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ABSTRAcT

Chlorite in the alteration zone around the Cigar Lake
uranium deposit in the Athabasca basin, northern Saskat-
clewry-, has the composition : (Al2.s6Mg1.e2Feo.rJ(Si:.:o
Alo.7dO1o(OH,F)6. This is a di-trioctati6ltrai--varietv,
sudoite, with a IIb polytype structlrre, and characterized
Qy an intense @6 reflection at 4.74 A and a d(060) of 1.5t5
A. Abundant sudoite occurs in a well-defined halo around
the ore and probably formed at the expense of illite and
kaolinite, during hydrothermal alteration associated with
uranium mineralization.

Keywords: sudoite, di-trioctahedral chlorite, illite, uranium,
Cigar Lake, Athabasca basin, Saskatchewan.

SOMMAIRE

La chlorite de la zone d'alt€ration autour du gisemenr
d'uranium de Cigar Lake, dans le bassin d,Athabasca du
nord de la Saskatchewan, a comme composition
(Al2.65Mg1.e2Fe6.t3)(Si330Al0.7o)O10(OH,F)s. C,est une
sudoite, chlorite di-triocta€drique, i structure polltypique
IID; une rdflexion 006 {e forre intensit6 i 4.74 A et une
valeur d(060) de 1.515 A sont typiques de cetre vari€td de
chlorite. La sudoite, abondante, est distribu€e dans une
aur6ole bien d6finie autour de la zone min6ralis€e, et aurait
remplac€ l'illite et la kaolinite lors de l,altdration hydro-
thermale associde d la min6ralisation en uranium.

(Traduit par la Rddaction)

Mots-clds: sudoite, chlorite di-triocta6drique, illite, ura-
nium, Cigar Lake, bassin d'Athabasca, Saskatchewan.

Columbia (Brydon et al.196l). Although Hoeve &
Quirt (1984) reported the occrurence of sudoite from
hydrothermal, unconfonnity-type uranium deposits
and sedimentary rocks of the Athabasca Group in
the Athabasca basin of Saskatchewan, no structur-
al or chemical data were presented. The purpose of
this paper is to provide mineralogical details of
sudoite from one such setting of the Athabasca ba-
sin, the Cigar Lake uranium deposit.

NovreNcreruRE

Dioctahedral chlorites have been subdivided into
three types, di-trioctahedral, di-dioctahedral and a
poorly crystallized type @ggleton & Bailey 1967).
The first, with about 5 octahedral cations per for-
mula unit, Oro(OH)e, contains a dioctahedral 2:l
silicate layer and a trioctahedral interlayer hydrox-
ide sheet. Examples of di-trioctahedral chlorites
include sudoite and the Li-bearing variety cookeite.
Theoretically, this first type could contain a triocta-
hedral 2:l layer and a dioctahedral interlayer hydrox-
ide sheet, but no examples have been reported. The
second type has a dioctahe dral 2:L silicate layer and
a dioctahedral interlayer hydroxide sheet and con-
tains slightly more than 4 octahedrally coordinated
cations per formula unit. An example of di-
dioctahedral chlorite is donbassite. The poorly crys-
tallized variety (type 3) is similar to the di-
trioctahedral and di-dioctahedral types, but has an
incompletely developed interlayer.

Dioctahedral chlorites are identified bv their more
INTRODUCTIoN intenseQ06 reflection (based on a2-layer structure)

at 4.74 A with resDect to the 004 reflection at 7.1
Sudoite, a di-trioctahedral chlorite, occurs in a A, and ad(060) between l.49and l.5l A. Incon-

wide variety of environments, for example in
hydrothermal deposits such as the iron ores of the
Tracy mine, Michigan (Bailey & Tyler 1960) and
Kuroko-type deposits in the Kamikita (Ilayashi &
Oinuma 1964, Sudo & Sato 196f), Itaya (Henmi &
Yamamoto 1965) and Shinyo (Fujii el ql. l97l)
deposits, Japan. Sudoite also occurs in sedimentary
rocks (Schultz 1963, Miiller 1967), in low-grade meta-
morphic terranes (Fransolet & Bourguignon 1978,
Kramm 1980, Franceschelli et ol. 1989) and in the
AB horizon of the Alberni soil series in British
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trast, the more common trioctahelral chlorites have
a d(060) betlveen 1.53 and 1.56 A, with the r5rflec-
tion at 7.1 A stronger than the one at 4.74 A.

