used to study a variety of mineralogically 
relevant processes. The �reverse Monte Carlo� technique has 
been used in conjunction with experimental investigation to 
examine dynamic disorder and phase transitions in SiO2 poly-
morphs (Tucker et al. 2001a, 2001b), and the structures of the 
octahedral sheet in illite-smectites (Cuadros et al. 1999). �Kinetic 
Monte Carlo� simulations allow the investigation of crystal 
growth (e.g., Piana and Gale 2006) and dissolution processes 
(e.g., Arvidson and Luttge 2004). The �forward Monte Carlo� 
technique lends itself well to the study of cation ordering; rapid, 
but thermodynamically accurate, sampling of phase space is 
possible, and the system evolves relatively quickly toward the 
equilibrium state. Mineral systems in which the MC technique 
has already been successfully applied to cation ordering include 
micas (Palin et al. 2001, 2003b), illite-smectites (Sainz-Díaz et 
al. 2003a, 2003b, 2004; Palin et al. 2004), amphiboles (Palin et 
al. 2003a, 2005), ilmenite-hematite (Harrison 2006), and garnets 
(Bosenick et al. 2000; Vinograd and Sluiter 2006; Vinograd et 
al. 2006a, 2006b). Previous MC investigations have also been 
undertaken on spinels (Warren et al. 2000a, 2000b; Lavrentiev 
et al. 2003), and we discuss these below.

Our aim in this work is to use Monte Carlo simulations to 
investigate why the O�Neill-Navrotsky model works so well for 
spinels, and to gain insights into the controls on the variability of 
α and β. One particular advantage of Monte Carlo simulations in 
this study is that short-range order is treated correctly, whereas 
it is not included in the O�Neill-Navrotsky model. 

This study is the Þ rst step toward an atomistic model of 
coupled cation and magnetic ordering in spinel solid solutions. 
A similar approach has recently proved highly successful in the 
investigation of magnetism and microstructure in the ilmenite-
hematite solid solution (Harrison 2006), and we envisage that 
this study of spinels will be similarly useful in terms of the 
subsequent investigation we plan to undertake into the effect of 

cation distributions on magnetic ordering. Recently, Lavrentiev et 
al. (2003) investigated 2-3 end-member spinels via Monte Carlo 
simulation, using a technique that considers the effect of vibra-
tional contributions to the lattice energy on the ordering behavior. 
Our approach, referred to as the J formalism, (Bosenick et al. 
2001) describes the thermodynamics of ordering using a set of 
pair interaction parameters and site preference energies derived 
from static lattice energy calculations. This approach neglects 
vibrational contributions to the lattice energy, but has been used 
successfully in the past to study many other mineral systems, 
e.g., the clay minerals and amphiboles cited above. In this study 
we assess whether the same approach is suitable for modeling 
spinels. By comparing our results with those of Lavrentiev et 
al. (2003) we demonstrate that vibrational contributions have 
a relatively minor effect on the calculated cation distributions, 
an observation that greatly simpliÞ es the computations. We 
demonstrate a striking similarity between the pair interaction 
parameters derived for both normal and inverse spinels, and 
develop a general approach to atomistic modeling of spinels 
that both closely reproduces experimental data and correctly 
describes the conÞ gurational entropy.

METHOD

J formalism for cation ordering in spinels
The formalism underlying our simulations, which we call the J formalism, has 

been discussed in detail by Bosenick et al. (2001), so here we simply give a sum-
mary. It is possible to express the enthalpy of a system of interacting cations as

E E N J Nij
n

ij
n

ij
j j

j

= + +∑ ∑0 μ  (4)

where E0 is a constant term, Jn
ij represents the enthalpy of an interaction between 

two cation species i and j across distance n, Nn
ij is the number of interactions of type 

n, and μj is a constant site preference energy (or �chemical potential�) describing 
the energy associated with placing cation j on a given type of site.

Equation 4 can be solved via multi-linear regression. Many different cation 
conÞ gurations are created, and the geometry of each is optimized with the program 
GULP (Gale 1997) to produce a data set of conÞ gurations, each with a different 
E value. Nij and Nj can be computed (e.g., via a spreadsheet method) for each 
conÞ guration, and Equation 4 can thus be solved for Jij and μj (and E0, though this 
constant is not used in any subsequent investigation). These values of Jij and μj 
are then used as input for Monte Carlo simulations.

The Þ rst part of the analysis is to identify the distances in the crystal structure 
for which the interaction parameters Jij are to be deÞ ned. To this end, the crystal 
structure of spinel was examined, and twelve interaction parameters were deÞ ned. 
These are for the four shortest inter-cation distances for each of T-T, O-O, and T-O 
interactions (T = tetrahedral, O = octahedral), and are listed in Table 1. 

