THE Pb–Bi–Ag–Cu–(Hg) CHEMISTRY OF GALENA AND SOME ASSOCIATED SULFOSALTS: A REVIEW AND SOME NEW DATA FROM COLORADO, CALIFORNIA AND PENNSYLVANIA

EUGENE E. FOORD AND DANIEL R. SHAWE

M.S. 905, U.S. Geological Survey, Box 25046, Denver Federal Center, Lakewood, Colorado 80225, U.S.A.

ABSTRACT
Galena, associated with Pb–Bi–Ag sulfosalts and simple sulfides, contains varied amounts of Ag and Bi in the Dandy vein system, Idarado mine, Ouray, Colorado; the Jackass mine, Darwin District, California; and the Leadville district, Colorado. Silver- and bismuth-bearing galena associated with minor amounts of pyrite, chalcopyrite and sphalerite occur at the Pequea mine, Lancaster County, Pennsylvania. Ag and Bi contents in the Dandy suite of galena range from about 1.4 to 3.4 and 2.5 to 6.5 wt.% respectively, and are comparable or lower in galena from the other localities. Exsolved matildite is present in galena from the Dandy, Jackass and Leadville localities. The presence in significant amounts of both Ag and Bi in a Pb-rich sulfide system is necessary for formation of PbSss= (galena solid-solution). If Ag (especially) and Bi (to a lesser extent) are absent, the galena formed will be essentially pure PbS. Some minor Sb may substitute for Bi. Compositional data for all of the galena samples are in agreement with a previously proposed linear relationship between a and Ag-Bi(Sb) content. Matildite and seven additional Pb–Bi–Ag–Cu sulfosalts have been identified from the Dandy vein system, based on electron-microprobe analyses and some X-ray powder-diffraction data. The sulfosalts include gustavite65lillianite35, nonstoichiometric aikinite and friedrichite, heyrovskyite and one Ag-bearing Pb–Bi sulfosalt with Nchem = 8.4, which may be eskimoite(?) or heyrovskyite. A Cu–Ag–Pb–Bi sulfosalt with Nchem = 7.25, which may be the Cu-dominant analogue of eskimoite(?) or heyrovskyite, Cu-substituted heyrovskyite or a new Pb–Bi–Cu–Ag sulfosalt, also is present. An unidentified Bi–Pb–Ag sulfosalt with Nchem = 6.06 and a composition close to vikingite also was found. Eskimoite(?) or Ag-bearing heyrovskyite(?) with Nchem = 8.19 also was identified in high-grade silver ore from the Jackass mine. The sample from Leadville contains major amounts of galena and matildite along with minor amounts of hessite and “tellurian canfieldite”, Ag8Sn4S4Te2, as well as very sparse aikinite and two unidentified Cu–Pb–Bi–Ag sulfosalts, one of which may be Cu- and Bi-substituted galena. An Sb-bearing Bi–Pb–Ag sulfosalt, most likely ourayite (Our73) was identified from the Wombat mine, Montezuma district, Colorado. Multiple stages of mineralization, some possibly involving reheating cycles, are known to have occurred at four of these five localities and are believed responsible for the formation of multiple galena solid-solutions (PbSss) as well as the complex Pb–Bi–Ag–Cu sulfosalts assemblages.

Keywords: galena, PbSss, Pb–Bi–Ag–Cu sulfosalts, California, Colorado, Pennsylvania.

SOMMAIRE
La galène associée aux sulfosels de Pb–Bi–Ag et aux sulfures simples dans les indices minéralisés 1) de Dandy à la mine Idarado, à Ouray, au Colorado, 2) de la mine Jackass, camp minier de Darwin, en Californie, et 3) du camp minier de Leadville, au Colorado, contient des quantités variables de Ag et de Bi. De plus, nous trouvons la galène ainsi enrichie associée à des quantités accessoires de pyrite, chalcopryrite et sphalerite dans la mine de Pequea, comté de Lancaster, en Pennsylvanie. Les teneurs de Ag et de Bi dans la galène de Dandy se situent entre 1.4 et 3.4% et entre 2.5 et 6.5% (par poids), respectivement, et ressemblent ou sont moins élevées qu’aux autres endroits. Des lamelles d’exsolution de matildite caractérisent la galène de Dandy, Jackass et Leadville. La présence de quantités importantes de Ag et de Bi dans un assemblage de sulfures enrichis en plomb est nécessaire à la formation de la phase PbSss. Là où l’argent et, à un degré moindre, le bismuth, font défaut, la galène possède une composition stoechiométrique. Le Sb peut remplacer le Bi en quantités limitées. Les données confirment la relation linéaire proposée antérieurement entre a et teneur en Ag + Bi(Sb). Nous avons identifié la matildite et sept sulfosels de Pb–Bi–Ag–Cu dans le système minéralisé de Dandy au moyen d’analyses obtenues à la microsonde électronique et de données diffRACTOMétriques (méthode des poudres): gustavite65lillianite35, aikinite ou friedrichite (ou un mélange) non-stoechiométrique, heyrovskyite, et un sulfosel de Pb–Bi argentifère possédant Nchim = 8.4, qui pourrait être soit eskimoite(?) , soit heyrovskyite. Un sulfosel de Cu–Ag–Pb–Bi ayant Nchim = 7.25, qui pourrait correspondre à une eskimoite(?) à dominance de Cu, une heyrovskyite cuprifère ou un sulfosel nouveau de Pb–Bi–Cu–Ag, et un sulfosel non-identifié (Nchim = 6.06, composition semblable à celle de la vikingite) sont aussi présents. Une eskimoite(?) ou heyrovskyite argentifère ayant Nchim = 8.19 est présente dans le minerai à teneur élevée en argent de la mine Jackass. L’échantillon provenant de Leadville contient des quantités importantes de galène et de matildite, ainsi que hessite, “canfieldite tellureuse” Ag8Sn4S4Te2, et de rares indices d’aikinite et deux sulfosels de Cu–Pb–Bi–Ag non-identifiés, dont un pourrait être de la galène enrichie en Cu + Bi. Un sulfosel de Bi–Pb–Ag contenant de l’antimoine, très probablement de l’ourayite (Our73), a été découvert dans la mine Wombat, district de Montezuma, au Colorado. À quatre des cinq endroits étudiés, il est clair que des stades multiples de minéralisation, qui pourraient même impliquer des événements de réchauffement, sont à l’origine de la multiplicité de solutions solides PbSss et des assemblages complexes de sulfosels de Pb–Bi–Ag–Cu.

(Traduit par la Rédaction)

Mots-clés: galène, PbSss, sulfosels de Pb–Bi–Ag–Cu, Californie, Colorado, Pennsylvanie.
INTRODUCTION

Where galena and complex sulfosalts are associated in base-and precious-metal deposits, both show complex variations in composition and physical properties (e.g., Karup-Møller 1973, Czamanske & Hall 1975, Patrnick 1984, Foord et al. 1985, 1988, Jeppsson 1987, Gaspar et al. 1987, Moehlo et al. 1987). A rigorous structural and chemical classification of these minerals thus is difficult (e.g., Nowacki 1969, Makovicky & Karup-Møller 1977a,b, Makovicky 1977, 1981, Kostov & Mineva-Stefanova 1982). Moreover, because of past difficulties in defining the mineralogical character of the galena-sulfosalts assemblage in different mineral deposits, it has been difficult to relate mineralogy to geological environment. Godovikov (1965, 1972) reviewed the then current knowledge of Bi-sulfosalts and other Bi-Pb-Ag-Cu-Sb sulfides and sulfosalts, and compiled available compositions for these minerals. However, much of Godovikov’s work is now superseded. This report reviews some of the historical studies of galena, sulfosalts and their associations; it briefly describes the geological settings of five localities from which galena or sulfosalts (or both), and associated sulfides were collected: mines in the Ouray, Leadville and Montezuma districts, Colorado; the Darwin district, California, and Pequea, Pennsylvania.

We attempt to clarify some of the complex interrelations of the minerals; we suggest that much of the complexity of the galena-sulfosalts associations is the result of multiple episodes of mineralization. Additional detailed studies will be needed to correlate specific mineralizing events and mineral compositions.

