盈江铀矿的新资料

张静宜

万安娃

(核工业北京地质研究院,北京 100029)

(中国地质大学,武汉 430074)

业纪录地风所无忧,纪录 1000297

龚温书

(核工业华南地勘局 290 研究所, 韶关 512028)

主题词: 盈江铀矿 单晶 X 射线衍射分析 空间群

提 要:本文第一次提供了由单晶 X 射线衍射分析测定的盈江铀矿的空间群 和晶胞参数。 该矿物产于广东省下庄铀矿田。斜方 晶 系,空 间 群 Bmmb (63), a = 15.707(3), b = 17.424 (3), c = 13.692(2) Å, V = 3747 Å³, Z = 4。Dc = 4.60 g/cm³, Dm = 4.54 g/cm³。化学式: (K₂,Ca)(UO₂)₇(PO₄)₄(OH)₆·6 H₂O。二轴晶,负光性。2Vc = 36°, 2Vm = 36−38°。Ng = 1.707 (2), Nm = 1.703(2),Np = 1.6666(1)。光性方位: Ng // Y,Nm // X, Np // Z。

广东省翁源县下庄铀矿田330矿床氧化带发育一种鲜艳黄色的针状晶体,经详细的矿物 学工作后,证实它与不久前报道的新矿物——盈江铀矿(产于云南省盈江县一铀矿点)⁽¹⁾基 本相同,只在化学成分和 X 射线粉晶分析数据的一些细节上有些差异。由于晶体发育较 好,进行了单晶 X 射线研究和光学性质的测定。本文是通过直接测定,第一次提供了盈江 铀矿的空间群、光性方位和解理等方面的资料。

1 地质产状

盈江铀矿产于广东省贵东岩体东部下庄铀矿田 330 铀矿床氧化带。岩体内有几期以走 向 NWW 为主的基性岩墙,其后出现以走向 NNE 为主的含铀硅化断裂带。当硅化带切穿 岩墙时,铀矿化往往较富,甚至出现胶黄铁矿、块状晶质铀矿脉。矿床氧化带次生铀矿物 广泛发育,特别是在富矿体氧化带更为突出。盈江铀矿常集中在富矿体的氧化带内。共生 矿物主要有钙铀云母、铜铀云母、铁铀云母、变钾铀云母,其次有红铀矿、β硅钙铀矿、 硅铅铀矿、硅钾铀矿及少量铀矾,其它还有黄钾铁矾、石膏、高岭石、方解石和极少量铁 锰氢氧化物●。

2 形态、物理性质和光学性质

与云南产出的致密块状的盈江铀矿不同,本文所述盈江铀矿晶体发育良好,单体针状

 ● 共生矿物根据梁雁癸、杜同生(1964), 某热液矿床氧化带的初步研究, 核工业北京地质研究院科档室, 地 4-4-2 (未发表)。 或细长柱状,沿b轴伸长,一般长 2-3 mm,也有小于1 mm 或长达 4.5 mm的,直径小于1 mm,柱面上有平行延长方向的条纹。集合体呈束状、放射状。

颜色为深黄色或带褐的黄色。条痕桔黄色。强玻璃光泽。解理平行 {001} 完全,平行 {100} 中等。硬度 2-3。比重 4.54(3)g/cm³ (微比重管测定)。在荧光显 微 镜 下 (310-400 nm) 发绿黄色弱荧光,相对荧光强度为 7 %。

在差热曲线上(图1)300℃以前有一明显的吸热复谷,第一个谷很强,谷底温度 172℃,第二个谷弱,谷底温度223℃。在340-840℃有一宽而平缓的吸热过程。900℃和 960℃有两个很弱的吸热谷。热重曲线(图2)和差热曲线相符合,主要失重阶段在300℃ 以前,失重5.6%,失去大部分结晶水和结构水,以后继续失重,到970℃左右失重结束。 总失重量为6.64%,与化学分析的H₂O*6.44%接近。