TABLE 1. Distances corresponding to J parameters for spinel structure

Parameter Distance (Å) Vector type Number of neighbors

J1,TT 3.50 1/4 1/4 1/4  4
J2,TT 5.71 1/2 1/2 0 12
J3,TT 6.70 3/4 1/4 1/4  12
J4,TT 8.08 1 0 0 6
J1,OO 2.86 1/4 1/4 0 6
J2,OO 4.95 1/4 1/4 1/2  12
J3,OO 5.71 1/2 1/2 0 12
J4,OO 6.39 3/4 1/4 0 12
J1,TO 3.35 3/8 1/8 1/8 12*
J2,TO 5.25 5/8 1/8 1/8, 3/8 3/8 3/8 16*
J3,TO 6.62 5/8 3/8 3/8 12*
J4,TO 7.76 7/8 3/8 1/8, 5/8 5/8 3/8 36*

Note: Distances quoted are based on MgAl2O4 and will therefore vary for other 
spinels.
* Counted from T sites. If counted from O sites, halve this number.
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Interatomic potential model for spinels
The interatomic potentials used in this work were identical to those derived 

by Lavrentiev et al. (2003). We used these parameters to study the following 
compositions: MgAl2O4 (spinel, normal), MgFe2O4 (magnesioferrite, inverse), 
NiAl2O4 (inverse), NiFe2O4 (trevorite, inverse), FeAl2O4 (hercynite, normal), Fe3O4 
(magnetite, inverse), ZnAl2O4 (gahnite, normal), and ZnFe2O4 (normal). 

To compute the J parameters, the approach discussed by Bosenick et al. (2001) 
was used. This involved taking lattice parameters and atomic coordinates from 
experimental sources, and constructing a unit cell of the fully cation disordered 
structure using the virtual crystal approximation (VCA). In spinels, this means that 
each site (both tetrahedral and octahedral) has an occupancy of 1/3 A and 2/3 B. We 
constructed a 2 × 2 × 2 supercell containing 128 octahedral sites and 64 tetrahedral 
sites for this purpose. This unit cell was optimized with the program GULP (Gale 
1997) at constant pressure, to allow the cell parameters to relax. The experimental 
parameters used for each spinel, and the output parameters from the GULP optimiza-
tion, are given in Table 2. The output coordinates and lattice parameters were then 
used to generate many conÞ gurations of the unit cell for each spinel, with randomly 
located A and B atoms in the structure giving varying degrees of inversion. Twenty 
conÞ gurations at each of x = 1/16, 1/8, 3/16, 1/4, 5/16, 3/8, 7/16, 1/2, 9/16, 5/8, 
11/16, 3/4, 13/16, 7/8, 15/16, and 1 were generated. This, together with the fully 
normal structure, gave a data set of 321 conÞ gurations for each composition. These 
conÞ gurations were optimized using GULP, and multi-linear regression analysis 
was used to compute the twelve J values and chemical potential μ.

It is not clear whether, in general, it is better to allow the cell parameters to 
change during optimization of the random conÞ gurations (constant pressure), or to 
hold them Þ xed (constant volume) (Bosenick et al. 2001). This is especially relevant 
here, since we are modeling systems with different degrees of inversion, which 
may have different cell parameters. We investigated the effect on the J values of 
calculating them from conÞ gurations optimized at constant volume and at constant 
pressure, and found that there was negligible difference. 

Additionally, when placing the cations randomly on the lattice sites to generate 
the 321 input conÞ gurations, we used the same set of random numbers for each 
different spinel. We tested the effect of using a different set of random numbers 
for the case of MgFe2O4, and found that the effect on the J values was, again, 
negligible.

Once values are calculated for the various parameters, the enthalpy for each 
conÞ guration can be calculated according to Equation 4, and compared with the 
actual value from GULP. The quality of the Þ t between observed and calculated 
energies can be measured by the R2 correlation coefÞ cient:
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for which a value of 1 indicates a perfect correlation (see Table 3).

Random-mixing model for ordering in spinels
The general spinel formula can be written as IV(A1�xBx)VI(A1�x/2Bx/2)2O4, where 

x is the degree of inversion. From this general formula, a model for the system 
enthalpy can be derived, assuming completely random mixing of cations on each of 
the two sublattices. This model can then be compared with the O�Neill-Navrotsky 
model, and serves as a predictive tool for the simulation results (remembering that 
the model neglects the possibility of short-range order). 

In a spinel with degree of inversion x, we can formulate an expression for the 
enthalpy depending on the probability of Þ nding an interaction between two unlike 
atoms across a particular distance. First, the probability of Þ nding an interaction 
of a particular type can be expressed as the probability of Þ nding a particular 
atom on a particular site multiplied by the probability of Þ nding a neighbor of the 
opposite type. The former quantity is given by the site occupancy in the general 

chemical formula (e.g., probability of Þ nding a B atom on a tetrahedral site = x), 
and the latter is dependent on the number of neighbors of a particular site across a 
particular distance (e.g., probability of an A neighbor in a tetrahedral site across a 
J1 distance = (1 � x)z1,TT, where z1,TT = the number of nearest-neighbor tetrahedral 
sites). The enthalpy of a particular interaction is just the probability of that interac-
tion multiplied by the J value for that interaction, e.g., for an A-B nearest-neighbor T-T 
interaction, the enthalpy is 4x(1 � x)J1,TT, where z1,TT = 4 (Table 1).

