# Scottyite, the natural analog of synthetic BaCu<sub>2</sub>Si<sub>2</sub>O<sub>7</sub>, a new mineral from the Wessels mine, Kalahari Manganese Fields, South Africa

HEXIONG YANG,<sup>1,\*</sup> ROBERT T. DOWNS,<sup>1</sup> STANLEY H. EVANS,<sup>1</sup> AND WILLIAM W. PINCH<sup>2</sup>

<sup>1</sup>Department of Geosciences, University of Arizona, Tucson, Arizona 85721-0077, U.S.A. <sup>2</sup>19 Stonebridge Lane, Pittsford, New York 14534, U.S.A.

# ABSTRACT

A new mineral species, scottyite, ideally BaCu<sub>2</sub>Si<sub>2</sub>O<sub>7</sub>, has been found in the Wessels mine, Kalahari Manganese Fields, Northern Cape Province, South Africa. The mineral appears to have formed as a result of a hydrothermal event and is associated with wesselsite, pectolite, richterite, sugilite, and lavinskyite. Scottyite forms blocky grains with striations parallel to the **c** axis. Crystals are found up to  $0.4 \times 0.3 \times 0.3$  mm. No twinning is observed. The mineral is dark-blue in transmitted and under incident lights, transparent with pale blue streak and vitreous luster. It is brittle and has a Mohs hardness of 4~5; cleavage is perfect on {100} and {010} and no parting was observed. The calculated density is 4.654 g/cm<sup>3</sup>. Optically, scottyite is biaxial (–), with  $\alpha = 1.750(1)$ ,  $\beta = 1.761(1)$ , and  $\gamma = 1.765(1)$ ,  $2V_{meas} = 66(2)^{\circ}$ . It is insoluble in water, acetone, or hydrochloric acid. An electron microprobe analysis produced an average composition (wt%) (8 points) of CuO 36.98(31), BaO 35.12(16), SiO<sub>2</sub> 27.01(61), SrO 0.28(5), and Na<sub>2</sub>O 0.06(2), and total = 99.45(65), yielding an empirical formula (based on 7 O apfu) Ba<sub>1.00</sub>Sr<sub>0.01</sub>Na<sub>0.01</sub>Cu<sub>2.04</sub>Si<sub>1.97</sub>O<sub>7</sub>.

Scottyite is the natural analog of synthetic BaCu<sub>2</sub>(Si,Ge)<sub>2</sub>O<sub>7</sub>, which exhibits novel one-dimensional quantum spin-1/2 antiferromagnetic properties with tunable super-exchange interactions. It is orthorhombic, with space group *Pnma* and unit-cell parameters a = 6.8556(2), b = 13.1725(2), c = 6.8901(1) Å, and V = 622.21(6) Å<sup>3</sup>. The structure of scottyite is characterized by flattened CuO<sub>4</sub> tetrahedra sharing corners with one another to form chains parallel to the **c** axis. These chains are interlinked by Si<sub>2</sub>O<sub>7</sub> tetrahedral dimers and Ba<sup>2+</sup>. The Ba<sup>2+</sup> cations are bonded to seven O atoms in an irregular coordination. The average Si-O, Cu-O, and Ba-O bond lengths are 1.630, 1.941, and 2.825 Å, respectively. Scottyite is topologically related to a group of compounds with the general formula BaM<sup>2+</sup><sub>2</sub>Si<sub>2</sub>O<sub>7</sub>, where M = Be (barylite and clinobarylite), Fe (andrémeyerite), Mg, Mn, Co, and Zn.

Keywords: Scottyite, BaCu<sub>2</sub>Si<sub>2</sub>O<sub>7</sub>, crystal structure, X-ray diffraction, Raman spectra

### INTRODUCTION

A new mineral species, scottyite, ideally BaCu<sub>2</sub>Si<sub>2</sub>O<sub>7</sub>, has been found in the Wessels mine, Kalahari Manganese Fields, Northern Cape Province, Republic of South Africa. It is named after Michael M. Scott "Scotty", the co-founder and first CEO of Apple Computer Corporation (February 1977 to March 1981), and the founding sponsor of the RRUFF project-an internet-based, internally consistent, and integrated database of Raman spectra, X ray diffraction, and chemistry data for minerals. The vivid color of the mineral reflects his spectroscopic interests, and the synthetic analog's high-tech applications mirror his role in introducing the desktop computer to the world. The new mineral and its name have been approved by the Commission on New Minerals, Nomenclature and Classification (CNMNC) of the International Mineralogical Association (IMA 2012-027). Part of the co-type sample has been deposited at the University of Arizona Mineral Museum (Catalog no. 19334) and the RRUFF Project (deposition no. R120077) (http://www.webcitation.org/6C98YyC9g). The holotype sample is in the collection of W.W. Pinch.

Silicates with only Ba and Cu as essential structural constituents are relatively rare in nature and only two such minerals have been documented thus far, including effenbergerite BaCuSi<sub>4</sub>O<sub>10</sub> (Giester and Rieck 1994) and scottyite, both originating from the same locality. Nevertheless, Ba-silicate compounds characterized by the general chemical formula  $BaM_2^{2+}Si_2O_7$  (M<sup>2+</sup> = Be, Mg, Mn, Fe, Co, Zn, and Cu) have been a subject of extensive investigations for their scientific and industrial interests. For example, the materials with M = Be, Mg, and Zn are suitable hosts for luminescent activating ions. In particular, Pb<sup>2+</sup>-doped BaBe<sub>2</sub>Si<sub>2</sub>O<sub>7</sub> is used commercially as a UV emitting material in moth-killing lamps and  $(Eu^{2+} + Mn^{2+})$ doped BaMg<sub>2</sub>Si<sub>2</sub>O<sub>7</sub> is a deep-red luminescent emitter through effective energy transfers from Eu<sup>2+</sup> to Mn<sup>2+</sup> (Barry 1970; Yao et al. 1998). Moreover, compounds with M = Cu, Co, and Mn are ideal prototypical quasi-one-dimensional quantum spin (=1/2, 3/2, and 5/2, respectively) Heisenberg antiferromagnets with adjustable superexchange interactions, which is vital for our understanding of high-Tc superconductivity (e.g., Janczak et al. 1990; Adams and Layland 1996; Lu et al. 2000; Yamada

<sup>\*</sup> E-mail: hyang@u.arizona.edu



FIGURE 1. (a) Rock samples on which scottyite crystals are found. (b) A microscopic view of scottyite, associated with light blue platy lavinskyite. (Color online.)

et al. 2001a, 2001b; Ohta et al. 2004a, 2004b; Bertaina and Hayn 2006; Zvyagin 2006; Zheludev et al. 2007). Among the  $BaM_2^{2+}Si_2O_7$  family, the Be- and Fe-bearing members have been found in nature, namely barylite, clinobarylite, and andrémeyerite. This paper describes the physical and chemical properties of scottyite and its crystal structure determined from the single-crystal X-ray diffraction data, demonstrating that scottyite is the natural analog to the synthetic Cu-member of the  $BaM_2^{2+}Si_2O_7$  family.

# SAMPLE DESCRIPTION AND EXPERIMENTAL METHODS

# Occurrence, physical, and chemical properties, and Raman spectra

Scottyite was found on two specimens originating from the central-eastern ore body of the Wessels mine, Kalahari Manganese Fields, Northern Cape Province, Republic of South Africa. It is in a massive assemblage associated with wesselsite SrCuSi<sub>4</sub>O<sub>10</sub>, lavinskyite K(LiCu)Cu<sub>6</sub>Si<sub>8</sub>O<sub>22</sub>(OH)<sub>4</sub>, pectolite NaCa<sub>2</sub>Si<sub>3</sub>O<sub>8</sub>(OH), richterite Na(CaNa)Mg<sub>5</sub>Si<sub>8</sub>O<sub>22</sub>(OH)<sub>2</sub>, and sugilite KNa<sub>2</sub>Fe<sup>3+</sup><sub>2</sub>(Li<sub>3</sub>Si<sub>12</sub>)O<sub>30</sub> (Figs. 1 and 2). The mineral assemblage probably formed as a result of a hydrothermal event. Conditions during metamorphism were in the range of 270-420 °C at 0.2-1.0 kbar (Klevenstuber 1984; Gutzmer and Beukes 1996). Detailed reviews on the geology and mineralogy of the Kalahari Manganese Fields have been given by Kleyenstuber (1984), Von Bezing et al. (1991), and Gutzmer and Beukes (1996). It should be pointed out that scottyite was actually first reported as an unnamed Ba-Cu silicate from Eifel, Germany (Hentschel 1993; Blass et al. 2009; Blass and Schüller 2011). However, this unnamed mineral was not fully described and documented in the list of the IMA valid or invalid unnamed minerals. Since scottyite was approved as a new mineral species based on our mineralogical data, we consider the Wessels Mine, South Africa, rather than Eifel, Germany, as its type locality.