REVIEW AND BACKGROUND

Trace and minor elements in galena

Numerous papers have been published on the occurrence of minor and trace elements in galena (e.g., Wasserstein 1951, Fleischer 1955, Marshall & Joensuu 1961, Godovikov 1966, Samsoni 1966, Hall & Heyl 1968, Badalov & Povarennymkh 1969, Graeser 1969, 1971, Blackburn & Schweideman 1977). Trace to major amounts of combined silver and bismuth have long been noted in some occurrences (e.g., Nissen & Hoyt 1915, Chapman & Stevens 1933, Oftedal 1942, Khetchikov 1958, Ontoyev et al. 1960, Paronikyan 1967). Malakhov (1968) examined the contents of Bi and Sb in more than 200 different samples from a variety of host rocks and depths. It was not certain in many cases whether or not other metals detected in analyses of galena were present in solid solution, as inclusions of other minerals, or both. Thus, in addressing the problem of the chemical composition of galena, Nesterova (1958) concluded, on the basis of analyses of 40 samples of Soviet galena that the presence of other metals in galena is due to inclusions of other minerals. A similar conclusion was reached by Khetchikov (1958), who examined the Bi-content of galena from a polymetallic skarn-type deposit and concluded that most of the Bi was contained in microscopic inclusions of galenobismutite. Edwards (1954) also considered galena showing more than about 0.1% Ag to invariably contain inclusions or exsolved Ag-bearing minerals. Galena and other minerals visually indistinguishable from galena were ideally suited for analysis by electron microprobe when it became commonly available as an analytical tool in the late 1960s. Many samples of visually homogeneous “galena” were found upon examination to be composed of galena mixed with other minerals. Thus, for example, a Se-bearing “galena” (sample H-2) examined by Coleman (1959) from Darwin, California was later found by Czamanske & Hall (1975) to consist of galena and an exsolved sulfosalt (“schirmerite”). Careful attention is necessary in connection with examinations of “galena” and Bi-Pb-Ag(Cu) sulfosalts containing elevated amounts of elements such as Sb, Se, Te, Bi, Hg and Ag, particularly samples from geochemically complex areas, or erroneous or incomplete identification of minerals actually present may result. Electron-microprobe studies combined with X-ray studies generally are required, and in some cases, single-crystal X-ray studies are necessary to provide unambiguous identification of mineral species (e.g., Karup-Møller 1977). Specialized etching and staining techniques may in many cases also reveal additional information that is not evident under normal conditions of microprobe operation (e.g., Harris & Chen 1975, Scott 1976). High-magnification back-scattered electron images, taken with a scanning electron microscope or electron microprobe with an SEM attachment, also are very useful for distinguishing between phases with very similar mean atomic numbers.

In some cases, primary galena from hydrothermal deposits has been shown to contain anomalous and significant levels of Bi, Ag, Te, Se, Sb, Cu, Tl and Zn. However, Bi, Ag and Sb are most abundant (Fleischer 1955), and only Sb, Bi, Ag, Te, Sc, Cu and As have been reported in amounts greater than 1 wt. % A Bi-Hg-substituted galena was reported by Foord et al. (1988). The substitution of Bi into galena, and the consequent decrease in cell edge, were demonstrated by Wasserstein (1951), who realized the potential of using X-ray diffraction and chemical analysis of galena as an indicator in problems of correlation in the Witwatersrand "reef".

Examination by optical and microprobe methods of various occurrences from New Brunswick (Boorman 1968) showed that silver was contained principally within various associated and included sul-
fosalts, and only minor amounts (less than about 0.1%) occur in solid solution. Each deposit has a distinctive galena–sulfosalts assemblage; for example, the Mount Pleasant deposit has Bi-sulfosalts and no Sb-sulfosalts, whereas for all of the other deposits examined, the opposite is true.

Experimental studies, such as those of Van Hook (1960), show that galena may contain Ag only in slight excess over Bi even at high temperatures, whereas it may contain considerably more Bi than Ag (e.g., Karup-Møller 1977). Bi-free galena contains only small amounts of Ag (0.4 wt.% or less) whereas Ag-free galena may contain more than 10 wt.% Bi (Karup-Møller 1977). According to Makovicky (1977), Bi-bearing galena contains random vacancies and possesses a defect-type structure. However, a rigorous structure-refinement or TEM study of a Bi-rich and Ag-poor galena is necessary to resolve this question. Karup-Møller (1977) suggested that the Bi excess in such cases may be due to the existence of domain-type structures similar to those of the lillianite homologues.

Octahedral cleavage or parting in galena has long been noted and attributed to the content of Bi (e.g., Wahlstrom 1937, Oftedal 1942, Chukhrov 1944, Karup-Møller 1971). Wahlstrom (1937) considered the octahedral parting to be controlled by closely spaced layers of tetradyomite that parallel the octahedral planes of the galena. The parting was believed to be due to mechanical stresses during or after ore formation. Heating in a closed tube resulted in a loss of the octahedral parting and development of cubic cleavage. Oftedal (1942) refined the observations of Wahlstrom (1937) and noted that various specimens of Norwegian Bi-bearing (1–2%) galena may or may not be characterized by octahedral parting, but if Ag also is present and is about one-half the weight fraction of Bi, the galena does not exhibit octahedral parting. He attributed this to the substitutional scheme 2Pb for (Ag + Bi). Where Bi is present in excess of the amount of Ag required to balance it, or if Bi alone is present, then octahedral parting is developed. Bi-bearing galena from Gladhammar, Sweden, containing aikinite exsolved along {111} cleavage, was described by Karup-Møller (1971). The host galena contains 0.5–1.0 wt.% Bi but no Ag or Cu, substantiating the observations of Oftedal (1942). This correlation is also supported by observations of the galena from the Pequea silver mine, Lancaster County, Pennsylvania, where galena containing as much as 2 wt.% Ag and 7 wt.% Bi (A. V. Heyl, pers. comm., 1982) may show octahedral cleavage. Galena from Pequea examined in this study, however, contains equal amounts (atomic) of Ag and Bi, and shows only cubic cleavage. Paar & Meixner (1977) reported that some samples of Bi-bearing galena contain inclusions of native Bi and bismuthinite along the {111} cleavage planes, substantiating the earlier results of Chukhrov (1944).

Khetckhiv (1958) found that galena containing 2 wt.% Bi shows dominant octahedral faces and a tabular form, whereas galena with only a few tenths of a percent Bi shows well-developed cubic faces. The high-Bi galena was found to contain exsolved galenobismutite. Marshall & Joensuu (1961) found no progressive change in either Ag or Bi content with crystal habit in galena from Mississippi-Valley-type deposits. Other factors, particularly temperature, were considered more important in determining habit.

Secondary or supergene galena, though rare (Taylor 1958, Clark & Sillitoe 1971, Frenzel et al. 1973), commonly contains substantial amounts of copper in solid solution, although experimental data (Craig & Kullerud 1968) indicate that only extremely limited solid-solution of copper in galena is possible below 200°C. Supergene galena, comprising as much as 5% of the ore, has formed at Broken Hill, New South Wales, Australia, in the transition zone between the sulfide and oxidized ore. Within this zone, it forms a thin rim on relict masses of sphalerite, and farther into the sulfide core it penetrates the sphalerite along cracks and cleavages. Clark & Sillitoe (1971) reported as much as 13 wt.% Cu in galena associated with djurleite at the Arc de Oro mine, Zapallar district, Atacama, Chile. A second case of Cu-bearing galena, also secondary and associated with Pb-bearing covellite, was reported by Frenzel et al. (1973). Those authors proposed that cuprian galena is a metastable solid-solution that has been preserved because of special environmental factors.

A cuprian galena with as much as 2.05 wt.% Cu and no other elements in significant concentrations was reported from the Långban deposit (Burke 1980). A higher-temperature exsolution-type origin was inferred because of its mode of occurrence as droplets and rounded veinlets in enclosing sulfides and sulfosalts.

An antimonian galena with 4.5 to 5.4% Sb, in the form of stringers associated with Sb-oxides that developed from twinnite, Pb(Sb,As)S₄, was reported by Mozgova et al. (1979). Moelo (1983) described anisotropic Sb- and As-bearing galena, the formation of which was related to a high rate of crystallization at low temperature by the substitution of Sb in three-fold coordination for Pb.

Thus, it appears that both cuprian and antimonian galenas may exist in nature, but these varieties commonly are secondary and formed at very low temperatures. Both types likely are metastable, but more work must be done to verify this speculation.

The existence of a complete solid-solution series between galena and clausthalite was shown to exist by Heier (1953) and again by Coleman (1959). Nekleshistov et al. (1962) examined the isomorphous substitution at low levels (less than 0.1% of each)
of Se and Te for S in galena and found these elements also to correlate with Bi and Ag (or Sb and Tl) contents. A galena with inclusions of tetradyomite examined by Stupkina (1966) shows solid-solution substitution of both Te and Se for S as well as Bi and Ag for Pb. The cell edge of 5.945 Å indicates expansion due to substitution of the Se and Te for S, and the approximate 13 mol. % of AgBiS₂ is probably present as matildite.

Galena solid-solution (PbS₂)

A silver- and bismuth-bearing (6.04% Ag, 12.15% Bi and 0.24% Sb) galena was reported from the Greenback orebody in the Leadville district, Colorado, by Chapman & Stevens (1933). The composition of this galena, corrected for minor amounts of admixed pyrite, chalcopyrite and sphalerite, is plotted as a point on Figure 1b. Debye–Scherrer X-ray films of the material (Chapman & Stevens 1933) show a pattern very similar to normal galena. However, it is likely that some exsolved matildite or other sulfosalts are present, based on results obtained from etching with nitric acid. We have arbitrarily considered any galena with a structural content of more than 0.5 wt.% combined metals, other than Pb, to be galena solid-solution (PbS₂).