Extending this to include (1) further than nearest-neighbor interactions; (2) in-
teractions of all types (T-T, O-O, T-O); and (3) all the tetrahedral and octahedral sites 
present, we obtain 
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where NT and NO are the numbers of tetrahedral and octahedral sites.
We also need to quantify the enthalpy contribution from moving atoms be-

tween tetrahedral and octahedral sites, i.e., the chemical potential. We deÞ ne our 
chemical potential to be for B atoms on tetrahedral sites (e.g., Al on tetrahedral 
sites for MgAl2O4, Fe on tetrahedral sites for MgFe2O4, etc.). A negative chemical 
potential therefore favors B atoms on tetrahedral sites, i.e., the inverse case, and a 
positive chemical potential disfavors B atoms on tetrahedral sites, i.e., the normal 
case. The enthalpy contribution from the chemical potential is

Eμ = NTμx  (7)

such that the maximum contribution (be it positive or negative) from this term 
occurs for the fully inverse spinel, and there is no contribution in a fully ordered 
spinel.

The total enthalpy of the conÞ guration is then given by E = EJ + Eμ. Col-
lecting together terms in x and x2 to facilitate comparison between this and the 
O�Neill-Navrotsky model, and writing ΣJTT = 4J1,TT + 12J2,TT + 12J3,TT + 6J4,TT, 
ΣJOO = 6J1,OO + 12J2,OO + 12J3,OO + 12J4,OO, and ΣJTO = 12J1,TO + 16J2,TO + 12J3,TO 
+ 36J4,TO for convenience,
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We therefore note that the O�Neill-Navrotsky α and β parameters each depend 
on all types of J values, but the chemical potential contributes to the α parameter 
only. In addition, our model contains a constant term, which is absent from the 
O�Neill-Navrotsky model. We will therefore compare our model with the O�Neill-
Navrotsky model by offsetting our model enthalpy such that it has a zero value 
at x = 0, Q = 1. It is also possible to compare directly the two models with MC 
simulations, but only for the Q = 1 case, as this is the only case in which short 
range order is necessarily absent.

Examining Equation 8, we can also draw conclusions about the sign of β. The 
x2 term in Equation 8 contains contributions from T-T, O-O, and T-O interactions. 
The T-T and O-O contributions are both negative, whilst the T-O contribution is 
positive. It can therefore be deduced that the sign of β is dependent on the relative 
strengths of the (T-T + O-O) interactions vs. the strength of the T-O interactions 
(assuming all are of the same sign, as demonstrated below).

TABLE 2. Parameters used as input for VCA models for GULP optimizations, and comparison with optimized values

Composition Source Initial a (Å) Final a (Å) % diff  Initial u Final u % diff 

MgAl2O4 Redfern et al. (1999), 299 K sample, Table 1 8.0836 7.971092 –1.39 0.26171 0.257913 1.45
MgFe2O4 O’Neill et al. (1992), 450 °C sample, Tables 1 and 4 8.3806 8.232223 –1.77 0.2557 0.257904 0.86
FeAl2O4 Harrison et al. (1998), 298 K sample, Table 1 8.14578 7.924887 –2.71 0.26245 0.257862 1.75
Fe3O4 O’Neill and Dollase (1994), Table 9 8.397 8.194681 –2.41 0.255 0.257854 1.12
NiAl2O4 O’Neill et al. (1991), 700 °C sample, Table 2 8.0452 7.962662 –1.03 0.2549 0.258195 1.29
NiFe2O4 Subramanyam (1971) 8.3379 8.227229 –1.33 0.256 0.25815 0.84
ZnAl2O4 O’Neill and Dollase (1994), 900 °C sample, Table 8 8.0865 8.104044 0.22 0.2646 0.257814 2.56
ZnFe2O4 O’Neill (1992), 500 °C sample, Table 3 8.4419 8.364462 –0.92 0.2604 0.257817 0.99
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We can use the model expression to predict whether, with a particular set 
of parameters and a particular starting conÞ guration, we will obtain a normal or 
inverse spinel. In some cases, the O�Neill-Navrotsky model coefÞ cients predict a 
lower enthalpy for a normal spinel when an inverse conÞ guration is expected. For 
example, the values obtained by O�Neill et al. (1992) for MgFe2O4, α = 26.6 and 
β = �21.7 kJ/mol, give the curve shown in Figure 1 for the enthalpy as a function 
of Q, in which the enthalpy of the ordered spinel is lower than that of the inverse 
spinel, despite the fact that MgFe2O4 is observed to adopt the inverse structure. This 
may seem counterintuitive; however, if we examine the free energy as predicted 
by Equation 3, the situation becomes clearer. Figure 2 shows the free energies of a 
normal spinel (MgAl2O4) and an inverse spinel (MgFe2O4) as predicted by Equation 
3 at 100, 500, 1000, and 5000 K. The higher entropy of the inverse structure is a 
factor in stabilizing it relative to the normal structure. Our simulations (discussed 
in more detail below) are started off in a random conÞ guration (Q = 0, shown by 
the vertical dotted lines on Fig. 2) and allowed to equilibrate at each temperature. 
One can note from Figure 2 that at 100 K, the global free energy minimum is the 
normal conÞ guration for both MgAl2O4 and MgFe2O4. Hence, a simulation of 
MgAl2O4 started with a random conÞ guration will simply evolve down the free 
energy gradient to Q = 1. However, for MgFe2O4, despite the fact that the free 
energy of the normal case is lower than that of the inverse case, the maximum in 
the free energy of MgFe2O4 at Q ~ 0.1 means that an initially random conÞ guration 
will evolve toward Q = �0.5. 

Monte Carlo (MC) simulations
The MC simulations were performed using the program OSSIA (Warren et 

al. 2001). For this program, the system is represented as a set of spins interacting 
with a speciÞ ed topology and speciÞ ed interaction/chemical potential energies (the 
J and μ values); these spins are then mapped onto the crystal structure as atoms 
at the end of the simulation.