Scottyite forms blocky grains with striations parallel to the **c** axis. Crystals are found up to  $0.4 \times 0.3 \times 0.3$  mm. No twinning is observed. The mineral is dark blue, transparent with pale blue streak and vitreous luster. It is brittle and has a Mohs hardness of 4–5; cleavage is perfect on {100} and {010} and no parting was observed. The measured and calculated densities are 4.63(a) and 4.654 g/cm<sup>3</sup>, respectively. Optically, scottyite is biaxial (–), with  $\alpha = 1.750(1)$ ,  $\beta = 1.761(1)$ ,  $\gamma = 1.765(1)$  (white light), 2V (meas) =  $66(2)^{\circ}$ , 2V (calc) =  $62^{\circ}$ , and the orientation  $X \parallel \mathbf{a}$ ,  $Y \parallel \mathbf{b}$ ,  $Z \parallel \mathbf{c}$ . The pleochroism is X = medium blue, and the absorption Y > X = Z. No dispersion was observed. Scottyite is insoluble in water, acetone, or hydrochloric acid.

The chemical composition was determined using a CAMECA SX-100 electron microprobe (15 kV, 20 nA, <1  $\mu$ m beam diameter) (http://rruff.info/scottyite).

The standards used included chalcopyrite (Cu), NBS\_K458 (Ba), diopside (Si), SrTiO<sub>3</sub> (Sr), and albite (Na), yielding an average composition (wt%) (8 points) of CuO 36.98(31), BaO 35.12(16), SiO<sub>2</sub> 27.01(61), SrO 0.28(5), and Na<sub>2</sub>O 0.06(2), and total = 99.45(65). The resultant chemical formula, calculated on the basis of 7 O apfu (from the structure determination), is  $Ba_{1.00}Sr_{0.01}Na_{0.01}Cu_{2.04}Si_{1.97}O_7$ , which can be simplified to  $BaCu_2Si_2O_7$ .

The Raman spectrum of scottyite was collected on a randomly oriented crystal from 12 scans at 60 s and 100% power per scan on a Thermo-Almega microRaman system, using a solid-state laser with a wavelength of 532 nm and a thermoelectric cooled CCD detector. The laser is partially polarized with 4 cm<sup>-1</sup> resolution and a spot size of 1  $\mu$ m.

# X-ray crystallography

Because of the limited amount of available material, no powder X-ray diffraction data were measured for scottyite. Listed in Table 1 are the powder X-ray diffraction data calculated from the determined structure using the program XPOW (Downs et al. 1993). Single-crystal X-ray diffraction data of scottyite were collected from a nearly equi-dimensional, untwinned crystal ( $0.04 \times 0.05 \times 0.05$  mm) with frame widths of  $0.5^{\circ}$  in  $\omega$  and 30 s counting time per frame. All reflections were indexed on the basis of an orthorhombic unit-cell (Table 2). The intensity data were corrected for X-ray absorption using the Bruker program SADABS. The systematic absences of reflections suggest possible space groups *Pnma* (no. 62) or *Pn*<sub>21</sub>*a* (no. 33). The crystal structure was solved and refined using SHELX97 (Sheldrick 2008) based on the space group *Pnma*, because it



**FIGURE 2.** A backscattered electron image, showing the assemblage of scottyite (bright), wesselsite (gray), and lavinskyite (dark gray).

**TABLE 1.** Calculated powder X-ray diffraction data for scottyite

| Intensity | d <sub>calc</sub> | hkl            |
|-----------|-------------------|----------------|
| 51.70     | 6.5862            | 020            |
| 1.46      | 6.1053            | 011            |
| 4.92      | 4.8598            | 101            |
| 21.96     | 3.9105            | 121            |
| 1.50      | 3.7029            | 031            |
| 2.03      | 3.31/3            | 210            |
| 16.92     | 3 0782            | 102            |
| 5.41      | 3.0690            | 201            |
| 63.84     | 3.0527            | 0 2 2          |
| 100.00    | 3.0406            | 220            |
| 5.41      | 2.9975            | 112            |
| 2.09      | 2.9889            | 211            |
| 12.31     | 2.7887            | 122            |
| 51.65     | 2.7818            | 221            |
| 3 38      | 2.7202            | 1 3 2          |
| 10.71     | 2.5154            | 231            |
| 1.94      | 2.4608            | 051            |
| 37.15     | 2.4299            | 202            |
| 1.05      | 2.3896            | 212            |
| 5.44      | 2.3805            | 042            |
| 16.44     | 2.3748            | 240            |
| 1.56      | 2.2797            | 222            |
| 3.74      | 2.2626            | 013            |
| 2.99      | 2.2488            | 1 4 2          |
| 2.95      | 2.2452            | 241            |
| 1.42      | 2.1954            | 060            |
| 1.18      | 2.1690            | 301            |
| 2.15      | 2.1480            | 113            |
| 2.02      | 2.0888            | 252            |
| 4.78      | 2.0676            | 1 2 3          |
| 4.27      | 2.0602            | 3 2 1          |
| 5.06      | 2.0007            | 161            |
| 20.52     | 1.9552            | 242            |
| 1.20      | 1.9510            | 133            |
| 2.43      | 1.9043            | 302            |
| 5.18      | 1.8847            | 3 1 2          |
| 12.93     | 1.8514            | 062            |
| 15.11     | 1.8487            | 260            |
| 2.53      | 1.8294            | 322            |
| 5.04      | 1.8105            | 3 4 1          |
| 6.35      | 1.7874            | 162            |
| 2.24      | 1.7499            | 233            |
| 4.88      | 1.7225            | 004            |
| 7.82      | 1.7139            | 400            |
| 6.96      | 1.6706            | 104            |
| 4.51      | 1.05/3            | 1   4          |
| 11.99     | 1.6466            | 080            |
| 4.77      | 1.6290            | 262            |
| 10.00     | 1.6193            | 124            |
| 3.70      | 1.6126            | 421            |
| 1.18      | 1.5614            | 134            |
| 2.11      | 1.5461            | 163            |
| 5.94      | 1.5430            | 361            |
| 2.92      | 1.5203            | 4 4 0          |
| 4.65      | 1.4987            | 224            |
| 9.34      | 1.4945            | 4 2 2          |
| 6.31      | 1.4899            | 144            |
| /.20      | 1.4846            | 441            |
| 10.60     | 1.4536            | 242            |
| 3.65      | 1.4519            | 182            |
| 1.19      | 1.4386            | 362            |
| 3.42      | 1.3943            | 244            |
| 2.79      | 1.3909            | 4 4 2          |
| 1.03      | 1.3/55            | 304            |
| 14.20     | 1.3631            | 2 I 4<br>2 8 2 |
| 4.20      | 1.3465            | 3 2 4          |

 
 TABLE 2. Summary of crystal data and refinement results for scottyite and synthetic BaCu<sub>2</sub>Si<sub>2</sub>O<sub>7</sub>

|                                                 | Scottyite                                        | Synthetic BaCu <sub>2</sub> Si <sub>2</sub> O <sub>7</sub> |
|-------------------------------------------------|--------------------------------------------------|------------------------------------------------------------|
| Ideal chemical formula                          | BaCu <sub>2</sub> Si <sub>2</sub> O <sub>7</sub> | BaCu <sub>2</sub> Si <sub>2</sub> O <sub>7</sub>           |
| Crystal symmetry                                | Orthorhombic                                     | Orthorhombic                                               |
| Space group                                     | <i>Pnma</i> (no.62)                              | <i>Pnma</i> (no.62)                                        |
| a (Å)                                           | 6.8556(2)                                        | 6.866(2)                                                   |
| b (Å)                                           | 13.1725(2)                                       | 13.190(3)                                                  |
| <i>c</i> (Å)                                    | 6.8901(1)                                        | 6.909(2)                                                   |
| V (ų)                                           | 622.21(6)                                        | 627.7(3)                                                   |
| Z                                               | 4                                                | 4                                                          |
| ρ <sub>cal</sub> (g/cm³)                        | 4.654                                            | 4.592                                                      |
| λ (Å, Μο <i>Κ</i> α)                            | 0.71073                                          | 0.71069                                                    |
| μ (mm <sup>-1</sup> )                           | 13.41                                            | 13.75                                                      |
| 2θ range for data collection                    | ≤65.12                                           | 60.0                                                       |
| No. reflections collected                       | 4887                                             |                                                            |
| No. independent reflections                     | 1180                                             |                                                            |
| No. reflections with $l > 2\sigma(l)$           | 1065                                             | 1039                                                       |
| No. parameters refined                          | 59                                               | 59                                                         |
| R <sub>int</sub>                                | 0.023                                            | 0.028                                                      |
| Final $R_1$ , $wR_2$ factors $[l > 2\sigma(l)]$ | 0.017, 0.040                                     | 0.031, 0.037                                               |
| Final $R_1$ , $wR_2$ factors (all data)         | 0.021, 0.041                                     |                                                            |
| Goodness-of-fit                                 | 1.074                                            |                                                            |
| Reference                                       | This study                                       | Janczak et al. (1990)                                      |