Some of the first detailed studies of natural PbS₂ were made by Ontoyev et al. (1960). Studies after 1970 using the electron-microprobe approach, such as those by Karup-Møller (1973), Czamanske & Hall (1975), Nash (1975), Karup-Møller (1977), Karup-Møller & Pauly (1979), Karup-Møller & Makovicky (1981), Makovicky & Karup-Møller (1984), Boldyreva (1985), Gaspar et al. (1987) and Moelo et al. (1987), have confirmed and refined the earlier proposals of the existence of such natural PbS₂ (Figs. 1a, b).

Jeppsson (1987) has examined the relationship between cell parameters and substitution of AgBiS₂ and AgSbS₂ in synthetic and natural galena. The synthetic α-AgBiS₂ — 2PbS solid-solution series...
show a closer approach to ideality than α-AgSbS$_2$ – 2PbS, at least for PbS-rich compositions.

As much as 7 mol.\% of AgBiS$_2$ has been found in galena from Ivigtut, Greenland (Karup-Møller 1977) and from France (Moëllo et al. 1987). A comparable amount, averaging 7.6 mol.\%, was found in galena coexisting with Ag- and Bi-rich heyrovnskyite, exsolved lamellae of fillianite homologues and other minerals from Castlegar, British Columbia (Karup-Møller & Makovsky 1981). A galena with 25 mol.\% AgBiS$_2$ in solid solution, enclosed in pyrite, and coexisting with a galena with 11.7 mol.\% AgBiS$_2$ and a Pb–Bi–Ag sulfosalt, subsequently identified as probable ourayite, from the Fairview mine, Round Mountain, Nevada, was described by Foord et al. (1985, 1988). Recent studies, such as those of Czamanske & Hall (1975), Karup-Møller (1977), Parr et al. (1980), Makovsky & Karup-Møller (1984) and Pattrick (1984), have shown that the galena component of matildite–galena intergrowths plot on or very close to the galena–matildite join, whereas galena directly associated with Pb–Bi–Ag sulfosalts is enriched in Bi relative to Ag and plots to the right of the galena–matildite join (Figs. 1a, b).

Four Pb–Bi–Ag sulfosalts intermediate in composition between galena and matildite were reported from the Kanimansur area, Karamazar, U.S.S.R. (Bortnikov et al. 1987): viz. Ag$_3$Pb$_3$Bi$_3$S$_{13}$, Ag$_2$Pb$_3$Bi$_3$S$_{11}$, Ag$_4$PbBiS$_3$ and Ag$_4$Pb$_3$Bi$_3$S$_9$ (see Fig. 1b). These compounds, all less than about 20 micrometers in maximum dimension, were identified only on the basis of electron-microprobe data and are reported to have the optical properties of matildite.

If Ag and Bi both are available to substitute for Pb, substitution can readily occur, particularly in systems low in Cu, Sb and Zn. On the other hand, if Ag and Sb are available at the time of crystallization and Bi is rare or absent, as for example at the
Wood River lead-silver deposit, Blaine County, Idaho (Hall & Czamanske 1972), then minor solid-solution involving Ag and Sb may occur, provided the temperature is high enough (350–400°C). If Cu, Zn and other metals also are present at the time of crystallization, then the Sb and Ag will be incorporated into minerals such as tetrabedrite–tennantite, and only a few wt. % of most Ag and Sb will substitute into galena (Åmcoff 1976). The ionic radius of Bi3+ (0.96 Å) is closer to the radius of Pb2+ (1.20 Å) than Sb3+ (0.76 Å). Jeppsson (1987) also found that silver in Sb-rich deposits was incorporated into a variety of Ag–Sb sulfosalts, especially tetrabedrite. In the presence of Bi, large amounts of silver can be accommodated in the structure. At the Tsumeb mine, the Ag content of the ore is directly proportional to the Cu content, there is no correlation between Ag and Pb, and As is much more plentiful than Sb. Thus, Ag is not enriched in galena where Sb (and Bi) are absent. Also, at the Darwin Pb–Ag–Zn mine, high silver values in galena can be correlated with Bi concentrations. Sb contents in galena are very low, and much Sb is present as minute inclusions of tetrabedrite. Sb is known to be extremely scarce in the entire district. Galena with high silver values contains varied Sb values (Hall 1971). The most plausible way of explaining the affinity between Ag and PbS is in the coupled substitution Ag+ + Sb2+ (Bi3+) = 2Pb2+ (Nash 1975, Hoda & Chang 1975, Åmcoff 1976, Karup-Møller 1977, Karup-Møller & Pauly 1979, Jeppsson 1987, Gaspar et al. 1987).

Examination of Ag–Bi–Sb contents in galena from the Real de Angeles Ag–Pb–Zn deposit, Zacatecas, Mexico, shows significant but relatively low levels of all three elements (less than 1 wt. % each) (Pearson et al. 1984, M. F. Pearson, pers. comm., 1985). Galena provides the main economic source of Ag in the deposit (M. F. Pearson, pers. comm., 1985). Variable but relatively low levels of Ag (0.25%), Bi (0.5%), and Sb (0.5%) were found in individual crystals of galena, as well as evidence of spatial zonation in the deposit. The silver-bearing minerals in addition to galena are: freibergite, stephanite and argentite. Because Bi is extremely low in the deposit, no substantial amounts of discrete matildite or Pb–Bi–Ag sulfosalts were formed. Galena from the Wood River deposits (Hall & Czamanske 1972) contain Ag and Sb in a 1:1 atomic ratio (200–2400 ppm each), with additional Ag and Sb present in microscopic inclusions of Ag–Sb sulfosalts. A large portion of Sb and Pb in laboratory-purified galena is present predominantly in inclusions of diaphorite. Some of the galena from the Lead–Silver King prospect, Nye County, Nevada, also shows an approximate 1:1 atomic ratio of Sb and Ag (Foord et al. 1988). Galena from the Caribou mine, Boulder County, Colorado, also contains very low levels of Ag and Bi (H. W. Miller, pers. comm., 1983) because Bi is essentially absent in the system, thus preventing the 2Pb = Bi + Ag substitution. Primary silver-bearing minerals include pyrrylite, polybasite, jalpaite and stromeyerite (H. W. Miller, pers. comm., 1983; Francis 1987).

An example of another deposit where Bi is absent or very low, but Ag is present in moderate quantities in the ore, is that of the St. Cloud Zn–Cu–Ag–Pb mine, Chloride mining district, Sierra County, New Mexico. In order of decreasing abundance, the ore minerals are sphalerite, bornite, betekhtinite Cu₃₉(Pb,Fe,Ag)₄S₉ (Hlava & Irving 1985), galena, chalcocite and stromeyerite. Chalcopyrite and pyrite also are present. Emission spectrographic analyses (N. M. Conklin, analyst, U.S. Geological Survey) of two samples of bornite (possibly containing minor amounts of betekhtinite) show 1500 ppm Ag in each. Neither Bi nor Sb was detected. The coexisting galena contains 70 ppm Ag, 150 ppm Sb and 10 ppm Bi. In thus another example, the available Ag is present chiefly in minerals other than galena.

It is well known that one or more distinct generations of galena are distinguished in various base- and precious-metal deposits. Such generations are commonly recognized and distinguished both visually and by chemical properties. Examples have been described by Khetchikov (1958), Radtke et al. (1969), Czamanske & Hall (1975) and Karup-Møller & Pauly (1979). In many instances, earlier generations of galena have a large grain-size and are relatively ‘clean’, whereas later generations are finer grained and contain significant amounts of other elements, such as those mentioned above. However, as at the Kti–Tberda deposit (Ontoyev et al. 1982), where separate mineralizing events have occurred widely separated in time, a second generation of galena may be nearly pure.

Multiple episodes of mineralization, with physically and chemically different generations of galena and other sulfosalts, have been indicated in the Round Mountain – Manhattan area, Nevada (Shawe 1985, Shawe et al. 1986, Foord et al. 1988), the Darwin district, California (Czamanske & Hall 1975) and the Red Mountain – Idarado district, Colorado (Mayor & Fisher 1972, Lipman et al. 1976). Several stages of mineralization were recognized in the Leadville district, Colorado (Chapman & Stevens 1933, Chapman 1941) and likewise for the Montezuma district (Lovering 1935, Botinelly 1979). The mineralogical work done in this study may provide data useful in the interpretation of the mineralization histories in the respective districts.