We use the unlike interaction representation, in which A-A and B-B interactions 
are not deÞ ned, but A-B (and B-A) interactions take the values in Table 3. 

All MC simulations reported in this paper used a 3 × 3 × 3 supercell of the 2 
× 2 × 2 supercell used in the GULP calculations, i.e., with 648 cation sites. Initial 
simulations showed that the spinel systems equilibrate quickly at a particular 
temperature, which meant that some intermediate simulations could be run with 
relatively few steps (typically 105�106). Final simulations were run with 2 × 107 
steps�that is, 107 equilibration steps and 107 production steps.

Most of our simulations were initialized in a random state; at each temperature, 
each cation site is populated randomly with a cation in the speciÞ ed proportions, 
and this is called a �hot start,� since it is analogous to the expected high-temperature 
behavior, Q = 0. Alternatively, they may be initialized in a �cold start,� whereby 
the user speciÞ es the cation occupancy site by site. This is appropriate for a normal 
spinel, since there is only one possible conÞ guration (all tetrahedral sites occupied 

by A, all octahedral sites occupied by B), but more difÞ cult for an inverse spinel, 
since although all tetrahedral sites are occupied by B, there are many possible 
conÞ gurations of 50% A and 50% B in the octahedral sites. However, it is possible 
to perform a hot start simulation to deduce a possible ordered structure, and then 
use that ordered structure as the starting structure for a cold start simulation. In 
any case, whether started in an ordered or disordered state, the system is given 
the opportunity to evolve toward an equilibrium state at a particular temperature. 

RESULTS

J parameters for spinels
The values of J parameters and chemical potentials obtained 

for the spinels studied are given in Table 3. Figure 3 shows the J 
values graphically, and illustrates that there is a striking similarity 
between the values for all but ZnAl2O4. It is especially interest-
ing to note that similar J values are obtained for both normal 
and inverse spinels, with only the chemical potential dictating 
the normal or inverse behavior. With the exception of J1,TT, J1,OO, 
and J2,OO in ZnAl2O4 and J4,TT in Fe3O4, all J values are nega-
tive, indicating that it is energetically favorable for A-B pairs 
to form, irrespective of their separation. This has the potential 
to create �frustration� in the system, since it is not possible for 
all pairs to be A-B, but in this case the nearest-neighbor interac-
tions have the largest energy and therefore are dominant. It is 
also interesting to note that, for each of the T-T, O-O, and T-O 
interactions, there is a rapid decay in the strength of the interac-
tions with distance; this is not necessarily always the case, e.g., 
in MC simulations of muscovite (Palin et al. 2001), third-nearest 
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FIGURE 1. Ordering enthalpy of MgFe2O4 as given by O�Neill-
Navrotsky model as a function of Q. 
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neighbor interactions were found to be smaller than fourth-near-
est neighbor interactions. 

It is not clear at this point why the results for ZnAl2O4 are 
so different from those of the other seven spinels studied. The 
discrepancy may be due to the large value of μ, which makes 
a much larger contribution to the energy of ordering than that 
from the J values. 

Random-mixing model results
Figure 4 shows the total enthalpy calculated from the random-

mixing model, and the separate contributions from T-T, O-O, 
T-O, and μ, using the J and μ values for MgAl2O4. It can be seen 
that the contributions from T-T and O-O are concave curves, and 
that from T-O is a convex curve. The chemical potential is linear 
in x. The total enthalpy curve shows that the normal spinel is 
favored. An analogous plot for MgFe2O4 is shown in Figure 5; 
the main difference is that the chemical potential has opposite 
sign, which means that the inverse spinel is favored. 

Also inset on Figures 4 and 5 are the enthalpies calculated 
using the O�Neill-Navrotsky model (as a function of Q rather 
than of x) compared with the total random-mixing enthalpies 
(shifted such that they have zero value at Q = 1). For MgAl2O4, 
the enthalpy curves from the two models have similar forms, 

but the curves for MgFe2O4 are very different. In particular, the 
O�Neill-Navrotsky enthalpy is higher for the inverse case than 
for the normal case, suggesting that, although a model with these 
α and β parameters Þ ts the experimental data, it predicts that the 
most stable conÞ guration for MgFe2O4 is the normal conÞ gura-
tion, as discussed above. 

MC results: Comparison with previous study
One aim of this study is to determine to what extent the re-

sults of our simulation approach differ from those of Lavrentiev 
et al. (2003) who used a slightly different technique. Figure 6 
uses MgAl2O4 and MgFe2O4 as examples of normal and inverse 
spinels, comparing our MC simulation results with those ob-
tained by Lavrentiev et al. and also with experimental data for 
each spinel. It can be seen that there is no signiÞ cant difference 
between the results of those authors and the results obtained in 
this work, and thus, a similar degree of agreement of simulations 
with experimental data. Lavrentiev et al. also presented MC re-
sults for FeAl2O4, NiAl2O4, and ZnAl2O4. These also compared 
favorably with our results; the results from the two simulations 
for FeAl2O4 were virtually identical, and our results for NiAl2O4 