yielded better refinement statistics in terms of bond lengths and angles, atomic displacement parameters, and R factors. The positions of all atoms were refined with anisotropic displacement parameters. During the structure refinements, the ideal chemistry was assumed, as the overall effects of the trace amounts of other elements (Sr and Na) on the final structure results are negligible. Final coordinates and displacement parameters of atoms in scottyie are listed in Table 3, and selected bond-distances in Table 4. (A CIF<sup>1</sup> is on deposit.)

#### DISCUSSION

## Crystal structure

Scottyite is identical with synthetic  $BaCu_2Si_2O_7$  (Janczak et al. 1990; Yamada et al. 2001a) and isostructural with  $BaCu_2Ge_2O_7$  (Oliveira 1993; Yamada et al. 2001a). Our structure data agree well with those determined for synthetic  $BaCu_2Si_2O_7$  by Janczak et al. (1990) using single-crystal X-ray diffraction (Tables 2 and 4). The structure of scottyite is based on a tetrahedral framework consisting of  $SiO_4$  and  $CuO_4$  tetrahedra. The  $CuO_4$  tetrahedra are considerably flattened and share corners to form chains parallel to the **c** axis. The chains are interlinked by the  $Si_2O_7$  dimers oriented parallel to the **b** axis. The  $Ba^{2+}$  cations are in the framework channels (Fig. 3). The Cu-O-Cu angle within the  $CuO_4$  tetrahedral chain is 124.49°, which is responsible for the antiferromagnetic coupling in  $BaCu_2Si_2O_7$  (Yamada et al. 2001a).

The Ba<sup>2+</sup> cation in scottyite is bonded to seven O atoms within 3.0 Å in an irregular coordination. The next two nearest O atoms (O4) are 3.263 Å away. The bond-valence sum for Ba<sup>2+</sup>, calculated using the parameters given by Brese and O'Keeffe (1991), is only 1.69 v.u. (Table 5), indicating that it is significantly under-bonded (Table 5). In contrast, the Ba<sup>2+</sup> cations in effenbergerite are bonded to eight O atoms in a distorted cube coordination with a bond-valence sum of 1.95 v.u. (Chakoumakos et al. 1993; Giester and Rieck 1994). The Cu<sup>2+</sup> cations

<sup>&</sup>lt;sup>1</sup> Deposit item AM-13-030, CIF. Deposit items are available two ways: For a paper copy contact the Business Office of the Mineralogical Society of America (see inside front cover of recent issue) for price information. For an electronic copy visit the MSA web site at http://www.minsocam.org, go to the *American Mineralogist* Contents, find the table of contents for the specific volume/issue wanted, and then click on the deposit link there.

TABLE 3. Coordinates and displacement parameters of atoms in scottyite

|      |            | •          | •          |              |                 |                 |                 |                 |                 |                 |
|------|------------|------------|------------|--------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Atom | х          | у          | Ζ          | $U_{\rm eq}$ | U <sub>11</sub> | U <sub>22</sub> | U <sub>33</sub> | U <sub>23</sub> | U <sub>13</sub> | U <sub>12</sub> |
| Ba   | 0.01303(2) | 1/4        | 0.45688(3) | 0.00970(5)   | 0.0089(1)       | 0.0108(1)       | 0.0095(1)       | 0               | -0.0008(1)      | 0               |
| Cu   | 0.27762(4) | 0.00417(2) | 0.20631(4) | 0.00714(6)   | 0.0089(1)       | 0.0057(1)       | 0.0068(1)       | -0.0008(1)      | -0.0023(1)      | 0.0014(1)       |
| Si   | 0.49765(7) | 0.13406(5) | 0.52716(8) | 0.0057(1)    | 0.0066(2)       | 0.0047(2)       | 0.0057(3)       | -0.0000(2)      | 0.0004(2)       | 0.00039(2)      |
| 01   | 0.4044(3)  | 1/4        | 0.5167(3)  | 0.0087(4)    | 0.0084(9)       | 0.0057(9)       | 0.0120(9)       | 0               | -0.0004(8)      | 0               |
| 02   | 0.1725(2)  | 0.1337(1)  | 0.1306(2)  | 0.0104(3)    | 0.0122(6)       | 0.0068(7)       | 0.0122(7)       | -0.0003(6)      | -0.0053(6)      | 0.0022(5)       |
| 03   | 0.5590(2)  | 0.1121(1)  | 0.7486(2)  | 0.0111(3)    | 0.0152(7)       | 0.0098(7)       | 0.0083(7)       | -0.0017(6)      | -0.0031(6)      | 0.0048(6)       |
| 04   | 0.3173(2)  | 0.0596(1)  | 0.4658(2)  | 0.0078(3)    | 0.0105(6)       | 0.0076(7)       | 0.0053(6)       | -0.0010(5)      | 0.0007(5)       | -0.0022(5)      |

TABLE 4. Selected bond distances (Å) in scottyite and synthetic TABLE 5. Calculated bond-valence sums for scottyite BaCu<sub>2</sub>Si<sub>2</sub>O<sub>7</sub>

|          | Scottyite | Synthetic BaCu <sub>2</sub> Si <sub>2</sub> O <sub>7</sub> |
|----------|-----------|------------------------------------------------------------|
| Ba-O1    | 2.715(2)  | 2.713(5)                                                   |
| Ba-O2 x2 | 2.857(2)  | 2.863(3)                                                   |
| Ba-O2 x2 | 2.932(2)  | 2.932(3)                                                   |
| Ba-O3    | 2.741(2)  | 2.749(3)                                                   |
| Avg.     | 2.825     | 2.830                                                      |
| Cu-O2    | 1.924(2)  | 1.930(3)                                                   |
| Cu-O3    | 1.923(2)  | 1.926(2)                                                   |
| Cu-O4    | 1.950(2)  | 1.956(2)                                                   |
| Cu-04    | 1.968(2)  | 1.973(3)                                                   |
| Avg.     | 1.941     | 1.946                                                      |
| Si-O1    | 1.657(1)  | 1.662(2)                                                   |
| Si-O2    | 1.618(2)  | 1.619(4)                                                   |
| Si-O3    | 1.609(2)  | 1.610(4)                                                   |
| Si-O4    | 1.634(2)  | 1.635(3)                                                   |
| Avg.     | 1.630     | 1.632                                                      |



FIGURE 3. Crystal structure of scottyite. (Color online.)

in both scottyite and effenbergerite, however, exhibit a similar, nearly planar square coordination. The difference between the Cu coordinations in the two minerals is that the four O atoms bonded to Cu<sup>2+</sup> in effenbergerite lie in the same plane, with Cu<sup>2+</sup> slightly (0.67 Å) off the plane (Giester and Rieck 1994), whereas they form a markedly flattened tetrahedron in scottyite. The similar planar or nearly planar square coordinations for Cu<sup>2+</sup> have also been observed in other synthetic Ba-Cu-silicates, such as  $I\overline{4}m2$  BaCuSi<sub>2</sub>O<sub>6</sub> (Finger et al. 1989), as well as  $I4_1/acd$ and I4/mmm BaCuSi<sub>2</sub>O<sub>6</sub> (Sparta and Roth 2004).