Matildite

Harris & Thorpe (1967) determined the full cell, and confirmed the hexagonal symmetry of natural...
\(\beta\)-AgBiS\(_2\) (matildite). The mineral is found most often as either oriented or random myrmekitic intergrowths in galena (e.g., Boldyreva 1970, Petruk et al. 1971, Harris & Owens 1973, Karup-Møller & Pauly 1979, Makovicky & Karup-Møller 1984, Boldyreva 1985). It may occur in a texturally pseudocubic lattice along \([111]\) and \([100]\), as well as other planes in galena. Matildite has been interpreted to form penecontemporaneously with galena or to form as a decomposition product of a high-temperature PbS–AgBiS\(_2\) solid-solution series (Karup-Møller & Pauly 1979). The high-temperature form of AgBiS\(_2\), \(\alpha\)-AgBiS\(_2\), was redefined as schapbachite (Hey 1982), and is not known to occur in nature.

Some matildite occurs in the absence of galena, e.g., intergrowths with aikinite, wittichenite and emplectite (Sakharova 1969). Its formation was attributed to geochemical factors involving breakdown of chalcocypirite, with the addition of Bi and some Pb and Ag, at temperatures less than 220°C (below the 215°C crest of the PbS–AgBiS\(_2\) solvus).

The presence of matildite, \(\beta\)-AgBiS\(_2\), in solid solution in galena has been well characterized (Wernick 1960, Van Hook 1960, Craig 1967, Nenasheva 1972); the common association of matildite and galena is believed to represent exsolution at a solvus with a crest at 215 ± 15°C, as determined on natural PbS–AgBiS\(_2\) intergrowths (Craig 1967). Nenasheva (1972) determined a solvus crest of about 210°C for compositions with greater than 40 mol.\% PbS, in agreement with the data of Craig (1967). However, an ordered compound having the composition Ag\(_x\)PbBi\(_{y}\)S\(_z\) and appearing at 220°C, was reportedly found at 20 mol.\% PbS (Nenasheva 1972, 1975). This synthetic compound was equated with schapbachite, but subsequent studies of natural schapbachite have shown it to have a substantially different composition (Makovicky & Karup-Møller 1977b).

Recently, Bortnikov et al. (1987) have reported a natural compound with the composition Ag\(_x\)PbBi\(_{y}\)S\(_z\). Above 220°C, there is a complete solid-solution series between AgBiS\(_2\) and PbS (Craig 1967, Nenasheva 1972, 1975, Hoda & Chang 1975). The degree of solid solution of AgBiS\(_2\) in PbS has been an important question for many years. The high Bi and Ag contents of some samples of galena are due to the existence of a high-temperature pseudocubic (disordered) form of AgBiS\(_2\) that is isostructural with PbS and forms a complete solid-solution with PbS (Craig 1967). Numerous workers favor stoichiometric substitution involving 2Pb \(\sim\) Bi(Sb) + Ag(Cu) (e.g., Necheliustov et al. 1962, Nash 1975, Amcoff 1976, Blackburn & Schwendeman 1977, Karup-Møller 1977, Karup-Møller & Pauly 1979), and this mechanism is supported by structural crystallographic data (Makovicky 1981, Kostov & Minecøva-Stefanova 1982). This type of substitution is extensive both for the lillianite-

Table 1

Composition of Seven Sulfosalts Exolved or Included in Ag- and Bi-bearing Galena from the Dandy Vein System, Animas Mine, GUNNIS, COLORADO

<table>
<thead>
<tr>
<th>Sample</th>
<th>8C</th>
<th>8Q</th>
<th>8D</th>
<th>8E</th>
<th>6Q</th>
<th>66,60,61,8C</th>
<th>8D</th>
<th>8Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>mineral exsolv(7)</td>
<td>hyroxyskite</td>
<td>Cu-ox</td>
<td>CuSbS(_2)</td>
<td>LiSbS(_3)</td>
<td>aikinite</td>
<td>friedrichite</td>
<td>Fried</td>
<td>N-6 phase</td>
</tr>
<tr>
<td>no. of points</td>
<td>(2)</td>
<td>(5)</td>
<td>(5)</td>
<td>(10)</td>
<td>(2)</td>
<td>(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ealescent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cu</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>S</td>
<td>16.9</td>
<td>16.3</td>
<td>16.3</td>
<td>16.7</td>
<td>16.7</td>
<td>16.7</td>
<td>16.7</td>
<td>16.7</td>
</tr>
<tr>
<td>Pb</td>
<td>31.7</td>
<td>31.9</td>
<td>31.9</td>
<td>31.9</td>
<td>31.9</td>
<td>31.9</td>
<td>31.9</td>
<td>31.9</td>
</tr>
<tr>
<td>Bi</td>
<td>41.3</td>
<td>33.3</td>
<td>33.3</td>
<td>44.9</td>
<td>44.9</td>
<td>44.9</td>
<td>44.9</td>
<td>44.9</td>
</tr>
<tr>
<td>Ag</td>
<td>9.5</td>
<td>9.5</td>
<td>9.5</td>
<td>9.5</td>
<td>9.5</td>
<td>9.5</td>
<td>9.5</td>
<td>9.5</td>
</tr>
<tr>
<td>Te</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Total</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>

* as determined by electron microprobe. 8S, 8Q, 8D and 8E not sought but not detected. --- Not determined.
X-ray-diffraction studies

One of the first precise measurements of the accepted cell-edge of pure galena (5.936 Å) was that of Wasserstein (1951). He also showed that annealing of galena at 300-400°C for a few minutes resulted in greatly sharpened lines in the back-reflection region of the diffractogram. Broadening of the lines was shown to be caused by distortion (curved lattice planes) induced by grinding of the sample for X-ray analysis. This problem was largely avoided in the present study as well as in that of Foord et al. (1988) by the use of a Gandolfi camera and fragments of material gently broken off. All of the lines in the back-reflection region are sharp and show excellent resolution of the Kα1 and Kα2 lines. Cell edges were determined from measurement of the highest five 2θ reflections. An essentially pure sample of galena (several broken fragments) from the Tri-state district was examined both before and after heating (500°C in air for 3 minutes) by X-ray diffraction; the lines in the back-reflection region were further sharpened by the heat treatment, for the purpose of cell-edge determination.

Determination of δ for galena samples containing Ag and Bi (Boldyreva & Chernysheva 1965, Karup-Møller 1973, Karup-Møller & Makovicky 1981, Foord et al. 1985, 1988) has shown the effect of the substitution 2Pb = Bi3+ + Ag+: δ decreases by about 0.003 Å for each wt.% of Ag + Bi ± Sb.

Electron-microprobe analyses were done on an ARL-EMX-SEMQ instrument at operating voltages of 15 or 20 kV, 10 nanoamperes sample current (on brass), 20 to 40 second count-times on peaks and 2 to 4 second count-times on background positions. Standards used included PbS, FeS2, FeAsS5, PbTe, HgTe, ZnS, PbSe and several synthetic Pb–Bi–Cu–Ag sulfosalts. Lα and Mα lines were used except for Bi, for which the Mβ line was used. Data were reduced using a modified version of MAGIC IV (Colby 1968).

Emission spectrographic analyses were done on a Jarrell–Ash 3.1 meter direct-reading spectrograph, using the method described by Myers et al. (1961).

DESCRIPTION OF LOCALITIES STUDIED

Dandy vein system, Idradomo mine, Ouray County, Colorado

The Dandy vein system is part of a richly productive group of ore deposits whose northwest-trending and circumferential structures formed at about 27.5 Ma on the northwest side of the Silverton caldera, in the western San Juan Mountains (Lipman et al. 1976). Sphalerite, galena, chalcopyrite and pyrite occur with lesser amounts of sulfosalt minerals in replacement ores in the Eocene Telluride conglomerate, and in northwest-trending and ring-fracture veins that cut the conglomerate ores (Mayor & Fisher 1972). Major gangue minerals in the conglomerate ores are quartz, epidote, chlorite, rhodonite, pyroxmangite, thulite and carbonates; lesser amounts of sercite and clay minerals are present. Gangue minerals in the veins are similar but also include fluorite. The ores were deposited much later than the formation of the structures in which they occur. According to Lipman et al. (1976), replacement ore in the Idradomo mine was deposited about 17.0 ± 0.6 Ma (K–Ar age on K-feldspar), whereas sercite from the same material gave an age (K–Ar) of 13.1 ± 0.4 Ma. Late-stage gold–quartz ore in the nearby Camp Bird – Pandora vein system and associated replacement ore were dated as about 10 Ma (10.5 ± 0.5 Ma, K–Ar age on adularia and 10.2 ± 0.3 Ma, K–Ar age on fine-grained K-feldspar, respectively) (Lipman et al. 1976). A dike emplaced after the main ore-stage in the Idradomo mine gave an age of 11.0 ± 1.2 Ma (fission-track age on zircon) (Lipman et al. 1976).