TABLE 3. Fitted parameters for various spinels

 MgAl2O4 MgFe2O4 FeAl2O4 Fe3O4 NiAl2O4 NiFe2O4 ZnAl2O4 ZnFe2O4

R2 0.999974 0.999392 0.999976 0.997837 0.999578 0.999971 0.999984 0.999992
E0 –8676.7(4) –8368.6(6) –8697.5(4) –8387.0(8) –8650.5(5) –8346.0(6) –8542(1) –8240.0(4)
J1,TT –0.0110(5) –0.0141(6) –0.0123(5) –0.0147(9) –0.0097(5) –0.0135(7) 0.0039(12) –0.0066(4)
J2,TT –0.0061(3) –0.0059(4) –0.0053(3) –0.0077(5) –0.0065(3) –0.0055(4) –0.0106(7) –0.0055(3)
J3,TT –0.0037(3) –0.0039(4) –0.0037(3) –0.0034(5) –0.0038(3) –0.0040(4) –0.0019(7) –0.0029(3)
J4,TT –0.0012(3) –0.0004(4) –0.0007(3) 0.0006(5) –0.0013(3) –0.0006(4) –0.0001(7) –0.0009(3)
J1,OO –0.0215(3) –0.0293(4) –0.0237(3) –0.0292(5) –0.0236(3) –0.0295(4) 0.0012(7) –0.0143(3)
J2,OO –0.0061(2) –0.0044(3) –0.005(2) –0.0011(4) –0.0064(2) –0.0033(3) 0.0016(5) –0.0045(2)
J3,OO –0.0053(2) –0.0053(3) –0.0046(2) –0.0059(4) –0.0052(2) –0.0056(3) –0.0092(5) –0.0049(2)
J4,OO –0.0030(2) –0.0024(3) –0.0025(2) –0.0020(4) –0.0027(2) –0.0023(3) –0.0038(5) –0.0026(2)
J1,TO –0.0164(2) –0.0135(3) –0.0126(2) –0.0125(4) –0.0167(3) –0.0138(3) –0.0191(6) –0.0136(2)
J2,TO –0.0071(2) –0.0062(2) –0.0068(2) –0.0046(3) –0.0069(2) –0.0058(3) –0.0030(4) –0.0057(2)
J3,TO –0.0018(2) –0.0023(3) –0.0021(2) –0.0022(4) –0.0018(2) –0.0023(3) –0.0002(5) –0.0013(2)
J4,TO –0.0015(1) –0.0008(2) –0.0011(1) –0.0001(2) –0.0015(1) –0.0007(2) –0.0012(3) –0.0012(1)
μ 0.335(4) –0.094(5) 0.378(4) –0.057(7) –0.126(4) –0.496(6) 0.990(9) 0.538(3)

Notes: Interaction parameters Ji are for unlike interactions and the goodness of fi t is illustrated by the R2 correlation coeffi  cient. All values in eV with standard error 
on the last digit given in parentheses.
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FIGURE 3. Calculated J values for all spinels studied in this work.
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were in slightly better agreement with experimental data. At high 
temperature, there was a discrepancy between the two simula-
tions for ZnAl2O4, but this can probably be explained by the 
fact that the behavior at high temperature is more susceptible 
to ß uctuation. As such, it appears that the speciÞ c inclusion of 
vibrational energy contributions by Lavrentiev et al. does not 
have a very large effect on the simulated cation distributions.

Parameter scaling 
Since the O�Neill-Navrotsky model of ordering enthalpy as a 

function of x (or Q) produces good Þ ts to experimental data, it is 
desirable to obtain similar E(Q) curves from the random-mixing 
model we discussed above. One way of attempting to achieve 
this result is to scale the sets of parameters obtained from our 
GULP calculations. If this is to be done, however, it is prudent to 
scale only some parameters, since the various sets of parameters 
are all interdependent. 

We investigated the effect of scaling parameters on both the 
E(Q) curve from the model and the Q(T) curve from the MC 
simulations. We selected MgFe2O4 as a suitable candidate for 
this test, since there are two independent experimental data sets 
available over relatively large temperature ranges. 

We scaled the parameters in each set together, i.e., all T-T 
parameters by the same amount, all O-O parameters by the same 
amount, etc., but scaled each parameter set independently. We 
also scaled μ independently. MC simulations were performed 
with doubled and halved values of the parameters and compared 
with the initial MC simulation with all parameters unscaled. 

Figure 7 shows the effect on E(Q) and Q(T) of these scalings 
for MgFe2O4. Doubling the T-T parameters produces a pro-
nounced minimum in E(Q), around Q = �0.1, which is reß ected 
in the fact that in the MC simulation, the system does not be-
come fully inverse, even at low temperature. Other scalings of 
T-T and O-O parameters do not appear to affect signiÞ cantly 
the temperature at which disordering begins, although they do 
affect how disordered the system is at high temperatures. Scaling 
the T-T parameters does not affect the enthalpies of ordered and 

inverse states, and scaling the O-O parameters affects only the 
inverse enthalpy, not the ordered enthalpy.

Scaling the T-O parameters, however, affects the position 
with respect to temperature of the steepest part of the Q(T) curve, 
between the ordered and disordered regimes. There is also an 
effect on the degree of disorder at high temperatures. The en-
thalpy of both the ordered and inverse states also changes with 
different T-O scale factors. This suggests that the T-O parameters 
would be the most useful ones to scale in terms of Þ tting the 
experimental data. 