The Si-O-Si angle within the Si<sub>2</sub>O<sub>7</sub> dimer in scottyite is 134.3°, which is the second largest in the BaM<sub>2</sub><sup>2+</sup>Si<sub>2</sub>O<sub>7</sub> group,

|           |                   |                      |                | ,              |       |
|-----------|-------------------|----------------------|----------------|----------------|-------|
|           | 01                | 02                   | O3             | 04             | Sum   |
| Ва        | 0.317             | 0.216×2→<br>0.176×2→ | 0.296×2→       |                | 1.693 |
| Cu        |                   | 0.516                | 0.517          | 0.481<br>0.458 | 1.972 |
| Si<br>Sum | 0.915×2↓<br>2.147 | 1.016<br>1.924       | 1.041<br>1.854 | 0.973<br>1.912 | 3.945 |

only smaller than that in clinobarylite (138.5°) (Table 6). However, an examination of the clinobarylite structure (Krivovichev et al. 2004) reveals a peculiar feature: the Si-O<sub>br</sub> (bridging O atom) distance (1.597 Å) is significantly shorter than the Si-O<sub>nbr</sub> (non-bridging O atoms) distances (1.619–1.631 Å). This contradicts the previous observations for disilicate compounds (e.g., Lin et al. 1999; Fleet and Liu 2001; Kolitsch et al. 2009), including all other compounds in the BaM<sub>2</sub><sup>2+</sup>Si<sub>2</sub>O<sub>7</sub> group. Our redetermination of the clinobarylite structure with a crystal from the type locality (Khibiny Massif, Kola Peninsula, Rassia) confirmed its true space group  $Pmn2_1$  ( $R_1 = 0.011$  and  $R_w = 0.026$ ), as that reported by Krivovichev et al. (2004), but yielded the Si-O<sub>br</sub> length of 1.657(1) Å and the Si-O-Si angle of 128.82(8)° (Di Domizio et al. 2012). Regardless, the Si-O-Si angles for the compounds in the BaM2+Si2O7 group are among the smallest of disilicate materials, which generally exhibit Si-O-Si angles ranging from 120 to 180° (Lin et al. 1999; Fleet and Liu 2001; Kolitsch et al. 2009 and references therein).

There is a strong resemblance in the structural topology among the BaM2+Si2O7 compounds, despite their diverse structural symmetries (Table 6): they are all composed of cornershared MO<sub>4</sub> tetrahedral chains that are interlinked by Si<sub>2</sub>O<sub>7</sub> tetrahedral dimers and Ba<sup>2+</sup> cations. The major differences among these compounds consist in the relative arrangements of  $Ba^{2+}$  and  $Si_2O_7$  with respect to the MO<sub>4</sub> tetrahedral chains, thus giving rise to different coordination environments around Ba2+ and  $M^{2+}$ . For example, the  $Ba^{2+}$  cation is only coordinated by five O atoms in high-temperature Ccm21 BaZn2Si2O7, but seven in scottyite, and nine in barylite and clinobarylite. Moreover, there is only one type of symmetrically distinct MO<sub>4</sub> tetrahedra in scottyite, barylite, clinobarylite, and high-temperature  $Ccm2_1$  BaZn<sub>2</sub>Si<sub>2</sub>O<sub>7</sub>, but two in and rémeyerite, and three in C2/ccompounds in the BaM $^{2+}_2Si_2O_7$  group.

#### Raman spectra

The Raman spectrum of scottyite is plotted in Figure 4. along with the spectra of barylite and clinobarylite (R060620 and R060606, respectively, from the RRUFF Project) for comparison. Based on previous experimental and theoretical Raman spectroscopic studies on various disilicate compounds (e.g., Sharma et al. 1988; Fleet and Henderson 1997; Makreski et al. 2007; Kaminskii et al. 2011; Becker et al. 2012), we made

|                  | Chemical formula Space group                             |                   |                  | Unit-cell parameters |                 |                | Si-O-Si (°)        | Ba-coordination           | Reference  |
|------------------|----------------------------------------------------------|-------------------|------------------|----------------------|-----------------|----------------|--------------------|---------------------------|------------|
|                  |                                                          |                   | a (Å)            | b (Å)                | c (Å)           | β (°)          |                    |                           |            |
| Scottyite        | BaCu <sub>2</sub> Si <sub>2</sub> O <sub>7</sub>         | Pnma              | 6.8556           | 13.1725              | 6.8901          |                | 134.3              | 7                         | (1)        |
| Barylite         | BaBe <sub>2</sub> Si <sub>2</sub> O <sub>7</sub>         | Pnma              | 9.820            | 11.670               | 4.690           |                | 128.6              | 9                         | (2)        |
| Clinobarylite    | BaBe <sub>2</sub> Si <sub>2</sub> O <sub>7</sub>         | $Pmn2_1$          | 11.650           | 4.922                | 4.674           |                | 138.5              | 9                         | (3)        |
| Clinobarylite    | BaBe <sub>2</sub> Si <sub>2</sub> O <sub>7</sub>         | Pnm2 <sub>1</sub> | 4.9175           | 11.6491              | 4.6746          |                | 128.8              | 9                         | (9)        |
| Andremeyerite    | BaFe <sub>2</sub> Si <sub>2</sub> O <sub>7</sub>         | P21/c             | 7.488            | 13.785               | 7.085           | 118.23         | 127.2              | 7                         | (4)        |
| Synthetic        | BaCo <sub>2</sub> Si <sub>2</sub> O <sub>7</sub>         | C2/c              | 7.2131           | 12.781               | 13.762          | 90.299         | 124.5              | 8                         | (5)        |
| Synthetic        | BaMg <sub>2</sub> Si <sub>2</sub> O <sub>7</sub>         | C2/c              | 7.2455           | 12.7138              | 13.7481         | 90.211         | 125.2              | 7                         | (6)        |
| Synthetic        | BaMn <sub>2</sub> Si <sub>2</sub> O <sub>7</sub>         | C2/c              | 7.2953           | 12.9632              | 14.0321         | 90.248         | no data            |                           | (7)        |
| Synthetic        | BaZn <sub>2</sub> Si <sub>2</sub> O <sub>7</sub> -25°C   | C2/c              | 7.2782           | 12.8009              | 13.6869         | 90.093         | 124.8              | 8                         | (8)        |
| Synthetic        | BaZn <sub>2</sub> Si <sub>2</sub> O <sub>7</sub> -280 °C | Ccm2 <sub>1</sub> | 7.6199           | 13.0265              | 6.7374          |                | 131.7              | 5                         | (8)        |
| Notes. The a and | havis for clinobaryli                                    | te were switche   | d in our structu | ire refinement       | to facilitate a | direct compari | son with the unit- | cell setting for barylite | References |

 TABLE 6. Comparison of crystallographic data for BaM2Si2O7-type minerals and compounds

Notes: The *a* and *b* axis for clinobarylite were switched in our structure refinement to facilitate a direct comparison with the unit-cell setting for barylite. References: (1) This work; (2) Robinson and Fang (1977); (3) Krivovichev et al. (2004); (4) Cannillo et al. (1988); (5) Adams and Layland (1996); (6) Park and Choi (2009); (7) Lu et al. (2000); (8) Lin et al. (1999); (9) Di Domizio et al. (2012).

a tentative assignment of major Raman bands for scottyite (Table 7). Evidently, the Raman spectra of scottyite, barylite, and clinobarylite are quite similar. In general, they can be divided into four regions. Region 1, between 800 and 1100 cm<sup>-1</sup>, contains bands attributable to the Si-O symmetric and antisymmetric stretching vibrations ( $v_1$  and  $v_3$  modes) within the SiO<sub>4</sub> tetrahedra. Region 2, between 660 and 700 cm<sup>-1</sup>, includes bands resulting from the Si-O<sub>br</sub>-Si bending vibrations within the Si<sub>2</sub>O<sub>7</sub> tetrahedral dimers. Major bands in region 3, ranging from 420 to 660 cm<sup>-1</sup>, are ascribed to the O-Si-O symmetric and anti-symmetric bending vibrations ( $v_2$  and  $v_4$  modes) within the SiO<sub>4</sub> tetrahedra. The bands in region 4, below 420 cm<sup>-1</sup>, are mainly associated with the rotational and translational modes of SiO<sub>4</sub> tetrahedra, as well as the Cu-O interactions and lattice vibrational modes.

One of the noticeable features in Figure 4 is that the wavenumbers of the bands due to the  $Si-O_{br}-Si$  bending mode for barylite and clinobarylite are nearly identical (~685 cm<sup>-1</sup>), indicating that the Si-O<sub>br</sub> bond lengths and the Si-O<sub>br</sub>-Si angles in these two minerals are comparable. This is indeed the case. The Si-O<sub>br</sub> distance and the Si-O<sub>br</sub>-Si angle are 1.657 Å and 128.59°, respectively, in barylite (Robinson and Fang 1977), and 1.657 Å and 128.82° in clinobarylite (Di Domizio et al. 2012). For scottyite, the corresponding band occurs at a wavenumber (674 cm<sup>-1</sup>) smaller than that for barylite or clinobarylite. This shift is mostly related to the larger Si-O<sub>br</sub>-Si angle in scottyite, as the Si-O<sub>br</sub> bond length in scottyite is identical to that in barylite or clinobarylite. A similar correlation between the positions of the bands stemming from the Si-O<sub>br</sub>-Si bending vibrations and the Si-O<sub>br</sub>-Si angles has also been observed in chain silicates with the same or similar structures (Huang et al. 2000 and references therein).