GEoLoGIcAL SSTTTNc

The Cigar Lake uranium deposit occurs within the
Athabasca basin of northern Saskatchewan (Fig. 1),
near the unconformity between Aphebian graphitic
metapelites of the Wollaston Group (Domain) and
Helikian gritty sandstones of the Manitou Falls For-
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Ftc, 1. Regional geology of northern Saskatchewan and location of study area (after
Macdonald & Broughton 1980).

mation of the Athabasca Group. The deposit is about
2240 m long, trends in an E-W direction, and varies
from 20 to 105 m in width. It is the world's largest
and richest known uranium deposit, with estimated
reseryes of 150,@0 tonnes of uranium metal, with
an average grade of 890 U3Os (Bruneton 1987).

The predominantly grey to purple sandstones host-
ing the deposit contain detrital quafiz, altered mus-
covite, relict biotite, zircon, ilmenite and neoformed
hematite set in an illite and kaolinite matrix (Brune-
ton 1987). The ore deposit, at a depth of410 to 450
m, is surrounded by a zoned, hydrothermal halo

(Fig. 2). From the outside in toward the ore, the halo
consists of: (1) a grey alteration zone marked by a
minor decrease in quartz content and increase in clay
mineral content, Q) a qtnrtz-rich zone (quartz-
cemented cap), (3) a grey alteration zone character-
ized by less quartz than (l) and up to 3090 clay
(altered sandstone), (4) a massive clay zone (clay-rich
halo), and (5) a hematite-rich clay zone that directly
encloses the ore @ouques et ol. 1986, Bruneton
1987). Hydrothermal alteration of the basement has
been observed up to 100 m below the ore body.
According to Bruneton (1987), this alteration masks
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Ftc. 2. Schematic cross-section of the alteration halo surrounding the Cigar Lake uranium deposit. The ore deposit*
is overlaiir by the Manitou Falls Formation of the Athabasca Group (after Fouques et al. 1986, Cramer 1986).

the origirial, pre-Athabasca paleoweathering, which
was described elsewhere in the basin by Hoeve & Sib-
bald (1978) and Macdonald (1985).

Sudoite occurs in zones above and below the ore
deposit and is more abundant near the unconformify.
Trioctahedral Fe-chlorite or Mg-Fe-chlorite is
present within the ore zone. In contrast, Hoeve e/
al. (1981) reported that unaltered sandstones of the
Manitou Falls Formation usually contain equal
amounts of kaolinite and illite, but no sudoite.
Sudoite, however, is abundant in other units, espe-
cially the Upper Wolverine Point Formation, which
overlies the Manitou Falls Formation. Macdonald
(1980, 1985) reported that a "Mg-rich" chlorite
{(Fes.6rMg,.rjAl3.2sXSi3.5Ab.j)Or,(OH)81 with about
5090 dioctahedral character occurs in the green alter-
ation zone of the paleoweathering profile (regolith)
developed below the Athabasca unconformity.

MATERIALS AND METHoDS

A suite of 152 drill-core samples from twelve bore-
holes at the Cigar Lake site was selected for a detailed
clay-mineral - trace-element study. The suite
included samples from a borehole distal to the ore
deposit. Fifty of the selected samples are indurated
orthoquartzite sandstones, 95 are variably altered
sandstoile, and 7 are altered basement specimens,
which are probably metapelites. The altered sand-
stone and basement samples contain up to 8070 clay-

and silt-sized material, with approximately 23Vo con-
taining sudoite.

The sudoite-bearing samples were selected from
the 440.6-m (53-14) and 444.0-m (53-15) depth of
borehole WDGI-53 (Fig. 3) for detailed mineralog-
ical analysis. This borehole intersects the ore zone
at a depth of 427.0 - 436.5 m and the unconformity
at436.0m. Samples 53-14, used for detailed X-ray-
diffraction analysis, and 53-15, used for microprobe
analysis, are altered basement samples of the Wol-
laston Group.

The <2 pm clay-size fraction was separated by a
combination of sedimentation and centrifugation.
X-ray patterns of nonoriented and oriented samples
were recorded on a Scintag PAD V automated pow-
der diffractometer equipped with a graphjte
monochromator, using Co radiation O : 1.7902 A).
The oriented sample was prepared by drying 30 mg
of the sample suspended in I mL of water on a 25
mm x 30 mm glass slide. Glycerolation of a dupli
cate sample was achieved by substituting I mL of
2r/o glycerol-water solution for water in the above
procedure. A Guinier - de Wolff focusing camera
(transmission type) was used to record nonbasal
reflections, using Co radiation.