Scaling μ by a positive factor appears to have a similar effect on 
Q(T) as scaling the O-O parameters, but will not affect the curvature 
of E(Q), as μ affects only the part of the enthalpy that is linear in x.

We have not considered the possibility of scaling the 
parameters by negative scale factors. Scaling the J values by a 
negative factor would be nonsensical, because it would reverse 
the preference for unlike cation interactions over like cation 
interactions. Similarly, the sign of μ obtained from the GULP 
calculations is correct for all eight spinels, again making it il-
logical to reverse it. 

 We concluded from this that scaling both the T-O parameters 
and μ by positive scale factors should provide us with control 
over (1) the temperature location of the steepest part of the Q(T) 
curve; (2) the slope of the steepest part of the Q(T) curve; (3) 
the curvature of the E(Q) curve, including the location of any 
maxima or minima that might affect whether an initially disor-
dered system evolves toward normal or inverse conÞ guration; 
and (4) the relative enthalpies of normal and inverse spinels. 
In this scheme, varying μ and Ji,TO to best Þ t the data using the 
Monte Carlo simulations is analogous to varying α and β to best 
Þ t the data using the O�Neill-Navrotsky model.

Figure 8 shows the results of MC simulations for all eight 
spinels studied in this work, compared with available experi-
mental data (see Þ gure caption for references). In the cases of 
MgAl2O4 and FeAl2O4, the agreement with experiment was 
sufÞ ciently good that no parameter scaling was necessary. For 
MgFe2O4, Fe3O4, NiAl2O4, ZnAl2O4, and ZnFe2O4, results are 

FIGURE 5. Random-mixing model enthalpy, and its components from 
T-T, O-O, and T-O interactions and chemical potential, for MgFe2O4. 
Inset: comparison of total enthalpies from random-mixing and O�Neill-
Navrotsky model for MgFe2O4. Key to inset: �O�N� = α = 26.6, β = 
�21.7 kJ/mol (O�Neill et al. 1992).
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shown both for unscaled and scaled pa-
rameters. In all cases except magnetite, 
the Þ t was obtained by scaling up the 
T-O interactions and scaling down μ (in 
the case of magnetite, μ was increased). 
The scaling factors used for each case are 
given in the Þ gure caption. The agree-
ment between experimental data and MC 
results with scaled parameters is mostly 
very good (points where experimental 
samples have not equilibrated have been 
excluded when judging the goodness of 
Þ t), although for magnetite it was not pos-
sible to obtain such a good Þ t to the data, 
presumably because of the significant 
contribution of the magnetic interactions 
to the ordering behavior of magnetite. 
In the case of NiFe2O4, no experimental 
data are available, since this is a very rare 
mineral, but the MC results are included 
for completeness. 

Figure 9 shows the computed J values 
for all the spinels studied in this work, 
analogously to Figure 3, but with the T-O 
interactions scaled by the factors used 
in the MC simulations. A comparison 
of Figures 3 and 9 serves to illustrate 
that only modest adjustments to the T-O 
interactions were necessary to achieve 
a good Þ t to the experimental data, and 
that the overall pattern of absolute and relative values of T-T, 
O-O, and T-O interactions from the original GULP calcula-
tions is essentially retained. The comparison indicates that T-O 
interactions were slightly underestimated by the original GULP 
calculations, which was responsible for the generally poor Þ t to 
the experimental data. After scaling, the T-O interactions become 
of similar magnitude to the O-O interactions. 

Comparison between models, and the issue of short-range 
order

Figure 10 compares O�Neill-Navrotsky E(Q) curves with 
model curves computed with unscaled and scaled (where 
applicable) parameters. Also included for comparison are the 
enthalpies from the MC simulations.

The main point to note from these plots is that the MC 
results for the normal spinels follow exactly the theoretical 
behavior from the random-mixing model. The MC results for 

the inverse spinels, however, do not; the MC enthalpy is always 
lower than that predicted by the random-mixing model. This is 
indicative of the presence of short-range order. It is possible to 
quantify the degree of short-range order by using the technique 
of thermodynamic integration (see e.g., Warren et al. 2001), by 
which it is possible to calculate the free energy and hence the 
entropy from the simulation results for the enthalpy. This can 
then be compared with the expected conÞ gurational entropy of 
the system as a function of temperature, computed via Equation 
2 from x, which is in turn obtained from the simulated Q value 
at each temperature.

Figure 11 shows thermodynamic integration results for 
MgAl2O4 and MgFe2O4. For MgAl2O4, there is almost no differ-
ence between the entropies from the two approaches, and hence 
there is almost no short-range order in MgAl2O4. The results for 
the other normal spinels showed a similar lack of short-range 
order. A previous study of cation ordering in MgAl2O4 via an 
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ab initio approach (Warren et al. 2000a, 2000b) showed a very 
similar S(T) curve, but did not assess explicitly the degree of 
short-range order. 

For MgFe2O4, the entropy calculated via thermodynamic 
integration is lower than that expected from the conÞ gurational 
entropy calculation, meaning that there is signiÞ cant short-
range order in MgFe2O4. The other inverse spinels behaved 
analogously.