# Ba-Sr distribution between scottyite and wesselsite

As shown in Figure 2, scottyite is intimately associated with wesselsite and lavinskyite. The chemical composition



FIGURE 4. Raman spectra of scottyite, barylite, and clinobarylite. The spectra are shown with vertical offset for more clarity.

TABLE 7. Tentative assignments of major Raman bands for scottyite

|                           | , , , , , , , , , , , , , , , , , , , | .,,,                                                         |
|---------------------------|---------------------------------------|--------------------------------------------------------------|
| Bands (cm <sup>-1</sup> ) | Intensity                             | Assignment                                                   |
| 1019, 958, 866            | Relatively weak                       | v <sub>3</sub> (SiO <sub>4</sub> ) anti-symmetric stretching |
| 896                       | Strong, sharp                         | v <sub>1</sub> (SiO <sub>4</sub> ) symmetric stretching      |
| 675                       | Strong, sharp                         | Si-O-Si bending                                              |
| 612, 578, 560             | Relatively strong, sharp              | v <sub>4</sub> (SiO <sub>4</sub> ) anti-symmetric bending    |
| 459                       | Very strong, sharp                    | v <sub>2</sub> (SiO <sub>4</sub> ) symmetric bending         |
| <420                      | Strong to weak                        | SiO <sub>4</sub> rotational modes, lattice vibra-            |
|                           |                                       | tional modes, and Cu-O interactions                          |

of wesselsite in our sample, determined under the same experimental conditions as those for scottyite, is  $(Sr_{0.98}Ba_{0.04})_{\Sigma=1.02}$ Cu<sub>1.05</sub>Si<sub>3.97</sub>O<sub>10</sub> (the average of 10 analysis points). Wesselsite is isostructural with effenbergerite (BaCuSi<sub>4</sub>O<sub>10</sub>) (Chakoumakos et al. 1993; Giester and Rieck 1994, 1996), and a complete solid solution between them, (Sr,Ba)CuSi<sub>4</sub>O<sub>10</sub>, has been observed experimentally (Knight et al. 2010). Very intriguingly, while wesselsite in our sample contains little Ba, scottyite contains essentially no Sr. Thus far, no compound with the composition SrCu<sub>2</sub>Si<sub>2</sub>O<sub>7</sub> has been reported. In fact, there is no documentation for any  $SrM_2Si_2O_7$  compounds. It then begs the question whether scottyite in particular and the BaM<sub>2</sub>Si<sub>2</sub>O<sub>7</sub> compounds in general are capable of accommodating a significant amount of smaller Sr<sup>2+</sup>. [The radii of Ba<sup>2+</sup> and Sr<sup>2+</sup> in eightfold coordination are 1.42 and 1.26 Å, respectively (Shannon 1976).] As described above, the Ba2+ cations in the BaM2Si2O7 compounds are situated in the cavities in the framework formed by the Si<sub>2</sub>O<sub>7</sub> dimers and the MO<sub>4</sub> tetrahedral chains. Conceivably, any substantial replacement of large Ba2+ by smaller Sr2+ would require, in addition to the other structural adjustments (such as the tilting or distortion of MO<sub>4</sub> and/or SiO<sub>4</sub> tetrahedra), further narrowing of the Si-O-Si angles in the Si<sub>2</sub>O<sub>7</sub> dimers to better satisfy the bonding environment for Sr2+. This, however, would not be energetically favorable, because the Si-O-Si angles in the BaM<sub>2</sub>Si<sub>2</sub>O<sub>7</sub> compounds are already among the smallest of disilicate materials. For scottyite, the Ba2+ cation is appreciably underbonded (Table 5), suggesting that the current framework is unable to provide it with a tighter bond environment through additional distortion. Accordingly, any sizable substitution of Sr<sup>2+</sup> for Ba<sup>2+</sup> would worsen the bonding energetics for this site and thus destabilize the entire structure. Nevertheless, we cannot rule out the possible existence of SrM<sub>2</sub>Si<sub>2</sub>O<sub>7</sub> compounds at different conditions, such as under high pressures.

### **ACKNOWLEDGMENTS**

This study was funded by the Science Foundation Arizona.

#### **REFERENCES CITED**

- Adams, R.D. and Layland, R. (1996) Syntheses, structural analyses, and unusual magnetic properties of Ba<sub>2</sub>CoSi<sub>2</sub>O<sub>7</sub> and BaCo<sub>2</sub>Si<sub>2</sub>O<sub>7</sub>. Inorganic Chemistry, 35, 3492–3497.
- Barry, T.L. (1970) Luminescent properties of Eu<sup>2+</sup> and Eu<sup>2+</sup> + Mn<sup>2+</sup> activated BaMg<sub>2</sub>Si<sub>2</sub>O<sub>7</sub>. Journal of Electrochemical Society, 117, 381–385.
- Becker, P. Libowitzky, E., Bohaty, L., Liebertz, J., Rhee, H., Eichler, H.-J., and Kaminskii, A.A. (2012) Temperature-dependent thermo-mechanical and Raman spectroscopy study of the SRS-active melilite-type crystal Ca<sub>2</sub>ZnSi<sub>2</sub>O<sub>7</sub> (hardystonite) at its incommensurate-commensurate phase transition. Physica status solidi (a), 209, 327–334.
- Bertaina, S. and Hayn, R. (2006) Exchange integrals and magnetization distribution in BaCu<sub>2</sub>X<sub>2</sub>O<sub>7</sub> (X=Ge,Si). Physical Review B, 73, 212409.
- Blass, G., Graf, H.-W., Kolitsch, U., and Sebold, D. (2009) The new finds from the volcanic Eifel (II). Mineralien-Welt, 20, 38–49 (in German).
- Blass, G., Schüller, E., and Schüller, W. (2011) "Unglaubliche" Kupfermine-

ralien aus der Vulkaneifel: Auf'm Kopp bei Neroth, Lapis, 22, 21–28, 90 (in German).