A polished thin section of a plastic-impregnated
sample (Sheldrick 1984) was used for microprobe
analyses on a CAMEBAX wavelength-dispersion
microprobe,'operating at 15 kV accelerating voltage,
with 30 nA regulated beam current. The analytical
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Frc. 3. Lithology and clay composition for samples taken
from borehole WDC1-53. Lithology taken from drill
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data on sudoite were reduced with a mica routine
using a phlogopite standard.
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X-ray diffraction

X-ray-diffraction data obtained using a random
mount of sample 53-14 are presented in Table l.
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Relative intensities of peaks were obtained by direqt
measurements on the diffractogram using the 4.7+A
reflection as 10090 intensity. Illite, identifieclby its
10.07, 5.01, 3.345 and 2.008 A basal reflections,
makes up about 6090 of the sample, as deteimined
by the method outlined in Hoeve et al, (1981) and
Mellinger (1985). Data for other sudoite:samplls
from the Ottr6 and Tracy mines, as reported by
Bailey & Lister (1989) and Egeleton & Bailey (1967),
respectively, are shown in Table I for comparison.
Eggleton & Bailey (1967) determined that sudoirc
associated with the Tracy and Kamikita deposits has
a chlorite IIb structure. The sudoite from the latter
deposit was originally described by Hayashi, &
Oinuma (l 964). Comparison of the d-values of sam-
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ple 53-14 with the patterns of tlese samples, in con-
junction with criteria from Bailey (1980), suggests
that sample 53-14 contains a IID polytype as well.
A Guinier - de Wolff photograph of the sample
showed the 060 reflection to be a doublet of 1.515

"i.aad '1503 A, the latter due to admixed illite. These
.values are consistent with a dioctahedral structure.
' Figure 44 shows the diffractometer trace of an
oriented aggregate of 53-14. Both illite and sudoite
exhibit a rrell-developed series of @/ reflections. No
expansion resulted from glycerol treatment. The 002
reflection increased in intensity by a factor of seven
after heating to 550^oC for 0.5 hours and decreased
in spacing to 13.8 A. The 008 peak remained, but
the @4 and 006 peaks were barely detectable. After
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heating to 700oC for 0.5 hours, the 002 reflection
was reduced in intensity by a factor of 2.5 and
decreased in d-value to 13.0 A. There was no observ-
able change in the illite following glycerol and heat
treatments.

In order to examine the sudoite structure more
closely, the illite peaks were graphically 'temoved"

from the sample diffractogram. The illite in sample
53-14 was compared to illite in the <2 pm separates
from the altered sandstone samples above the uncon-
formity and to an illite sample from Eldorado,
Saskatchewan (Kodama & Dean 1980). illite inten-
sities and d-values in 53-14 are more similar to the
Eldorado reference sample than to the illite from

above the unconformity. Subtraction of the reflec-
tions of the Eldorado illite shown in Figure 4B from
the reflections shown in Figure 4,A. resulted in a
differential X-ray-diffraction pattern for sudoite
(Fie. 4C).

Measurements of the d-values of ten basal reflec-
tjons gave an average d(002) value of 14.19 J 0.05
A (Table 2). The average d(00/) value is similar [o
data reported for sudoite from Kamikita (14,21 A;
Sudo S Sato 196Q, Matsqmine and Uchinotai (14.18
+ 1A and 14.16 + I A, respectively; Shirozu &
Higashi 1976). In order to compare observed inten-
sities with the published data, it was necessary to con-
vert observed intensities to structure factors (F). The
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observed intensities were corrected for transparency
and Lorentz-polarization effects following the
method of Alexander (1969). Observed F values for
the ten basal reflections show good agreement with
values published by Sudo & Sato (1966) and Shirozu
& Higashi (1976), which confirms the di-
trioctahedral nature of this mineral.

E lect ro n- microprobe onalyses

The chemical composition (average of 8 analyses)
of sudoite in sample 53-15 is presented in Table 3.
Chemical analyses of other samples of sudoite from
low-grade metamorphic and hydrothermal environ-
ments are shown for comparison. The SiO, content
tends to be higher than the theoretical composition
and that of the other sudoite samples. AI and Mg
contents are comparable, but total Fe is generally
lower and K higher than in the other samples.