In the Idradomo mine, three N65°W-trending and steeply southwest-dipping quartz–sulfide–sulfosalts–oxide veins ranging from 0.3 to 1 m thick, referred to as the Dandy Nos. 1, 2 and 3 veins, respectively, intersect as en échelon offshoots the Basin vein, one of the nearly east–west-trending base-metal veins. The Dandy No. 1 and No. 2 veins are about 20 m apart, and the No.2 and No. 3 veins are about 30 m apart along the Basin vein drift. The Basin vein, averaging about 1 m wide, and the Dandy No. 1 and No. 2 veins locally contain specular hematite and Pb–Bi–Ag–(Cu) sulfosalts, as well as the simple sulfides; sulfides and sulfosalts are scattered throughout the veins. The sulfosalts are more common near or in association with galena. The Dandy No. 2 vein seems to contain less galena and more Pb–Bi–Ag–Cu sulfosalts than the Dandy No. 1 vein. No samples were collected from the Dandy No. 3 vein. All samples were collected along the Basin 2900 East Drift of the Idradomo mine by F. S. Fisher (U.S. Geological Survey) in 1972.

Darwin District, Inyo County, California

At Darwin, a sequence of upper Paleozoic limestones, shales and siltstones was intruded by a biotite-hornblende quartz monzonite stock of Jurassic(?) age. The Paleozoic rocks within about 1000 m of the stock generally are altered to calc-hornfels and to tactite consisting of calc-silicate minerals. The mine area is on the west limb of an overturned and partly inverted syncline between the Darwin stock on the east and the Davis thrust fault on the west. Most of the ore is massive and occurs in veins, bedded deposits and steep irregular replacement-type bodies. The ore consists of galena, sphalerite, pyrite, and lesser amounts of chalcopyrite, pyrrhotite, magne-

370 THE CANADIAN MINERALOGIST

DESCRIPTION OF LOCALITIES STUDIED

Dandy vein system, Idradomo mine, Ouray County, Colorado

The Dandy vein system is part of a richly productive group of ore deposits whose northwest-trending and circumferential structures formed at about 27.5 Ma on the northwest side of the Silverton caldera, in the western San Juan Mountains (Lipman et al. 1976). Sphalerite, galena, chalcopyrite and pyrite occur with lesser amounts of sulfosalt minerals in replacement ores in the Eocene Telluride conglomerate
tite, arsenopyrite, scheelite, tetrahedrite and Pb-Bi-Ag sulfosalts, some of which contain Se and Te. Gangue minerals are calcite, fluorite, host-rock calc-silicate minerals and a little jasperoid. Significantly, Czamanske & Hall (1975) recognized four different assemblages of sulfide minerals. The most common is a pyrite + sphalerite + galena ± chalcopyrite and scheelite assemblage that includes all the replacement ore in calc-silicate rock near the Darwin stock. The second association is a pyrite + pyrrhotite + magnetite + sphalerite + galena assemblage that occurs on the footwall of the Davis thrust fault and furthest from the Darwin stock. The third is fine-grained heavy galena ore containing abundant Ag, Bi and Se and minor associated pyrite. This type is represented by the high-grade ore exposed in the Jackass mine. A fourth type, which is minor, is a late Ag + Bi + Se + Te sulfosalt assemblage observed only on the 400 level in the Independence workings of the Darwin mine (Czamanske & Hall 1975). The geology of the Darwin district was summarized by Hall & MacKevett (1958, 1962). Detailed mineralogical studies were reported by Czamanske & Hall (1975).

Pequea mine, Lancaster County, Pennsylvania

Ag- and Bi-bearing galena from the old (pre-Revolutionary War) Pequea silver mine, Conestoga Township, Lancaster County, Pennsylvania, also were examined. Material collected in 1963 was provided by A. V. Heyl (U.S. Geological Survey). Tiny veinlets, and veins of quartz as much as 2 m thick, contain isolated crystals and lenses of galena up to several cm wide and thick. The Vintage Dolomite of Cambrian age is the host rock for the deposit. Minor amounts of pyrite, chalcopyrite and sphalerite are associated with argentiferous galena, along with various secondary minerals (Freedman 1972). A complete summary of the information concerning the Pequea mine area is given by Smith (1977).

The Leadville district, Colorado

The Leadville district is located on the west flank of the Mosquito Range in central Colorado. The ore deposits, which produced mostly silver, zinc, lead and gold, are principally blanket or manto replacement-type deposits, but in the eastern part of the district, many veins occur as well (Tweto 1968). The age of the primary mineralization is about 34 Ma (T. B. Thompson, written comm., 1987), and extensive oxidation took place in Miocene time. High-bismuth silver-gold ore (but not bismuth ore per se) was described by Chapman (1941), who identified in it galenobismutite, aikinite and alaskaite (a mixture), as well as Bi- and Ag-bearing galena [probably containing some exsolved matildite] (Chapman & Stevens 1933). These Bi-bearing minerals are associated with tellurides (e.g., altaite and hessite) and native gold, as well as native bismuth and tellurium. Chapman (1941) assigned all of these minerals to a paragenetically late "bismuth stage", which followed stages of galena, sphalerite and pyrite deposition. Evidence for a distinctly late stage of bismuth mineralization is best shown in the Greenback mine, along the Tucson-Maid fault (Chapman 1941).

The Wombat mine, Montezuma district, Colorado

The Montezuma district of central Colorado, located on the Continental Divide, south of Loveland Pass, is a small base-metal and silver mining district containing vein deposits associated with a Tertiary quartz monzonite porphyry stock transecting Precambrian gneisses (Levering 1935, Botinelly 1979). Ore minerals of the Montezuma district are dominantly galena, sphalerite, pyrite and tetrahedrite-tennantite, but a large variety of unusual sulfides and Pb-Bi-Ag-Cu sulfosalts occurs in the area (Botinelly 1979). On the basis of X-ray powder data only, Botinelly identified aikinite, matildite, beryl, galenobismutite, pavonite, hammarite, lillianite and schirmerite from the district. A variety of antimony- and arsenic-bearing sulfosalts also were identified in the district. Minerals identified from X-ray powder-diffraction data from the Wombat mine (T. Botinelly, pers. comm., 1983) include: pyrite, chalcopyrite, sphalerite, galena, bismuthinite, matildite, pyrargyrite, arsenopolybasite, 'schirmerite' and galenobismutite. In this study, vein material consisting of 1- to 3-mm veinlets of a grey sulfosalts coated by black sooty acanthite in quartz, collected by R. R. Cobban (Denver Museum of Natural History) from the Wombat mine dump on the south side of Lenawee Mountain, near Soda Spring, was determined to be an Sb-bearing member of the lillianite homologues.

MINERALOGICAL RESULTS OF PRESENT STUDIES

Results of our studies are organized in the following pages on the basis of geographic areas. Compositional data for mineral species and groups are presented for each area. Galena, PbS_{ss} and associated sulfosalts in the Dandy vein system, Idarado mine, Colorado, the Jackass mine, Darwin district, California, and the Pequea mine, Pennsylvania are described, followed by data for galena and associated sulfosalts from one locality at Leadville and for one Bi-Pb-Ag-sulfosalts from the Montezuma district, Colorado.

A good correlation exists between a and the sum of Ag, Bi and Sb contents in galena samples for which this information is available (Karup-Møller...
& Makovicky 1981, Foord et al. 1988). In the majority of cases, the ratio Bi/Ag is about 2:1 (wt.%), or 1:1 (atomic %), reflecting the coupled substitution $2\text{Pb} = \text{Bi}^{2+} + \text{Ag}^+$. However, in other cases, the ratio (wt.%) is close to either 0 or 1. For those samples, the total content of Bi + Ag + Sb is less than 0.5 wt.%. Where substantial substitution of Ag + Bi ± Sb is involved, the ratio is very nearly 2 and reflects the coupled substitution. Figures 1a and 1b show the compositions that we determined by electron microprobe as well as determinations from the literature, plotted along the galena-matildite join. It can be seen that some of the points show a slight excess in Bi. If this excess is real, it may be due to (a) vacancies, (b) exsolution of Bi-rich phases along [111], or (c) unit-cell twinning on (131) applied sparsely and randomly (Karup-Møller 1977, Makovicky 1977). As already stated, this phenomenon suggested to Karup-Møller (1977) that the Bi-excess in galena may be due to domain-type structures similar to those of the lillianite homologues.

Dandy vein system, Idarado mine, Ouray, Colorado

A suite of 12 polished sections from vein ore samples from two *en échelon* offshoots (known as the Dandy No. 1 and Dandy No. 2 veins) of the Basin vein in the Idarado mine was studied by Mosburg (1972). Minerals recognized by Mosburg are: quartz, chalcopyrite, pyrite, sphalerite, magnetite, hematite, silver and bismuth-bearing galena and three unidentified Pb-Bi-Ag-Cu sulfosalts. These same polished sections were provided to us by Frederick S. Fisher of the U.S. Geological Survey for additional mineralogical study. The unidentified sulfosalts occur only as inclusions and intergrowths in the galena, where they may also be in contact with other common sulfides. We also have documented the presence of matildite exsolved from high-temperature galena. Besides matildite, we have determined the presence of seven Pb–Bi–Ag–Cu sulfosalts (see Table 1).