在红外光谱图上(图3)1100—1000 cm⁻¹(强,ν₃)、600—500 cm⁻¹(中,ν₄)、 910 cm⁻¹(强,ν₁)、400 cm⁻¹ 左右(中,ν₂)皆为(PO₄)³⁻ 基团的振动谱带。铀酰离子 团(UO₂)²⁺ 的ν₃与(PO₄)³⁻ 的ν₁重叠。3430—3240 cm⁻¹(中,ν_s)、1620 cm⁻¹(弱,ν_b) 为H₂O 的吸收带。ν_s较宽,可能掩盖了(OH)⁻¹ 的吸收带。

图 3 盈江铀矿的红外吸收光谱 Fig. 3. Infrared absorption spectrum of ying jiangite

盈江铀矿在偏光显微镜下呈桔黄色,折光率及多色性为:Ng=1.707(2),鲜黄色; Nm=1.703(2),鲜黄色;Np=1.666,无色。二轴晶,负光性。 $2V=36^{\circ}-38^{\circ}$,光轴 色散很强, $r > \nu$ 。正延性。平行消光。光性方位:Ng || Y, Nm || X, Np || Z。

3 化学成分

盈江铀矿的微量化学分析结果及化学式计算列于表1。为了检查化学分析的准确性, 对样品作了电子探针分析,3个晶体6个测点的各主要组分的百分含量变化很小,主要组分的平均百分含量(表2)与化学分析数值接近。表2还列入了产于云南盈江县的盈江铀

组分	重盘百分比	修正后 重盘百分比	氧原子数	阳离子元素 原子数	O = 42 时 阳离子元素 原子比	U=4时 阳离子元索 原子比
Na ₂ O	0.15	0.15	0.0024	0.0048	0.1247	0.0711
K ₂ O	3.37	3.45	0.0366	0.0732	1.9018	1.0840
MgO	0.10 .					
CaO	2.00	2.05	0.0366	0.0366	0.9509	0.5420
МлО	0.03					
Fc ₂ O ₃	0.31				· .	
TiO₂	0.09					
SiO ₂	1.20					
P_2O_5	10.50	10.75	0.3785	0.1514	3.9334	2.2421
UO_3	75.42	77.26	0.8103	0.2701	7.0173	4.0000
H₂O⁺	6.19	6.34	0.3522	0.7044	18.3006	10.4317
H ₂ O ⁻	0.25					
共 计	99.61	100.00	1.6166			

表 1 盈江铀矿的化学分析数据(%) Table 1. Chemical analyses of yingjiangite (in percentage)

测试者:本院王玉清

表 2 盈江铀矿的电子探针分析数据

Table 2. Electron microprobe analyses of yingjiangite

组	分	م	庄	盈	江	
K₂O)	3.52		2.46		
CaC		2.12		1.57		
Fe ₂ C	D ₃	0.39				
Y₂O	3	0.06		0.11		
Ce ₂ C	D ₃	0.10		0.34		
'l'hO ₂				0.51		
SiO ₂		0.18				
P_2O_1	5	10.44		11.10		
UO ₃		76.49		76.54		
H ₂ C) [±]	6.44		7.37		
	 计	99.74		100.0	0	

测试者:本院黄裕柱。

标样: U-金属铀; P-磷灰石; K-钾长石; Ca-硅灰石;Th-ThO₃; Y-Y₃Al₅O₁₂; Ce-CeO₂; H₂O-按化学分析结果参加修正。

第11卷

矿的电子探针分析结果。两者比较,产于下庄的盈江铀矿钾和钙的 含量较 多,但 K₂O 和 CaO 的重量百分比相差很小,K₂O:CaO 盈江产出者为 1.6,下庄产出者为 1.7。

根据化学分析,除去杂质,按两种方式计算了化学式;

① 按氧原子数等于 42 计算出的化学式为:

 $Na_{0.13}K_{1.90}Ca_{0.95}(UO_2)_{7.02}(PO_4)_{3.93}(OH)_{6.16} \cdot 6.07 H_2O$

式中Na、K、Ca可以类质同象代替,简化式可以写成:(K2,Ca)(UO2)7(PO4)4(OH)6· 6 H2O。

或用另一种形式表示如下:

(K_{3-x}Ca_x)(UO₂)₇(PO₄)₄(OH)_{5+x}•6H₂O, (x=0.95)。
② 按轴原子数等于4计算出的化学式为:

Na_{0.07}K_{1•08}Ca_{0.54}(UO₂)₄(PO₄)_{2.24}(OH)_{3.51}•3.46H₂O 简化式可以写成: (KCa_{0.5})(UO₂)₄(PO₄)₂(OH)₄•3H₂O

或用另一种形式表示如下:

(K_{1.5-x}Ca_x)(UO₂)₄(PO₄)₂(OH)₄·3H₂O,(x=0.5) 产于盈江县的盈江铀矿的化学式为:

(K_{1-x}Ca_x)(UO₂)₃(PO₄)₂(OH)_{1+x}•4H₂O,(x=0.35) 以上两个不同产地的盈江铀矿的化学式的书写形式有些不同,但都比较接近。 该矿物易溶于盐酸、硫酸和硝酸。

4 X射线结晶学特点

用四圆 X 射线衍射仪对盈江铀矿单晶进行研究的结果,证实该矿物为斜方晶系,空间 群 Bmmb, 晶胞参数 a=15.707(3), b=17.424(3), c=13.692(2) Å。V=3747 Å³。

X 射线粉晶分析结 果 列 于 表 3 。粉晶图的指标化是根据上述空间群和晶胞 参 数 进行的。由粉晶分析数据计算出的晶胞参数与用单晶获得的结果很接近,a=15.766(4), b=17.314(3), c=13.761(4) Å, V=3756 Å³。

由于两个化学式形式上有些差别,阳离子、铀酰离子、磷酸根和羟基、水分子的系数 不同,因而由两个化学式得出的分子量不同,以至从公式 Z=(Dc×V)/(M×1.66)*计算 出的单位晶胞分子数(Z)也不一样。由第一个化学式得到的 Z=3.95(≈4),计算比重 Dc= 4.60 g/cm³。由第二个化学式得到的 Z=6.92(≈7), Dc=4.59 g/cm³。

与产于云南的盈江铀矿比较,产于下庄的盈江铀矿面网间距(d值)普遍稍偏小。

5 几点认识

与盈江铀矿共生的矿物中有多个以钾为重要成分的矿物,如变钾铀 云 母、硅钾铀
矿、高岭石和黄钾铁矾等,可见钾的丰度在下庄铀矿田是比较高的。因而可以说盈江铀矿

* M-分子显, V-晶胞体积。Z和 Dc-文中已有说明。

表 3 盈江铀矿的X射线粉晶分析数据

Table	3	Y-rav	nowdor	data	AB	vingilangie
I a die	3	n⊸ray	powaer	uara	on	ying hangice

	ሾ		庄 ^①				盈	江 ⁽²⁾	
d 📷	d 🕱	I	hkl	d 30	.1 .	d m	l I	d M	I
10.36	10.37	19	101	2.223	3	10.52	1	2.233	3
7.89	7.88	100	200	2.155	5	8.03	10	2.172	4
6.38	6.39	6	012	2.127	4	:		2.130	3
5.83	5.83	17.	220	2.089	8	5.90	4	2.103	3
5.39	5.39	4	022	2.057	5		}	2.061	2
5.18	5.18	4	202	2.017	3			2.024	2
4.96	4.97	4	212	2.005	4]	
4.72	4.72	10	311	1.972	5.	4.78	2		
4.43	4.42	7	032	1.911	5	4.45	2		
4.27	4.27	6	321,113	1.884	6	4.31	1	1.903	4
3.94	3.94	50	400	1.858	5	3.99	9	1.861	3
3.85	3.86	12	232	1.832	4	3.88	4 [.]		
3.79	3.79	6	· 240	1.801	2	3.81	2	1.807	2
3.44	3.44	12	004	1.783	2	3.45	4 .	1.787	3
3.36	3.36	8	412	1.732	2	3.40	3		
3.15	3.15	29	204	1.721	5	3.17	7	1.724	3
3.09	3.09	14	052,143	1.691	3	3.10	7	1.692	3
3.03	3.03	7	511	1.680	3				[
2.942	2.942	5	432	1.662	3	2.967	2	1.666	2
2.878	2.879	.16	252	1.614	2	2.886	6	1.627	· 2
2.694	2.693	3	· 044	1.533	4			1.547	4
2.627	2.628	4	600	1.483	2			1.497	2
2.591	2.592	5	404,125	1.440	2	2.604	2	1.444	2
2.507	2.506	4	541	1.366	2	2.514	3	1.370	2
2.486	!	7		1.289	3			1,291	2
2.432		8		1.218	2	2.449	4.	1.207	2