The small amount of K and greater amount of
SiO, possibly indicate an illite impurity in the sam-
ple analyzed. A back-scattered electron image from
sample 53-15 (Fig. 5) illustrates the textural relation-
ship between sudoite and illite: sudoite occurs as a
fine-grained matrix, and illite occurs both as matrix
and coarse clastic grains. Sudoite appears to pene-
trate cleavage planes at the ragged edges of fine-
grained illite. Coarse illite grains contain rutile lenses

along cleavage planes, possibly indicating a biotite
precursor (c/. Mellinger 1985). Accessory goyazite
is present in association with sudoite.

Corrections were made for illite contamination
assuming a composition of (K,Na)Al2(Si3At)Or0
(OH)r; the minor elemeirts Ba, Ca, Cr, Mn,'Ni and
Ti were neglected in the final calculation. If we
assume that iron is present as Fd*, the calculated
structural formula is:

(Alz.ooMgr.szF{.lrXSir.sAlo.?0)O r0(OH,F)8.

The general formula for Al-rich chlorite is
(Al,Fe3 + 

)a-r,(Mg,F e2 * 
) 
",, 

*:yzz(Sia-ADO ro(oHh
(Sudo & Sato 1966). Ifthe chlorite is dioctahedral,
then the total number of octahedrally coordinated
cations is less than 5, and 0 < (x + y) < 2. The
sum of octahedral cations for sample 53-15 is 4.91,
and (x + y) is 1.84. The proportion of rvAl, x, is
0.70, and the total trivalent cations, y, is I .14. If iron
is present as Fe3+, and Cr, Mn, Ni and Ti are
included in the calculations, as these elements can
be accommodated in the structure, then the total
number of octahedrally coordinated cations would
be 4.87, and (x + y) would be 1.75. The difference
that results from the assumption of the valency of
iron is small; in either case, these data confirm that
the mineral is of the di-trioctahedral type.

Frc. 5. SEM photomicrograph of illite (I) wirh sudoite (S). Sudoite appears ro pene-
trate along frayed edges of the illite grain. Rutile @) occurs along cleavage planes
of illite; goyazite (G) is associated with sudoite. Black areas are holes (back-scatter
image; long bar scale = 100 pm).
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D$cussroN

Chlorite in borehole WDG1-53 is the Al-rich, di-
trioctahedral variety, sudoite. It is structurally similar
to sudoite from hydrothermal, dragenetic and low-
grade metamorphic environments.

In'the Cigar Lake area, illite crystallinity indices
(Kiibler 1968), intensity ratios t{002)/(001)1, com-
position (hydromuscovite) and polytype data (mix-
tures of 2M, And 37) suggest prograde regional dia-
genesis to anchizonal conditions [r'.e., transitiou
between high-grade diagenesis and low-grade
metamorphism, as described by Dunoyer de Segon-
zac(1970)1(Perc|alet aL 1988). Accordin$ to Hun-
ziker (1986), Al-chlorite is produced by reactions
between kaolinite and minor amounts of Fe and Mg
near the diagenetic-anchizonal boundary. Illite-
smectite mixed-layer minslals, which also can be
precursors of chlorite, generally persist to higher tem-
perature$ than kaolinite (Hunziker 1986).

Although sudoite can form under high-grade
diagenetic conditions, it is more commonly inferred
to be of hydrothermal origin, based on ils associa-
tion with ore minerals @ailey & Tyler 1960, Hayashi
& Oinuma 1964) and its high-temperature structural
type (IIb polytype; Brown & Bailey 1962, Fransolet
& Bourguignon 1978). Abundant sudoite occurs in
a well-defined envelope around the ore at Cigar
Lake, whereas in the surrounding Manitou Falls For-
mation, only illite and kaolinite are present. This
relationship suggests that sudoite at Cigar Lake
formed at the expense of illite and kaolinite; the age
relationship is well illustrated by textures showing
replacement of illite by sudoite (Fig. 5).

Textures indicating late replacement of illite by
chlorite also are observed in altered Athabasca
Group rocks at the Maurice Bay uranium deposit
(Mellinger 1985). In a similar paragenetic sequence
from the Jabiluka unconformity-type uranium
deposit, Australia, Nutt (1989) reported complex tex-
tures indicating repeatgd episodes of chloritization
following sericitization.

Based on these examples, late chlorite, including
sudoite, appears to be a cornmon associate of
hydrothermal uranium deposits. Its origin in rela-
tion to ore-forming fluids is poorly understood and
warrants additional study. Further investigations of
sudoite in the Athabasca basin associated with the
Upper Wolverine Point Formation (illite-smectite-
bearing unit) and other formations (e.9., Lazenby
Lake and Fairpoint) in barren areas would help to
resolve questions of the regional extent and condi-
tions of chloritization.
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