Electron-microprobe analyses indicate that the most common previously unidentified sulfosalt is a member of the aikinite–bismuthinite series and is either aikinite or friedrichite. Two samples yield compositions indicating friedrichite and three others yield compositions intermediate between aikinite and friedrichite. X-ray powder-diffraction studies of this mineral by Mosburg (1972) gave a pattern resembling that of pure aikinite but with the lines slightly shifted to lower d-values. Her compositional data also indicate compositions between aikinite and friedrichite; friedrichite was not described until 1978, by Chen et al. (1978). Single-crystal X-ray studies will be necessary to determine whether the mineral is a non-stoichiometric aikinite or a nonstoichiometric friedrichite. Pring (1989) has shown that variation from ideal compositions in the aikinite–bismuthinite series is due to disordered intergrowth of krupkaite and aikinite units rather than solid solution. Figures 2a and 2b show a symplectic intergrowth of aikinite and Ag- and Bi-bearing galena, with one lath of an unidentified Pb–Bi–Ag sulfosalt hosted by the galena. Electron-microprobe data for seven sulfosalts are given in Table 1. These data sets, along with others, are plotted in terms of atomic percent on Figures 1a, b and 3.

Mosburg was unable to identify her second sulfosalt, a silver-rich variety and her third sulfosalt of intermediate Cu–Ag content, because of the then imperfect knowledge about the the gustavite–lillianite homologous series, and because of lack of sufficiently precise X-ray data.

In this study, only aikinite–friedrichite has been positively identified among Mosburg's three unidentified Pb–Bi–Ag–Cu sulfosalts from the Dandy vein system. Other sulfosalts (characterized by electron-
CHEMISTRY OF GALENA AND SOME SULFOSALTS

Microprobe analyses (Table 1) are present as grains too small for X-ray-diffraction studies. However, based on our current expanded knowledge (Craig 1967, Salanci & Moh 1969, Goodell 1975, Bente 1980, Mariolacos 1979, 1980) of the phase equilibria in the system Pb–Bi–Ag–Cu–S, and on our expanded mineralogical knowledge (Makovicky & Karup-Møller 1977a,b, Makovicky 1981, Karup-Møller & Makovicky 1981, Zak & Prachař 1981), identification of these other six sulfosalts may with some limits be based upon the microprobe compositional data and X-ray powder-diffraction data only.

One of the seven sulfosalts, found only in one (8C) of the ten sections examined, is a member of the lilianite–gustavite series, with the composition Gus_{0.8}Lil_{3.2} (Table 1, Fig. 1b). The mineral occurs as laths and subhedral grains in galena and aikinite–friedrichite. No exsolution is evident, and it is homogeneous in composition. The compositions of this and the other sulfosalts and galena from the Dandy vein system are shown in Figures 1b and 3. Similar material was found in one assemblage from Nye County, Nevada examined by Foord et al. (1988).

Another sulfosalt, found in the same section (8C), may be eskimoite(?) or heyrovskite_{es} (however, N_{chem} = 8.4, but this may be due to the influence of the host). The mineral occurs as sparse euhedral laths in aikinite and galena. The laths are 3 – 4 μm long and 1 μm wide. An average composition for the mineral is given in Table 1 and is shown on Figure 1b.

The composition of a possible copper analogue of eskimoite(?) or heyrovskite_{es} is given in Table 1, and plots along the N = 7 line (Fig. 1b), very nearly on the position of eskimoite (Karup-Møller 1977; calculated N_{chem} = 7.25). The mineral was found in one polished section (6D). Silver- and bismuth-substituted heyrovskite from Castlegar, B.C. (Karup-Møller & Makovicky 1981) has essentially the same composition as eskimoite from Ivigtut, Greenland (Makovicky & Karup-Møller 1977a,b) and may be considered dimorphous with eskimoite. Some of the Se-rich heyrovskite from Darwin, California (Czamanske & Hall 1975, Makovicky & Karup-Møller 1984) also has a composition very similar to that of eskimoite and schirmerite. If this phase is structurally an eskimoite, then it is the Cu-dominant equivalent species, analogous to pavonite and cupropavonite.

A mineral with the composition of heyrovskite_{es} also plots along the N = 7 line between eskimoite and Ag-free heyrovskite (Table 1, Fig. 1). The mineral was found in two sections (8C, 8G). Calculated N_{chem} values are 7.62 and 7.12, respectively. X-ray-diffraction studies of material from 8G show a mixture of a mineral with lines matching those of heyrovskite and minor galena.

One polished section (8Q) contains laths hosted by Ag- and Bi-bearing galena, which may be either vikingite (N = 5.5) or another member of the lilianite–gustavite homologous series with N = 6, e.g., treasureite series (calculated N_{chem} = 6.06). The laths measure approximately 2 x 10 μm and show no evidence of exsolution. The Dandy vein sulfosalts, owing to their extremely small grain-size, could not be studied by X-ray powder diffraction or single-crystal methods to firmly establish their identities.

The Ag- and Bi-bearing galena (PbS_{Ag}) from the Dandy vein system also was examined with the electron microprobe; average compositions for ten samples are given in Table 2 and Figure 1. It can be seen that all samples lie along the PbS–AgBiS₂ join. One “galena” from sample 6D has the composition Gal₆₀Mat₄₀; under high magnification, it is found to be an intergrowth of Ag- and Bi-bearing galena and matildite.

TABLE 2. COMPOSITION* OF GALENA AND GALENA-MATILDE INTERGROWTHS FROM THE DANDY VEIN SYSTEM, TIMBADO MINES, OURAY, COLORADO

<table>
<thead>
<tr>
<th>Sample</th>
<th>6A</th>
<th>6B</th>
<th>6D</th>
<th>6G</th>
<th>6H</th>
<th>6G</th>
<th>8B</th>
<th>8C</th>
<th>8D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mineral</td>
<td>Cu</td>
<td>Pb</td>
<td>Bi</td>
<td>Cu</td>
<td>Pb</td>
<td>Bi</td>
<td>Cu</td>
<td>Pb</td>
<td>Bi</td>
</tr>
<tr>
<td>no. of points</td>
<td>(4)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(2)</td>
<td>(2)</td>
<td>(2)</td>
<td>(2)</td>
<td>(2)</td>
</tr>
</tbody>
</table>

* as determined by electron microprobe. Mn, As and Fe sought but not detected.

TABLE 1. COMPOSITION* OF GALENA AND GALENA-MATILDE INTERGROWTHS FROM THE DANDY VEIN SYSTEM, TIMBADO MINES, OURAY, COLORADO

<table>
<thead>
<tr>
<th>Sample</th>
<th>6A</th>
<th>6B</th>
<th>6D</th>
<th>6G</th>
<th>6H</th>
<th>6G</th>
<th>8B</th>
<th>8C</th>
<th>8D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mineral</td>
<td>Cu</td>
<td>Pb</td>
<td>Bi</td>
<td>Cu</td>
<td>Pb</td>
<td>Bi</td>
<td>Cu</td>
<td>Pb</td>
<td>Bi</td>
</tr>
<tr>
<td>no. of points</td>
<td>(4)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(2)</td>
<td>(2)</td>
<td>(2)</td>
<td>(2)</td>
<td>(2)</td>
</tr>
</tbody>
</table>

* as determined by electron microprobe. Mn, As and Fe sought but not detected.

FIG. 3. Triangular plot (atomic) showing compositions of sulfosalt minerals examined in this study in terms of the system Pb–Bi–Cu. Symbols: solid circles: samples from Dandy vein system; open circle: aikinite from Leadville, Colorado; plus signs: end-member aikinite and friedrichite.

TABLE 2. COMPOSITION* OF GALENA AND GALENA-MATILDE INTERGROWTHS FROM THE DANDY VEIN SYSTEM, TIMBADO MINES, OURAY, COLORADO

<table>
<thead>
<tr>
<th>Sample</th>
<th>6A</th>
<th>6B</th>
<th>6D</th>
<th>6G</th>
<th>6H</th>
<th>6G</th>
<th>8B</th>
<th>8C</th>
<th>8D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mineral</td>
<td>Cu</td>
<td>Pb</td>
<td>Bi</td>
<td>Cu</td>
<td>Pb</td>
<td>Bi</td>
<td>Cu</td>
<td>Pb</td>
<td>Bi</td>
</tr>
<tr>
<td>no. of points</td>
<td>(4)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(2)</td>
<td>(2)</td>
<td>(2)</td>
<td>(2)</td>
<td>(2)</td>
</tr>
</tbody>
</table>

* as determined by electron microprobe. Mn, As and Fe sought but not detected.