测试条件: PW1700全自动X射线衍射仪, CuKa, 石墨单色器。

测试者:①张静宜;②本院谭发兰

的出现与该矿田的元素地球化学特点有密切关系。

② 最近发现下庄铀矿田除 330 矿床外,其它矿床也有盈江铀矿产出,可见该矿物在矿 田内分布较广,并且与块状晶质铀矿密切伴生,是找矿的重要标志之一。

③ 盈江铀矿的物理性质、光学性质以及 X 光粉晶数据与福磷 钙 铀矿(Phosphuranylite)相似,晶系和空间群相同,但化学成分有重要区别,盈江铀矿的主要阳离子成分 是钾而不是钙。

④ 盈江铀矿与福磷钙铀矿的化学式类似,由于阳离子的类质同象替换,如 Ca²⁺ 可以被 K¹⁺、Na¹⁺ 等替换,使得这两种矿物的化学式也有些小的出人。

两个不同产地盈江铀矿的 K₂O 和 CaO 百分含量不同,以至化学式中的原子比 有差异 (见化学成分一节)。

根据文献资料,到目前为止,福磷钙铀矿的化学式有以下几种表达方式:

1) Ca(UO₂)₄(PO₄)₂(OH)₄•7H₂O, 这是 C. Frondel 根据不很精确的化学 分析 结果 和粉末图的特点与黄磷铅铀矿 (Renardite Pb(UO₂)₄(PO₄)₂(OH)₄•7H₂O)相似提出的⁽²⁾。

2) Ca(UO₂)₃(PO₄)₂(OH)₂•6H₂O,这是 Д.П. шашкин 等在对福磷钙铀矿进行晶 体结构研究时提出的可能化学式⁽³⁾

3) (Ca, Na₂, K₂, Sr)₃(UO₂)₆(PO₄)₄(OH)₆•nH₂O和

4) Ca_{1.5}(UO₂)₇(PO₄)₄(OH)₅•nH₂O,这是 A. A. Черников 等认为福磷钙铀矿存在 的两个变种的化学式⁽⁴⁾。

5) Ca(UO₂) [(UO₂)₃ (OH)₂ (PO₄)₂]₂•12H₂O, 这是 P. Piret 等最近研究 福 磷 钙 铀 矿晶体结构后得出的化学式⁽⁵⁾。

下庄产出的盈江铀矿的化学式与1)、4)、5)可以比较,而盈江产出者与2)类似。

盈江铀矿的晶体结构正在研究中,待工作完成后,再对化学式及单位晶 胞 分 子 数作 修正。

⑤ 综合分析这些资料可以看出,盈江铀矿和福磷钙铀矿的化学成分和生成条件有一些相似性。当成矿溶液中 Ca²⁺ 含量多时生成福磷钙铀矿,K¹⁺ 含量多时,则生成盈江铀矿。