- Brese, N.E. and O'Keeffe, M. (1991) Bond-valence parameters for solids. Acta Crystallographica, B47, 192–197.
- Cannillo, E., Mazzi, F., and Rossi, G. (1988) Crystal structure of andremeyerite, BaFe(Fe,Mn,Mg)Si<sub>2</sub>O<sub>7</sub>. American Mineralogist, 73, 608–612.
- Chakoumakos, B.C., Fernandez-Baca, J.A., and Boatner, L.A. (1993) Refinement of the structures of the layer silicates MCuSi<sub>4</sub>O<sub>10</sub> (M=Ca,Sr,Ba) by Rietveld analysis of neutron powder diffraction data. Journal of Solid State Chemistry, 103, 105–113.
- Di Domizio, A.J., Downs, R.T., and Yang, H. (2012) Redetermination of clinobarylite, BaBe<sub>2</sub>Si<sub>2</sub>O<sub>7</sub>. Acta Crystallographica, E68, i78–i79.
- Downs, R.T., Bartelmehs, K.L., Gibbs, G.V., and Boisen, M.B. Jr. (1993) Interactive software for calculating and displaying X-ray or neutron powder diffractometer patterns of crystalline materials. American Mineralogist, 78, 1104–1107.
- Finger, L.W., Hazen, R.M., and Hemley, R.J. (1989) BaCuSi<sub>2</sub>O<sub>6</sub>: a new cyclosilicate with four-membered tetrahedral rings. American Mineralogist, 74, 952–955.
- Fleet, M.E. and Henderson, G.S. (1997) Structure-composition relations and Raman spectroscopy of high-pressure sodium silicates. Physics and Chemistry of Minerals, 24, 234–355.
- Fleet, M.E. and Liu, X. (2001) High-pressure rare earth disilicates REE<sub>2</sub>Si<sub>2</sub>O<sub>7</sub> (REE = Nd, Sm, Eu, Gd): type K. Journal of Solid State Chemistry, 161, 166–172.
- Giester, G. and Rieck, B. (1994) Effenbergerite, BaCu[Si<sub>4</sub>O<sub>10</sub>], a new mineral from the Kalahari manganese field, South Africa: description and crystal structure. Mineralogical Magazine, 58, 663–670.
- (1996) Wesselsite, SrCu[Si<sub>4</sub>O<sub>10</sub>], a further new gillespite-group mineral from the Kalahari Manganese Field, South Africa. Mineralogical Magazine, 60, 795–798.
- Gutzmer, J. and Beukes, N.J. (1996) Mineral paragenesis of the Kalahari manganese field, South Africa. Ore Geology Reviews, 11, 405–428.
- Hentschel, G. (1993) Die Lavaströme der Graulai: eine neue Fundstelle in der Westeifel. Lapis, 12 (9), 11–23 (in German).
- Huang, E., Chen, C.H., Huang, T., Lin, E.H., and Xu, J.-A. (2000) Raman spectroscopic characteristics of Mg-Fe-Ca pyroxenes. American Mineralogist, 85, 473–479.
- Janczak, J., Kubiak, R., and Glowiak, T. (1990) Structure of barium copper pyrosilicate at 300 K. Acta Crystallographica, C46, 1383–1385.
- Kaminskii, A.A., Rhee, H., Lux, O., Eichler, H.J., Bohaty, L., Becker, P., Liebertz, J., Ueda, K., Shirakawa, A., Voltashev, V.V., Januza, J., Dong, J., and Stavrovskii, D.B. (2011) Many-phonon stimulated Raman scattering and related cascaded and cross-cascaded \chi<sup>(3)</sup>-nonlinear optical effects in melilite-type crystal Ca<sub>2</sub>ZnSi<sub>2</sub>O<sub>7</sub>. Laser Physics Letters, 8, 859–874.
- Kleyenstuber, A.S.E. (1984) The mineralogy of the manganese-bearing Hotazel Formation, of the Proterozoic Transvaal Sequence in Griqualand West, South Africa. South African Journal of Geology, 87, 257–272.
- Knight, K.S., Henderson, C.M.B., and Clark, S.M. (2010) Structural variations in the wesselsite-effenbergerite (Sr<sub>1-x</sub>Ba<sub>x</sub>CuSi<sub>4</sub>O<sub>10</sub>) solid solution. European Journal of Mineralogy, 22, 411–423.
- Kolitsch, U., Wierzbicka-Wieczorek, M., and Tillmanns, E. (2009) Crystal chemistry and topology of two flux-grown yttrium silicates, BaKYSi<sub>2</sub>O<sub>7</sub> and Cs<sub>3</sub>YSi<sub>8</sub>O<sub>19</sub>. Canadian Mineralogist, 47, 421–431.
- Krivovichev, S.V., Yakovenchuk, V.N., Armbuster, T., Mikhailova, Y., Pakhomovsky, Y.A. (2004) Clinobarylite, BaBe<sub>2</sub>Si<sub>2</sub>O<sub>7</sub>: structure refinement and revision of symmetry and physical properties. Neues Jahrbuch für Mineralogie Monatshefte, 2004, 373–384.
- Lin, J.H., Lu, G.X., Du, J., Su, M.Z., Loong, C.-K., and Richardson, J.W. Jr. (1999) Phase transition and crystal structures of BaZn<sub>2</sub>Si<sub>2</sub>O<sub>7</sub>. Journal of Physics and Chemistry of Solids, 60, 975–983.
- Lu, G.X., Yang, L.Q., and Lin, J.H. (2000) One-dimensional magnetic interaction in BaMn<sub>2</sub>Si<sub>2</sub>O<sub>7</sub>. Solid State Communications, 114, 113–116.
- Makreski, P., Jovanovski, G., Kaitner, B., Gajovic, A., and Biljan, T. (2007) Minerals from Macedonia XVII. Vibrational spectra of some sorosilicates. Vibrational Spectroscopy, 44, 162–170.
- Ohta, H., Okubo, S., Inagaki, Y., Hiroi, Z., Kikuchi, H. (2004a) Recent high field ESR studies of low-dimensional quantum spin systems in Kobe. Physica B, 346–347, 38–44.
- Ohta, H., Okubo, S., Fukuoka, D., Inagaki, Y., Kunimoto, T., Kimata, M., Koyama, K., Motokawa, M., Hiroi, Z. (2004b) Breather excitation observed by high-field ESR in one-dimensional antiferromagnet BaCu<sub>2</sub>(Si<sub>1-x</sub>Ge<sub>x</sub>)<sub>2</sub>O<sub>7</sub> (x=0.65). Journal of Magnetism and Magnetic Materials, 272–276, 929–930.
- Oliveira, J.A.S. (1993) Crystal-chemical investigations in the systems CuO-BaO-SiO<sub>2</sub>-GeO<sub>2</sub> and BaO-Rh<sub>2</sub>O<sub>3</sub>. Heidelberger Geowissenschaftliche Abhandlungen, 63, 1–185.
- Park, C.-H. and Choi, Y.-N. (2009) Crystal structure of BaMg<sub>2</sub>Si<sub>2</sub>O<sub>7</sub> and Eu<sup>2+</sup> luminescence. Journal of Solid State Chemistry, 182, 1884–1888.
- Robinson, P.D. and Fang, J.H. (1977) Barylite, BaBe<sub>2</sub>Si<sub>2</sub>O<sub>7</sub>: its space group and

crystal structure. American Mineralogist, 62, 167-169.

- Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica, A32, 751–767.
- Sharma, S.K., Yoder, H.S. Jr., and Matson, D.W. (1988) Raman study of some melilites in crystalline and glassy states. Geochemica et Cosmochemica Acta, 52, 1961–1967.
- Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica, A64, 112–122.
- Sparta, K.M. and Roth, G. (2004) Reinvestigation of the structure of BaCuSi<sub>2</sub>O<sub>6</sub> —evidence for a phase transition at high temperature. Acta Crystallographica, B60, 491–495.
- Von Bezing, K.L., Dixon, R.D., Pohl, D., and Cavallo, G. (1991) The Kalahari Manganese Field, an update. Mineralogical Record, 22, 279–297.
- Yamada, T., Hiroi, Z., and Takano, M. (2001a) Spin-1/2 quantum antiferromagnetic chains with tunable superexchange interactions found in BaCu<sub>2</sub>(Si<sub>1-x</sub> Ge<sub>x</sub>)<sub>2</sub>O<sub>7</sub>. Journal of Solid State Chemistry, 156, 101–109.

- Yamada, T., Takano, M., and Hiroi, Z. (2001b) Spin-1/2 quantum antiferromagnetic chains with adjustable superexchange interactions found in BaCu<sub>2</sub>(Si<sub>1-x</sub> Ge<sub>x</sub>)<sub>2</sub>O<sub>7</sub>. Journal of Alloys and Compounds, 317–318, 171–176.
- Yao, G.Q., Lin, J.H., Zhang, L., Lu, G.X., Gong, M.L., and Su, M.Z. (1998) Luminescent properties of BaMg<sub>2</sub>Si<sub>2</sub>O<sub>7</sub>:Eu<sup>2+</sup>, Mn<sup>2+</sup>. Journal of Materials Chemistry, 8, 585–588.
- Zheludev, A., Masuda, T., Dhalenne, G., Revcolevschi, A., Frost, C., and Perring, T. (2007) Scaling of dynamic spin correlations in BaCu<sub>2</sub>(Si<sub>0.5</sub>Ge<sub>0.5</sub>)<sub>2</sub>O<sub>7</sub>. Physical Review B, 75, 054409.
- Zvyagin, A.A. (2006) Effect of doping on the magnetic ordering of quasi-one dimensional antiferromagnets. Low Temperature Physics, 32, 158–161.