FIG. 3. Triangular plot (atomic) showing compositions of sulfosalt minerals examined in this study in terms of the system Pb–Bi–Cu. Symbols: solid circles: samples from Dandy vein system; open circle: aikinite from Leadville, Colorado; plus signs: end-member aikinite and friedrichite.
Jackass mine, Darwin district, Inyo County, California

Samples of high-grade (11.5% Ag) Pb–Ag ore were collected by J. A. McGlasson (Western Nuclear Corp.) from a 10-cm-wide sulfide–sulfosalt vein exposed on the 150 level, 15 m north of the main shaft, and on an east-striking structure that cuts siliceous limestone altered to calc-silicate hornfels. The vein is considered to belong to the third stage of Czamanske & Hall (1975). Mineralized material consists of acanthite, Ag- and Bi-bearing galena, sphalerite, chalcopyrite, malachite, limonite, anglesite, cerussite, and scheelite in an iron and carbonate gangue with minor quartz (J. A. McGlasson, pers. comm., 1985). A 15-cm-wide channel sample that included some wallrock assayed: 32% Pb, 0.052% Zn, 0.12% Cu, 11.5% Ag and 8 ppm Au. An emission spectrographic analysis (N. M. Conklin, analyst, U.S. Geological Survey) of the “galena” from the sample gave: Fe 0.07%, Mg < 0.001%, Ca 0.2%, Mn 15 ppm, Ag > 2%, Au 20 ppm, Ba 5 ppm, Bi > 10%, Cu 1500 ppm, Pb > 10%, Sn 50 ppm, Sr 15 ppm, Te 1.5% and Si 0.3%. All other elements were not detected at their respective limits of determination.

Electron-microprobe and SEM examination of the material showed that galena comprises the majority of a mixture of galena, matildite and Ag-bearing 7L, following the nomenclature of Makovicky & Karup-Møller (1977a), which may be either eskimoite(?) or Ag-bearing heyrovskyite(?). However, the value for N_{chem} is equal to 8.1. The sections are visibly homogeneous even at high power (400 times), but BSE imaging techniques clearly showed three main sulfide–sulfosalt minerals to be present. X-ray-diffraction studies, using a 114.6-mm Gandolfi camera, confirmed the presence of these three minerals. Crystals were not large enough for single-crystal camera studies. Silver and bismuth contents in the galena host are highest in places farthest from exolved intergrowths of matildite and Ag-bearing 7L. Exsolution of the matildite and Ag-bearing 7L formed laths and linear bodies parallel to crystallographic directions, as well as irregularly shaped masses within the host galena. Some matildite can be seen to be clearly later than the Ag-bearing 7L because it veins this mineral and forms the cement in locally developed sulfide-sulfosalt microbreccia. Figure 4a shows an area of what appears in normal light to be optically homogeneous galena but, as seen in a BSE image, is in fact galena that encloses fine-scale exsolution lamellae and irregular and pinch-and-swell bodies of matildite. Figures 4b and 4c show galena enclosing Ag-bearing 7L and lesser amounts of matildite chiefly in the form of oriented exsolution-intergrowths. Figure 4b also shows barbs of matil-
dite on long laths of Ag-bearing 7L within a matrix of galena that is clean and free of any obvious exsolution products near the matildite and Ag-bearing 7L. In all cases, galena adjacent to Ag-bearing 7L is homogeneous in appearance; Ag and Bi contents are lowest near the Ag-bearing 7L and increase with distance from this mineral. This halo effect and depletion in Ag and Bi also were noted around grains of a similar mineral from the Dandy vein system (Mosburg 1972). Results of electron-microprobe analyses for the Jackass mine Ag-bearing 7L, galena and matildite are given in Table 3 and plotted on Figures 1b and 3.

Pequea mine, Lancaster County, Pennsylvania

Two samples of Ag- and Bi-bearing galena, collected by A. V. Heyl (U.S. Geological Survey) were analyzed by semiquantitative and quantitative emission spectroscopy (Table 4). Single-crystal precession-camera studies of the Pequea mine galena (AVH-3-8) did not show the presence of any intergrown minerals. Electron-microprobe analyses (average of 13 points) of sample no. AVH-63-Z yielded the following composition (weight %): S 13.6, Pb 84.2, Bi 1.35, Ag 0.75, total 99.90. Other elements were looked for and not detected: Sn, Fe, Te, Zn and Cu. This composition is shown on Figure 1a. The results for Ag and Bi agree well with those (see Table 4) determined by quantitative emission spectrography on a second portion of the sample (AVH-3-8). The second galena is uniform in composition; no other intergrown minerals were seen by BSE-imaging techniques. A structural formula, based on 1 sulfur atom, is: (Pb_{0.96}Ag_{0.02}Bi_{0.02})S.

Leadville district, Colorado

A sample of sulfide and sulfosalts ore labeled “kobellite” from an unspecified mine in the Leadville district, Colorado, and collected prior to about 1930, from the Lazard Cahn collection, was provided by Dr. W. W. Pinch (Pinch Mineralogical Museum, Rochester, N.Y.) for study. Based on the known distribution of Bi and Te in the district, and on comparison to Bi-rich ores described by Chapman (1941), the material likely came from one of three areas: Tucson mine, Iron Hill, or the Greenback mine (ore body), which was the source of the ‘galena’ analyzed by Chapman & Stevens (1933). No kobellite was found. Major minerals present are pyrite, chalcopyrite and Ag- and Bi-bearing galena. Matildite is exsolved from the galena and forms a reticulate network of submicrometer-sized elongate bodies along the octahedral cleavage. Some veinlets of matildite also are present (Fig. 5a). The galena adjacent to the veinlets is “cleaned up,” like the material from the Jackass mine. Additional matildite occurs as rounded inclusions within the galena. Small amounts of hessite, Ag₂Te, and a mineral with the composition Ag₉SnTe₅S₄ are present in clot-like myrmekitic aggregates intergrown with galena and exsolved matildite (Fig. 5b). Individual clots attain several hundred micrometers across, but individual grains of hessite and the Ag₈SnTe₅S₄ are < 50 micrometers across. This mineral is what has been called “tellurian canfieldite.” Optical properties are close to those reported for this mineral (Soeda et al. 1984). In polished section, the “tellurian canfieldite” looks like tetrahedrite–tennantite: a smooth grey, isotropic mineral lacking crystal form, twinning or cleavage. In air, some grains show weak reflection pleochroism from grey to yellowish grey. Anisotropy is weak without tint, and the mineral displays weak orange internal reflection. Mean reflectances at the four standard wavelengths are: 29.6% (470 nm), 28.6% (546 nm), 27.8% (589 nm), and 26.9% (650 nm).
Because of the paucity and small grain-size, X-ray-diffraction studies were not possible. "Tellurian canfieldite" is an uncommon mineral reported from only about seven localities world-wide (Karup-Møller & Pauly 1979, Soeda et al. 1984, Wimmers 1985). It has also been found from the A.Y. and Minnie mine in the Leadville district, Colorado, with a mineral assemblage similar to that of the material described here (G.K. Czamanske, pers. comm., 1988). Both canfieldite and "tellurian canfieldite" have been found at Panasqueira, Portugal (Wimmers 1985). Extremely sparse amounts of aikinite and two unidentified Cu–Pb–Bi–Ag sulfosalts are present in late-stage cross-cutting veinlets (Fig. 5a). One of the unidentified sulfosalts may be interpreted in terms of its chemistry to be Cu–Bi substituted galena. A structural formula, calculated on the basis of 1 S atom, is then: (Pb_{0.48}Bi_{1.52}Cu_{0.26}Te_{0.18}Ag_{0.72})₂S₂. Only two grains, each < 5 μm across, were found. Results of electron-microprobe analyses of the hessite, "tellurian canfieldite," galena–matildite intergrowths, aikinite and two unidentified sulfosalts are given in Table 5. Compositions of the aikinite, the galena–matildite intergrowths and the two unidentified sulfosalts are plotted in Figures 1b and 3.

A structural formula, based on 4 S atoms, for the "tellurian canfieldite" is: Ag_{7.6}Sb_{0.9}Te₂S₄. Virtually all other reported examples of "tellurian canfieldite" are deficient in Ag (i.e., < 8.00), as is the Leadville material. Further studies are in progress to determine if canfieldite and "tellurian canfieldite" are two distinct mineral species.