⑥ 从盈江铀矿以及含钠的福磷钙铀矿的存在,有理由推断,自然界可能存在福磷钙铀矿或盈江铀矿的钠类似物。

工作中得到沈今川、王爱珍、张淑苓、徐怀乐和张亚丽等同志的帮助,深表谢意。

参考文献

- 1 陈璋如等,新矿物----盈江铀矿,矿物学报, 1990,10(2):102-105.
- 2 Frondel, C. Systematic Mineralogy of Uranium and Thorium. U. S. Atomic Energy Commission, 1958. 222-227.
- 3 Шашкин, Д. П., Сидоренко, Г. А. Исследование Кристаллической Структуры фосфуранилита Ca[(UO₂)₃(PO₄)₂(OH)₂• 6 H₂O. Докл. АН СССР, 1975, 220. 1161-1164.
- 4 Черников, А. А., Сидоренко, Г. А. Минералы и Парагенезисы Минералов. 1978, 168-174.
- 5 Piret, P., Piret-Meunier, J. Composition Chimique et structure cristalline de la phosphuranylite Ca(UO₂)((UO₂)₃(OH)₂(PO₄)₂)₂·12 H₂O. Eur. J. Mineral., 1991(3); 69-77.

New Data on Yingjiangite

Zhang Jingyi

(Beijing Institute of Geology for Nuclear Industry, Beijing 100029)

Wan Anwa

(China University of Geosciences, Wuhan)

Gong Wenshu

(290 Institute of Nuclear Industry, Geological Exploration

Bureau of South China)

Key words: Yingjiangite; Single-crystal X-ray diffraction analysis;

space group

Abstract .

The space group and unit cell of yingjiangite from the Xiazhuang uranium deposit, Guangdong Province, have been determined for the first time by single-crystal X-ray diffraction analysis. Its unit cell is orthorhombic, space group Bmmb (63), a=15.707(3), b=17.424(3), c=13.692(2) Å. V=3747 Å³. Z=4. Dc=4.60 g/cm³, Dm=4.54 g/cm³. Chemical formula: (K₂,Ca) (UO₂)₇(PO₄)₄(OH)₆. 6 H₂O. Biaxial negative with $2Vc=36^{\circ}$, $2Vm=36-38^{\circ}$, Ng=1.707(2), Nm=1.703(2), Np=1.666(1). Optical orientation: $Ng \parallel Y$, $Nm \parallel X$ and $Np \parallel Z$.

颗粒接触概率在划分矿物共生组合中的应用 ——以冀东太平寨紫苏花岗岩为例

赵国春 贺同兴

(长春地质学院,长春 130026)

主题词:颗粒接触概率 矿物共生组合 紫苏花岗岩 颗粒组合图

提 要:颗粒接触概率研究的基本方法是在一个岩石薄片切面上,沿着某一条线统计一个 晶体或矿物种与另一个晶体或矿物种的接触顺序,然后把每一类型的接触数目用"接触概率矩 阵"表示,并与"随机接触概率矩阵"加以比较,从而验证一个矿物的位置是否或在多大程度上 依赖于另一个矿物的位置。一般说来,同种矿物或同世代矿物有相互接触的趋势,因而颗粒 接 触概率的研究能够用来划分矿物共生组合。冀东太平寨地区紫苏花岗岩的颗粒接触概率研究 结 果表明,其主要矿物相是由两个不同世代矿物所组成。该研究结果与镜下岩相研究结论一致。

Winkler⁽¹⁾认为,变质岩中共生矿物必须相互接 触。Flinn⁽²⁾和 Vistelius⁽³⁾也 认为, 岩浆岩中矿物颗粒分布并非杂乱无章,至少同一种矿物或同世代矿物有相互接触的趋势。 因此,有理由用颗粒接触概率去研究和划分岩石中矿物共生组合。

۲

1 颗粒接触概率研究历史简述

侵入岩和变质岩结构的定量研究进展非常缓慢。原因之一就是在结构性质测量方面困 难重重。Sander⁽⁴⁾可算是第一位用定量方法来研究侵入岩结构的。他的"矿物亲邻指数" 已具有这方面研究的趋势。

近年来,苏联地质学者采用计算矿物接触概率来研究岩石的结构,所用数据通过统计 方法就可以获得。基本方法是在一个岩石切面上,沿着某一条线统计一个晶体或矿物种与 另一个晶体或矿物种的接触顺序,然后把每一类型的接触数目用"接触概率矩阵"表示,