MANUSCRIPT RECEIVED AUGUST 18, 2012

- MANUSCRIPT ACCEPTED OCTOBER 7, 2012
- MANUSCRIPT HANDLED BY FERNANDO COLOMBO

data scott audit creation method SHELXL-97 \_chemical\_name\_systematic ; ? ; \_chemical\_name common ? \_chemical\_melting\_point ? \_chemical\_formula\_moiety ? \_chemical\_formula\_sum 'Ba Cu2 07 Si2' \_chemical\_formula\_weight 432.60 loop \_atom\_type\_symbol \_atom\_type\_description atom type scat dispersion real \_atom\_type\_scat\_dispersion\_imag atom\_type\_scat\_source 'O' 'O' 0.0106 0.0060 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'Si' 'Si' 0.0817 0.0704 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'Cu' 'Cu' 0.3201 1.2651 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'Ba' 'Ba' -0.3244 2.2819 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' \_symmetry\_cell\_setting ? \_symmetry\_space\_group\_name\_H-M ? loop \_symmetry\_equiv\_pos\_as\_xyz 'x, y, z' '-x+1/2, -y, z+1/2''-x, y+1/2, -z' 'x+1/2, -y+1/2, -z+1/2' '-x, -y, -z' 'x-1/2, y, -z-1/2''x, -y-1/2, z' '-x-1/2, y-1/2, z-1/2' \_cell\_length\_a 6.8556(2)cell length b 13.1725(4)\_cell\_length\_c 6.8901(2)\_cell\_angle\_alpha 90.00 90.00 \_cell\_angle\_beta \_cell\_angle gamma 90.00 \_cell\_volume 622.21(3) \_cell\_formula\_units\_Z 4 \_cell\_measurement\_temperature 293(2) \_cell\_measurement\_reflns\_used ? \_cell\_measurement\_theta\_min ?

```
_cell_measurement_theta max
                                   ?
exptl crystal description
                                   ?
_exptl_crystal colour
                                   ?
_exptl_crystal_size_max
                                   ?
_exptl_crystal_size mid
                                   ?
_exptl_crystal_size_min
                                   ?
_exptl_crystal_density_meas
                                   ?
exptl crystal density diffrn
                                   4.618
exptl crystal density method
                                   'not measured'
exptl crystal F 000
                                   792
_exptl_absorpt_coefficient_mu
                                   13.409
_exptl_absorpt_correction_type
                                   ?
_exptl_absorpt_correction T min
                                   ?
_exptl_absorpt_correction_T_max
                                   ?
                                   ?
_exptl_absorpt_process_details
_exptl_special_details
;
?
;
_diffrn_ambient_temperature
                                   293(2)
diffrn radiation wavelength
                                   0.71073
_diffrn_radiation_type
                                   MoK\a
diffrn radiation source
                                    'fine-focus sealed tube'
diffrn_radiation_monochromator
                                   graphite
_diffrn_measurement_device_type
                                   ?
                                   ?
diffrn measurement method
diffrn detector area resol mean
                                   ?
diffrn standards number
                                   ?
_diffrn_standards_interval_count
                                   ?
_diffrn_standards_interval_time
                                   ?
_diffrn_standards_decay_%
                                   ?
diffrn reflns number
                                   4887
diffrn_reflns_av_R_equivalents
                                   0.0232
diffrn reflns av sigmaI/netI
                                   0.0196
_diffrn_reflns_limit_h_min
                                   -10
_diffrn_reflns_limit_h_max
                                   8
diffrn reflns limit k min
                                   -19
diffrn reflns limit k max
                                   19
_diffrn_reflns_limit_l_min
                                   -10
_diffrn_reflns_limit_l_max
                                   7
_diffrn_reflns_theta_min
                                   3.09
_diffrn_reflns_theta_max
                                   32.56
reflns number total
                                   1180
_reflns_number gt
                                   1065
_reflns_threshold_expression
                                   >2sigma(I)
_computing_data_collection
                                   ?
_computing_cell_refinement
                                   ?
_computing_data_reduction
                                   ?
_computing_structure_solution
                                   'SHELXS-97 (Sheldrick, 1990)'
_computing_structure refinement
                                   'SHELXL-97 (Sheldrick, 1997)'
_computing_molecular_graphics
                                   ?
```

refine special details ; Refinement of F^2<sup>^</sup> against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of  $F^2 > 2sigma(F^2)$  is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on  $F^2$  are statistically about twice as large as those based on F, and Rfactors based on ALL data will be even larger. ; refine 1s structure factor coef Fsqd refine ls matrix type full \_refine\_ls\_weighting\_scheme calc \_refine\_ls\_weighting\_details 'calc w=1/[\s^2^(Fo^2^)+(0.0212P)^2^+0.0000P] where P=(Fo^2^+2Fc^2^)/3' atom sites solution primary direct atom sites solution secondary difmap \_atom\_sites\_solution\_hydrogens geom \_refine\_ls\_hydrogen\_treatment mixed \_refine\_ls\_extinction method none refine 1s extinction coef ? \_refine\_ls\_number\_reflns 1180 \_refine\_ls\_number\_parameters 58 \_refine\_ls\_number restraints 0 \_refine\_ls\_R\_factor all 0.0206 0.0174 refine ls R factor gt refine ls wR factor ref 0.0407 refine ls wR factor gt 0.0398 \_refine\_ls\_goodness\_of\_fit\_ref 1.074 \_refine\_ls\_restrained\_S\_all 1.074 \_refine\_ls\_shift/su\_max 0.000 refine ls shift/su mean 0.000 loop \_atom\_site\_label atom site type symbol \_atom\_site fract x atom site fract y \_atom\_site\_fract\_z \_atom\_site\_U\_iso\_or\_equiv \_atom\_site\_adp\_type \_atom\_site\_occupancy atom site symetry multiplicity \_atom\_site\_calc\_flag \_atom\_site\_refinement\_flags \_atom\_site\_disorder\_assembly atom site disorder group Ba Ba 0.01303(2) 0.2500 0.45688(3) 0.00971(5) Uani 1 2 d S . .

?

computing publication material

```
Ba Ba 0.01303(2) 0.2500 0.45688(3) 0.00971(5) Uani 1 2 d S . .
Cu Cu 0.27762(4) 0.004172(18) 0.20631(4) 0.00714(6) Uani 1 1 d . . .
Si Si 0.49765(7) 0.13406(5) 0.52716(8) 0.00567(11) Uani 1 1 d . . .
O1 0 0.4044(3) 0.2500 0.5167(3) 0.0087(4) Uani 1 2 d S . .
O2 0 0.1725(2) 0.13369(11) 0.1306(2) 0.0104(3) Uani 1 1 d . . .
```

```
O3 O 0.5590(2) 0.11214(12) 0.7486(2) 0.0111(3) Uani 1 1 d . . .
04 0 0.3173(2) 0.05957(12) 0.4658(2) 0.0078(3) Uani 1 1 d . . .
loop
 _atom_site_aniso_label
 _atom_site_aniso U 11
 _atom_site_aniso_U_22
 _atom_site_aniso_U_33
 atom site aniso U 23
 atom site aniso U 13
 atom site aniso U 12
Ba 0.00886(8) 0.01080(9) 0.00946(9) 0.000 -0.00075(6) 0.000
Cu 0.00894(11) 0.00574(11) 0.00675(12) -0.00084(9) -0.00225(8) 0.00142(8)
Si 0.0066(2) 0.0047(2) 0.0057(2) -0.00003(19) 0.00040(19) 0.00039(17)
01 0.0084(9) 0.0057(9) 0.0120(10) 0.000 -0.0004(8) 0.000
02 \ 0.0121(6) \ 0.0068(7) \ 0.0122(7) \ -0.0003(6) \ -0.0053(6) \ 0.0022(5)
03 \ 0.0152(7) \ 0.0098(7) \ 0.0083(7) \ -0.0017(6) \ -0.0031(6) \ 0.0048(5)
04 0.0105(6) 0.0076(7) 0.0053(6) -0.0010(5) 0.0007(5) -0.0022(5)
_geom_special_details
 All esds (except the esd in the dihedral angle between two l.s. planes)
 are estimated using the full covariance matrix. The cell esds are taken
 into account individually in the estimation of esds in distances, angles
 and torsion angles; correlations between esds in cell parameters are only
 used when they are defined by crystal symmetry. An approximate (isotropic)
 treatment of cell esds is used for estimating esds involving l.s. planes.
;
loop
 geom_bond_atom_site_label_1
 _geom_bond_atom_site_label 2
 _geom_bond_distance
 _geom_bond_site_symmetry_2
 geom bond publ flag
Ba 01 2.715(2) . ?
Ba O3 2.7413(16) 4 456 ?
Ba O3 2.7413(15) 6_557 ?
Ba O2 2.8569(15) 6 556 ?
Ba 02 2.8569(15) 4 455 ?
Ba O2 2.9320(16) . ?
Ba O2 2.9320(16) 7 565 ?
Ba O4 3.2629(15) 7_565 ?
Ba O4 3.2629(15) . ?
Ba Si 3.6696(6) 6 556 ?
Ba Si 3.6696(6) 4 455 ?
Ba Si 3.6885(6) 7 565 ?
Cu O3 1.9231(15) 5_656 ?
Cu O2 1.9243(15) . ?
Cu 04 1.9502(15) . ?
```