Wombat mine, Montezuma district, Colorado

Two polished sections prepared of vein quartz containing a lead-grey sulfosalt, collected by R.R. Cobban (Denver Museum of Natural History) from the dump of the Wombat mine on Lenawee Mountain, contain what appears to be a single-phase, homogeneous mineral whose composition plots on the ourayite series (N = 11) line. The mineral occurs as elongate and flattened prisms up to 0.5 mm in width and 2 mm in length or as intergrown clumps of crystals up to 3 mm across made up of interlocking sheaves of individual crystals. The exterior portion of all crystals is coated with aggregates of sooty black acanthite containing minor pyrite and chlorargyrite. The acanthite coating is up to 30–40 μm in thickness. The acanthite also veins the ourayite (?) crystals. The composition, in weight percent, of the mineral (average of 10 points) is: Sb 1.8(1), Te 0.1(1), S 16.3(3), Pb 31.5(5), Bi 39.2(6), Ag 11.4(5), total 100.3. A notable feature of this probable ourayite is its content of nearly 2 wt.% Sb. A structural formula calculated on the basis of 104 S atoms is: Ag_{21.6}(Bi_{38.4}Sb_{5.0}Ag_{41.4}Pb_{31.1})S₁₀₄. The composition of the ourayite (Ou₇₃) is shown in Figure 1b.
powder-diffraction data for this mineral are close to those given for ourayite. Additional studies are under way to fully characterize this mineral.

In polished section and in air, the mineral is white and shows no reflection pleochroism. Bireflectance is about 3%. Reflectance values for the four standard wavelengths are: \(R_1 \) 43.5%, \(R_2 \) 46.1% (470 nm), \(R_3 \) 43.0%, \(R_4 \) 46.0% (546 nm), \(R_5 \) 42.5%, \(R_6 \) 45.3% (589 nm), \(R_7 \) 42.5%, \(R_8 \) 45.0% (650 nm). Anisotropy is strong, from blue grey to cream-yellow. Under crossed polars, what appear to be macroscopic single crystals are seen to be a composite of intergrown crystals.

DISCUSSION AND CONCLUSIONS

Trace and minor elements in galena may be involved in an isomorphous substitution for Pb or S (or both), or may be present as inclusions of other minerals. Elements known to substitute for Pb are Bi, Ag, Sb, Hg and Cu. All of these elements have been found in amounts greater than 1 wt.%. Galena solid-solution (PbS\(_x\)) along the galena–matildite join involves coupled substitution of Ag\(^+\) and Bi\(^{3+}\), but other combinations also are possible: Ag\(^+\) and Sb\(^{3+}\), Hg\(^+\) and Bi\(^{3+}\), and possibly Cu\(^+\) and Bi\(^{3+}\). Galena from areas containing Ag and Bi should be examined with particular care to determine if PbS\(_x\) exists or other minerals are present. Multiple generations of galena serve as an aid in deciphering different stages of mineralization. The occurrences of multiple-generation galena are restricted to base- and precious-metal deposits where sufficient amounts of Ag and Bi are both present in lead-rich environments. In these environments, galena is thought to originate by either incomplete exsolution resulting from rapid cooling, or by multiple heating events in varied geochemical (including hydrothermal) environments.

Abundant data, such as those from phase equilibria (e.g., Craig 1967), fluid inclusions (e.g., Nedachi et al. 1973), and stable isotopes, indicate that most of the mineral assemblages belonging to the system Ag–(Cu)–Pb–Bi–S have crystallized at temperatures between 200 and 400°C. Galena + Pb–Bi–Ag(Cu) sulfosalt assemblages at Ivigtut, Greenland are interpreted to have crystallized at 300 to 550°C (Karup-Møller 1973, 1977, Karup-Møller & Pauly 1979). Galena and associated sulfosalts in the Darwin district, California, were interpreted to have crystallized at a temperature greater than 350°C (Czamanske & Hall 1975).

Bi and Sb contents in 204 samples of galena from 84 deposits representing a depth range of 300 to 5000 m were examined by Malakhov (1968). Malakhov concluded that the ratio Sb:Bi principally reflects the temperature of crystallization of the galena. Very low Sb:Bi values, of less than 0.06, are characteristic of high-temperature galena; higher Sb:Bi values, in the range 6.0 to 13, are typical of low-temperature galena.

The galena samples studied here are mostly from districts for which geological and laboratory (fluid-inclusion and stable isotope) evidence indicates multiple episodes of mineralization at temperatures of about 300–500°C and at more than 1 km depth (e.g., Darwin: Czamanske & Hall 1975; and Red Mountain – Idarado: Mayor & Fisher 1972; Pequoa had only one stage). The Sb:Bi value in these samples of galena is low, which suggests formation at a relatively high temperature and considerable depth. Galena from the Jackass mine (Darwin) has a value of <0.07, that from the Dandy vein system (Red Mountain – Idarado) a value of <0.03, and that from the Pequoa silver mine, a value of <0.00X. Galena from the Leadville district has an Sb:Bi ratio of about 0.01. The Jackass, Dandy and Pequoa samples are from vein-type deposits hosted in sedimentary rocks, although in both the Darwin and Red Mountain – Idarado districts, galena is found also in replacement deposits. The Leadville sample represents the "bismuth stage" of vein mineralization, but galena at Leadville occurs also in replacement deposits in limestone (Tweto 1968). Additional studies of galena that occurs in replacement deposits formed during other stages of mineralization in these districts are needed to test whether or not Sb:Bi values would provide more definitive evidence of separate stages.

Values of the ratio Sb:Bi for galena from the Round Mountain – Manhattan area range from <0.0001 to 25 (Foord et al. 1988). The values show a wide variation and, moreover, two populations, one with values >2 and the other with values <1. For example, samples of galena from one locality (Lead–Silver King prospect) have two distinct chemical compositions, based on major-, minor- and trace-element contents (Foord et al. 1988). Two samples (DRS–79–18, DRS–74–142b) have low Ag and Bi contents and elevated Sb contents (suggestive of relatively low T and shallow depth) compared to that of a third sample (DRS–74–142a), which has high Ag and Bi and low Sb (suggestive of relatively high T and greater depth). Thus, two generations of galena appear to be present, one a low-temperature form and one a high-temperature form.

Ketchikov (1958) found two generations of galena in a polymetallic skarn deposit in the Soviet Far East: 1) high Bi, early, and 2) no Bi, late. However, within the first generation of galena, great heterogeneity (as much as 2 wt.% Bi difference) was found from closely spaced samples and from the same type of ore. This heterogeneity was attributed to inclusions of galenobismutite. The two generations of galena from the Kti-Tberda deposit (Ontoyev et al. 1982) deposited in Paleozoic and Mesozoic times, respectively, are another example of two distinctly separate episodes of mineralization.
Major questions that still remain to be answered are why and how high-temperature (>215°C) galena solid-solutions of different Ag and Bi contents exsolve or become intergrown with the wide variety of observed Bi–Pb–Ag(Cu) sulfosalts. Intergrowths of galena and β-matildite alone are moderately common and represent exsolution from an originally homogeneous higher-temperature PbS₄. If an excess of Bi is present, any number of the Pb–Bi–Ag sulfosalts may crystallize with the PbS₄ or exsolve from it as intergrowths. Should Cu also be present, a still greater number of possible sulfosalts may coexist with the PbS₄. Thus at the Jackass mine, Darwin district, an excess of Bi at the time of PbS₄ crystallization resulted in coprecipitation or exsolution of eskimoite(?). Exsolution of matildite, β-AgBiS₃, from the PbS₄ occurred below about 215°C.

In summary, available chemical data for galena coupled with information on the geological environments of its formation indicate that galena with or without associated Pb–Bi–Ag(Cu) sulfosalts assemblages may be used as an 'indicator' of multiple and chemically complex stages of mineralization, and as a possible geothermometer. Complete mineralogical study must be made of Bi–Pb–Ag(Cu) sulfosalts to ensure correct identifications and conclusions. In addition to optical studies and microprobe analyses, high-magnification SEM studies and single-crystal X-ray-diffraction studies also are necessary to correctly characterize the sulfosalts in question.

ACKNOWLEDGEMENTS

The authors thank Nancy M. Conklin (U.S. Geological Survey) for emission spectrographic analyses of galena and other minerals. Special chalcophile-element emission spectrographic analyses were done by C. Heropoulos (U.S. Geological Survey). The staff of the U.S. Geological Survey library in Denver was most helpful in obtaining many of the Russian language publications used in this work. We gratefully acknowledge the careful and perceptive reviews of B. F. Leonard and R. C. Erd, both of the U.S. Geological Survey, as well as those of Emil Makovicky and one anonymous reviewer. We also thank two anonymous reviewers for their comments on an earlier version of this manuscript.

REFERENCES

HODA, S. N. & CHANG, L. L. Y. (1975): Phase rela-
tions in the systems PbS-Ag$_2$S-Sb$_2$S$_3$ and PbS-Ag$_2$S-Bi$_2$S$_3$. Am. Mineral. 60, 621-633.

VAN HOOK, H. J. (1960): The ternary system Ag₂S–Bi₂S₃–PbS. *Econ. Geol.* 55, 759-788.

Received June 22, 1988, revised manuscript accepted March 29, 1989.