Figure 12 illustrates the amount of short-range order in Mg-
Fe2O4, NiAl2O4, and Fe3O4, simply as the difference between the 
expected conÞ gurational entropy and the actual entropy from 
the thermodynamic integration. At very low temperatures, there 
is complete order, so the actual entropy is zero, and since x = 
1, the expected conÞ gurational entropy is 2Rln2 (11.5 kJ/mol). 
Hence the entropy difference is constant at 2Rln2 initially, but 

on increasing temperature, there are sudden decreases at ~120 
K (NiAl2O4), ~170 K (MgFe2O4), and ~230 K (Fe3O4). The form 
of these curves is very similar to the short-range order parameter 
plots computed by Seko et al. (2006) for MgGa2O4 and MgIn2O4; 
these authors noted an abrupt decrease in the short-range order 
parameter which they attributed to the onset of long-range order-
ing of cations on octahedral sites. 

Long-range order in inverse spinels
Snapshots of the fully ordered structure obtained from the 

MC simulations of MgFe2O4 at temperatures lower than ~170 
K is shown in Figure 13 (note that no O atoms are present as 
these are not included in the MC simulation). The Mg atoms 
form chains along one direction in the unit cell; these chains 
have 41 symmetry.
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FIGURE 8. MC simulation results 
and comparison with experimental 
data for all spinels studied in this 
work. Experimental data are from 
the following sources: MgAl2O4 = 
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Harrison et al. (1998); ZnAl2O4 = 
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= Nell et al. (1989) (circles), Wu 
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Wissmann et al. (1998) (down 
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(1991) MoKα radiation (circles), 
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are no NiFe2O4 data available for 
comparison. Where error bars are not 
shown on experimental data points, 
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We can examine the long-range ordering in our simulations 
by considering the cation site occupancies as a function of tem-
perature. Figure 14 shows the average Fe contents of sites in 
MgFe2O4, computed from the MC simulations. The average tet-
rahedral and octahedral Fe site fractions change rather smoothly. 
However, the average octahedral Fe content can in turn be split 
into two parts. One part is the average site occupancy for sites 
where Fe is expected to occur in the long-range-ordered state, 
and the other is the average site occupancy for sites where Mg 
is expected to occur in the long-range-ordered state. From this, 
one can note that, at ~170 K, there is a discontinuity, with dis-
tinct occupancies of either Fe or Mg (i.e., 0 or 1 on the Figure) 
suddenly changing to roughly 0.5, i.e., statistically disordered 
octahedral sites. 

 To investigate further this long-range ordering, we opti-
mized the geometry of the ordered structure (O atoms now 
included once more) using GULP, with the relevant potentials 
from Lavrentiev et al. (2003). The structural parameters of the 

J 1
,T

T

J 2
,T

T

J 3
,T

T

J 4
,T

T

J 1
,O

O

J 2
,O

O

J 3
,O

O

J 4
,O

O

J 1
,T

O

J 2
,T

O

J 3
,T

O

J 4
,T

O

−0.035

−0.025

−0.015

−0.005

0.005

V
al

ue
 (

eV
)

MgAl2O4

MgFe2O4

FeAl2O4

Fe3O4

NiAl2O4

NiFe2O4

ZnAl2O4

ZnFe2O4

FIGURE 9. J values for all spinels studied in this work, with T-O 
parameters scaled.

−0.5 0 0.5 1
−0.04

−0.02

0

0.02

0.04

0.06

−0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

−0.5 0 0.5 1
−0.1

−0.05

0

0.05

0.1

MC results (unscaled parameters)
MC results (scaled parameters)
O’Neill−Navrotsky fit
Random−mixing fit (unscaled)
Random−mixing fit (scaled)

−0.5 0 0.5 1
0

0.1

0.2

0.3

−0.5 0 0.5 1
−0.1

0

0.1

0.2

0.3

0.4

−0.5 0 0.5 1
−0.1

0

0.1

0.2

−0.5 0 0.5 1
−0.2

0

0.2

0.4

0.6

0.8

E
nt

ha
lp

y 
(e

V
/c

at
io

n)

Order parameter

MgAl2O4 FeAl2O4

MgFe2O4

Fe3O4

ZnAl2O4 ZnFe2O4

NiAl2O4

FIGURE 10. Comparison 
of O�Neill-Navrotsky model, 
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curves are shown using both the 
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E(Q = 0) = 0. O�Neill-Navrotsky 
Þ ts: MgAl2O4 = Redfern et al 
(1999), FeAl2O4 = Harrison et 
al (1998), MgFe2O4 = O�Neill 
et al (1992), Fe3O4 = Nell et 
al (1989), ZnAl2O4 = O�Neill 
and Dollase (1994), ZnFe2O4 = 
O�Neill (1992), and NiAl2O4 = 
O�Neill et al. (1991).
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relaxed structure are given in Table 4. The ordered structure, 
with space group P4122, and cell parameters ~√2ac × √2ac × 
ac is identical to that obtained for the 4-2 spinels Mg2TiO4 and 
Zn2TiO4 (Millard et al. 1995) and analogous to that obtained for 
Mn2TiO4 (Bertaut and Vincent 1968), where the space group is 
P4322 and the handedness of the chains of A (Ti) atoms is op-
posite to that of the chains of A atoms in MgFe2O4, Mg2TiO4, and 
Zn2TiO4. Similarly, Seko et al. (2006) determined by ab initio 
methods that the ordered inverse spinels MgGa2O4 and MgIn2O4 
have the P4322 space group. Burns et al. (1997) observed the 
space group P4122 for an aluminous magnesioferrite, but they 
attributed the tetragonal nature to strain due to lattice mismatch 
resulting from the microstructural evolution of the sample, rather 
than to cation ordering.