Cu O4 1.9682(15) 2\_554 ? Cu Si 2.8983(6) 2\_554 ? Cu Ba 3.7888(3) 6\_656 ?

```
Si O3 1.6089(17) . ?
Si O2 1.6178(16) 6 656 ?
```

```
Si O4 1.6342(16) . ?
Si 01 1.6572(10) . ?
Si Cu 2.8983(6) 2 ?
Si Ba 3.6696(6) 6 656 ?
O1 Si 1.6572(10) 7_565 ?
O2 Si 1.6178(16) 6 556 ?
O2 Ba 2.8569(15) 6_656 ?
O3 Cu 1.9231(15) 5_656 ?
O3 Ba 2.7413(15) 6 657 ?
O4 Cu 1.9682(15) 2 ?
loop
 _geom_angle_atom_site_label_1
 geom angle atom site label 2
 _geom_angle_atom_site_label_3
 _geom_angle
 _geom_angle_site_symmetry_1
 _geom_angle_site_symmetry 3
 geom angle publ flag
O1 Ba O3 76.93(5) . 4 456 ?
O1 Ba O3 76.93(5) . 6_557 ?
O3 Ba O3 82.97(7) 4 456 6 557 ?
O1 Ba O2 147.12(3) . 6_556 ?
O3 Ba O2 127.25(4) 4 456 6 556 ?
O3 Ba O2 83.97(5) 6_557 6_556 ?
O1 Ba O2 147.12(3) . 4 455 ?
O3 Ba O2 83.97(5) 4_456 4_455 ?
O3 Ba O2 127.25(4) 6 557 4 455 ?
O2 Ba O2 64.86(6) 6_556 4_455 ?
O1 Ba O2 75.41(5) . . ?
O3 Ba O2 150.56(4) 4 456 . ?
O3 Ba O2 100.29(4) 6 557 . ?
O2 Ba O2 82.11(4) 6_556 . ?
O2 Ba O2 115.03(3) 4_455 . ?
O1 Ba O2 75.41(5) . 7 565 ?
O3 Ba O2 100.29(4) 4_456 7_565 ?
O3 Ba O2 150.56(4) 6 557 7 565 ?
O2 Ba O2 115.03(3) 6_556 7_565 ?
O2 Ba O2 82.11(4) 4 455 7 565 ?
O2 Ba O2 63.00(6) . 7 565 ?
O1 Ba O4 50.60(3) . 7 565 ?
O3 Ba O4 53.36(4) 4 456 7 565 ?
O3 Ba O4 114.95(4) 6_557 7_565 ?
O2 Ba O4 159.83(4) 6_556 7_565 ?
O2 Ba O4 96.55(4) 4_455 7_565 ?
O2 Ba O4 100.25(4) . 7 565 ?
O2 Ba O4 51.28(4) 7_565 7_565 ?
O1 Ba O4 50.60(3) . . ?
O3 Ba O4 114.95(4) 4 456 . ?
O3 Ba O4 53.36(4) 6 557 . ?
O2 Ba O4 96.55(4) 6_556 . ?
O2 Ba O4 159.83(4) 4_455 . ?
O2 Ba O4 51.28(4) . . ?
O2 Ba O4 100.25(4) 7 565 . ?
O4 Ba O4 100.49(5) 7_565 . ?
```

```
O1 Ba Si 99.58(4) . 6_556 ?
O3 Ba Si 162.13(3) 4_456 6_556 ?
O3 Ba Si 113.60(3) 6_557 6_556 ?
O2 Ba Si 64.00(3) 6 556 6 556 ?
O2 Ba Si 90.46(3) 4_455 6_556 ?
O2 Ba Si 25.36(3) . 6 556 ?
O2 Ba Si 62.05(3) 7_565 6_556 ?
O4 Ba Si 110.82(3) 7_565 6 556 ?
O4 Ba Si 73.47(3) . 6 556 ?
O1 Ba Si 99.58(4) . 4 455 ?
O3 Ba Si 113.60(3) 4 456 4 455 ?
O3 Ba Si 162.13(3) 6 557 4 455 ?
O2 Ba Si 90.46(3) 6 556 4 455 ?
O2 Ba Si 64.00(3) 4 455 4 455 ?
O2 Ba Si 62.05(3) . 4 455 ?
O2 Ba Si 25.36(3) 7_565 4_455 ?
O4 Ba Si 73.47(3) 7_565 4_455 ?
O4 Ba Si 110.82(3) . 4_455 ?
Si Ba Si 49.189(19) 6 556 4 455 ?
O1 Ba Si 24.464(9) . 7_565 ?
O3 Ba Si 61.64(3) 4 456 7 565 ?
O3 Ba Si 94.22(4) 6 557 7 565 ?
O2 Ba Si 170.36(3) 6_556 7_565 ?
O2 Ba Si 122.81(3) 4 455 7 565 ?
O2 Ba Si 88.93(3) . 7 565 ?
O2 Ba Si 63.16(3) 7_565 7_565 ?
O4 Ba Si 26.29(3) 7_565 7_565 ?
O4 Ba Si 74.94(3) . 7 565 ?
Si Ba Si 108.514(14) 6_556 7_565 ?
Si Ba Si 88.445(14) 4_455 7_565 ?
O3 Cu O2 165.55(7) 5 656 . ?
O3 Cu O4 93.95(7) 5_656 . ?
O2 Cu O4 88.23(6) . . ?
O3 Cu O4 89.34(6) 5_656 2_554 ?
O2 Cu O4 91.49(6) . 2 554 ?
O4 Cu O4 167.84(3) . 2_554 ?
O3 Cu Si 86.99(5) 5_656 2_554 ?
O2 Cu Si 101.39(5) . 2_554 ?
O4 Cu Si 135.75(5) . 2 554 ?
O4 Cu Si 32.68(4) 2 554 2 554 ?
O3 Cu Ba 118.74(5) 5 656 6 656 ?
O2 Cu Ba 47.26(5) . 6_656 ?
O4 Cu Ba 83.85(4) . 6_656 ?
O4 Cu Ba 104.80(4) 2 554 6 656 ?
Si Cu Ba 133.463(15) 2_554 6_656 ?
O3 Si O2 116.29(8) . 6_656 ?
O3 Si O4 109.60(9) . . ?
O2 Si O4 112.65(8) 6 656 . ?
O3 Si O1 107.90(10) . . ?
O2 Si O1 105.03(9) 6 656 . ?
O4 Si O1 104.49(9) . . ?
O3 Si Cu 69.74(6) . 2 ?
O2 Si Cu 140.05(6) 6_656 2 ?
O4 Si Cu 40.56(5) . 2 ?
O1 Si Cu 110.26(7) . 2 ?
```

```
O3 Si Ba 158.29(6) . 6_656 ?
O2 Si Ba 50.91(6) 6_656 6_656 ?
O4 Si Ba 92.10(6) . 6_656 ?
O1 Si Ba 65.67(8) . 6 656 ?
Cu Si Ba 131.855(18) 2 6_656 ?
O3 Si Ba 115.74(6) . . ?
O2 Si Ba 125.47(6) 6_656 . ?
O4 Si Ba 62.16(6) . . ?
01 Si Ba 42.72(7) . . ?
Cu Si Ba 74.310(12) 2 . ?
Ba Si Ba 74.588(11) 6 656 . ?
Si O1 Si 134.32(13) 7_565 . ?
Si O1 Ba 112.82(7) 7_565 . ?
Si O1 Ba 112.82(7) . . ?
Si O2 Cu 117.54(9) 6_556 . ?
Si O2 Ba 117.53(8) 6_556 6_656 ?
Cu O2 Ba 103.09(6) . 6_656 ?
Si O2 Ba 103.74(7) 6_556 . ?
Cu O2 Ba 113.26(7) . . ?
Ba O2 Ba 100.73(5) 6 656 . ?
Si O3 Cu 116.64(9) . 5_656 ?
Si O3 Ba 123.58(8) . 6 657 ?
Cu O3 Ba 118.37(7) 5_656 6_657 ?
Si O4 Cu 124.56(9) . . ?
Si O4 Cu 106.77(8) . 2 ?
Cu O4 Cu 124.49(8) . 2 ?
Si O4 Ba 91.55(6) . . ?
Cu O4 Ba 100.44(6) . . ?
Cu O4 Ba 97.62(5) 2 . ?
_diffrn_measured_fraction_theta_max
                                        0.997
_diffrn_reflns_theta_full
                                        32.56
_diffrn_measured_fraction_theta_full
                                        0.997
_refine_diff_density_max
                            1.517
refine diff density min
                           -0.672
```

0.162

\_refine\_diff\_density\_rms