DISCUSSION AND CONCLUSIONS

In this work we have shown that an atomistic approach 
can be used successfully to model cation order-disorder in 2-3 
spinels. Some scaling of simulation parameters is necessary to 
reproduce experimental data, but in the cases where parameters 
were scaled, they were scaled similarly for all spinels (i.e., in-
creased T-O interactions, decreased μ). The only exception was 
the case of magnetite, where magnetic interactions are likely to 
have a large effect, but such interactions are not included in our 
model. It is our intention to consider magnetic interactions in 
spinels at a later date. 

By way of further discussion, we refer back to the questions 
we posed above. 

Why does the O�Neill-Navrotsky model work so well for 
end-member 2-3 spinels? 

The O�Neill-Navrotsky model consists of two terms, repre-
senting enthalpy and entropy. Therefore, the only possible way 
in which the model could fail is if it did not model sensibly 
one or both of these components. The enthalpy term is mod-
eled as the sum of a linear and a quadratic part, which we have 
shown can be interpreted as a combination of T-T, O-O, and 
T-O interactions. 

The entropy term is modeled as the conÞ gurational entropy, 
and we have shown above that there may be a signiÞ cant discrep-

ancy between the expected conÞ gurational entropy and the actual 
entropy of the system. In other words, there may be considerable 
short-range order present in the system, but this phenomenon is 
not accounted for by the O�Neill-Navrotsky model. 

However, the coefÞ cients for the model are obtained by Þ t-
ting to experimental data, and it turns out that entropy effect is 
not large when one is considering only the temperature range in 
which experimental data exist for spinels. In the case of normal 
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FIGURE 11. Thermodynamic integration results for MgAl2O4 and MgFe2O4, compared with expected conÞ gurational entropy (Sconf) computed 
from simulated order parameter. Dotted lines show maximum possible entropy of the system.

0 100 200 300 400 500
Temperature (K)

0

5

10
E

nt
ro

py
 d

iff
er

en
ce

 [J
/(

m
ol

· K
)]

MgFe2O4

NiAl2O4

Fe3O4

FIGURE 12. Difference between actual entropy (from thermodynamic 
integration) and predicted entropy Sconf for three inverse spinels.

TABLE 4.  Details of optimized cation-ordered structure of MgFe2O4 
as obtained from GULP 

Space group P4122   
Lattice parameters a = 5.8309 Å c = 8.2218 Å α = 90° 

Fractional coordinates:
Atom x y z

Fe 0.7425 0 0.25
Fe 0.25317 0.25317 0.375
Mg 0.25756 0.5 0.75
O 0.25971 0.96702 0.50693
O 0.73983 0.47624 0.02034
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spinels, we found that there was no discernible difference be-
tween the predicted and actual entropies in normal spinels across 
a very wide temperature range, and hence there is no discernible 
short-range order in normal spinels. Therefore, no discrepancy 
is expected between the O�Neill-Navrotsky model and the ex-
perimentally observed data for normal spinels�i.e., the model 
should work well. In the case of inverse spinels, the considerable 
short-range order that may exist is found at temperatures, which 

are experimentally inaccessible (i.e., <230 K). In the temperature 
range 700�1700 K, which we might consider as experimentally 
accessible, the difference between predicted and actual entropy 
of inverse spinels is only ~5�10% of the theoretical maximum 
difference of 2Rln2 (for a long-range-ordered spinel), and this is 
effectively insigniÞ cant. Therefore, the model should work well 
for inverse spinels as well.

What controls the values of α and β in the model? 
We have gained some insights into the controls on the α and β 

parameters in the O�Neill-Navrotsky model by comparing it with 
our random-mixing model. SpeciÞ cally, all types of interactions 
contribute to both α and β, but the chemical potential contributes 
to α only. Furthermore, the sign of β in the O�Neill-Navrotsky 
model is determined by the relative strengths of the (T-T + O-O) 
interactions vs. the T-O interactions. 

What differences are there between our results and those 
of Lavrentiev et al. (2003)? 

We found that we had to scale some of our Monte Carlo 
parameters to improve our MC Þ ts to the data; using unscaled pa-
rameters, our results were generally similar to the previous work 
by Lavrentiev et al. When scaling, the important relationship 
appears to be the relative strengths of O-O vs. T-O interactions; 
we chose to vary this by scaling the T-O interactions rather than 
the O-O interactions, as this facilitated Þ tting to the experimental 
data. It is clear that GULP does not predict the relative strengths 
of O-O and T-O interactions very well, and we believe that the 
same issue underlies the results of Lavrentiev et al. 

In summary, we have developed a consistent approach for 
modeling the thermodynamics of end-member 2-3 spinels. We 
plan to perform an analogous study on end-member 4-2 spinels, 
and this will be the subject of a future paper.

FIGURE 13. MC simulation snapshots (top: viewed along z, bottom: 
viewed along x) for MgFe2O4 at very low temperature. Gray = Mg (all 
octahedral), large black = tetrahedral Fe, small black = octahedral Fe. 
ArtiÞ cial bonds have been drawn between Mg atoms as a visual aid.
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