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ABSTRACT

The alkali-deficient tourmaline, foitite [�(Fe2+
2Al)Al6Si6O18(BO3)3(OH)3(OH)], and associated hematite occur in quartz

veins that cut the geon 17 Baraboo Quartzite in south-central Wisconsin. The bluish green prismatic crystals of tourmaline are
chemically zoned from core to rim, with the cores being very aluminous, highly alkali-deficient and, in one sample, relatively
magnesian. Electron-microprobe analyses demonstrate that the tourmaline has a prevailing alkali-deficiency in the X site, which
ranges from 49 to 87%, with a mean of 73%, making this the most alkali-deficient tourmaline reported to date. In one sample, high
contents of Al (up to 7.7 Al apfu) and high cation-charge excess demonstrate the likely existence of a dominant “oxy-foitite”
component [�(Fe2+Al2)Al6Si6O18(BO3)3(OH)3(O)], which is the first recognition of such in a natural occurrence. The wide range
of chemical zoning in the tourmaline is most consistent with substitutions represented by the �Al(NaR)–1, AlO[R(OH)]–1,
FeAl–1 and MgFe–1 exchanges, where R symbolizes Fe + Mg. The alkali-deficient character of the Baraboo tourmaline largely
reflects the alkali-depleted and chemically mature composition of the host Baraboo Quartzite, but core-to-rim compositional
variation in the tourmaline records the evolving nature of the attendant hydrothermal fluid, from a Na-poor, relatively alkaline
early stage to a more sodic, acidic later stage.
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SOMMAIRE

On trouve la foïtite [�(Fe2+
2Al)Al6Si6O18(BO3)3(OH)3(OH)], pôle du groupe de la tourmaline déficitaire en alcalins, en

association avec l’hématite dans des veines de quartz recoupant la quartzite de Baraboo (géon 17) dans le centre-sud du Wiscon-
sin. Les cristaux vert bleuâtre prismatiques de tourmaline sont zonés du coeur vers la bordure; le coeur est fortement alumineux,
déficitaire en alcalins et, dans un échantillon, magnésien. Les analyses à la microsonde électronique montrent que la tourmaline
accuse un déficit important au site X, entre 49 et 87%, en moyenne 73%, faisant de ce groupe de compositions le plus déficitaire
en alcalins qui soit. Dans un échantillon, les teneurs élevées en Al (jusqu’à 7.7 Al atomes par unité formulaire) et l’excédent en
charges positives démontrent l’existence probable d’une composante “oxy-foïtite” [�(Fe2+Al2)Al6Si6O18(BO3)3(OH)3(O)], ce
qui est en fait le premier exemple à être signalé dans la nature. On interprète l’étendue de la zonation chimique dans la tourmaline
en termes de substitutions représentées par les échanges �Al(NaR)–1, AlO[R(OH)]–1, FeAl–1 et MgFe–1; ici, R représente Fe +
Mg. Le déficit en alcalins de la tourmaline de Baraboo témoigne surtout du déficit en alcalins et le caractère chimiquement mature
de l’hôte, la quartzite de Baraboo. La zonation des cristaux résulterait de l’évolution du système hydrothermal, au départ à faible
teneur en Na et relativement alcalin, et vers la fin plus sodique et plus acidique.

(Traduit par la Rédaction)

Mots-clés: foïtite, “oxy-foïtite”, quartzite de Baraboo, Wisconsin, Etats-Unis.
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INTRODUCTION

Alkali-deficient tourmaline, in which the X site is
incompletely filled by Na or Ca, occurs in alkali-poor
and aluminum-rich geological settings, in rocks that
have interacted with hydrothermal fluids. The geologi-
cal settings include certain types of granitic pegmatites
(Pezzotta et al. 1996, Aurisicchio et al. 1999, Selway et
al. 1999, Dutrow & Henry 2000, Novák & Taylor 2000,
Selway et al. 2000), hydrothermally altered volcanic and
sedimentary rocks (Foit et al. 1989, Jiang et al. 1997,
Hawthorne et al. 1999, Pesquera et al. 1999), hydro-
thermal quartz veins (Francis et al. 1999, Yavuz et al.
1999, Henry et al. 2002), and metakarstbauxite (Henry
& Dutrow 2001). In these occurrences, three species of
alkali-deficient tourmaline are important: foitite,
magnesiofoitite, and “oxy-foitite” (Table 1). Foitite,
which was formally described and named by Mac-
Donald et al. in 1993, is the alkali-deficient analogue of
schorl, the common tourmaline. A magnesian counter-
part, magnesiofoitite, which was recognized by
Hawthorne et al. in 1999, is the alkali-deficient analogue
of dravite. There is also a theoretical X-site-vacant
deprotonated end-member of the tourmaline group,
“oxy-foitite”, which has been proposed by Hawthorne
& Henry (1999).

During a comprehensive investigation of Proterozoic
rocks in the Baraboo Range, Wisconsin, it was deter-
mined that highly alkali-deficient tourmaline is the char-
acteristic tourmaline in quartz veins in the Baraboo
Quartzite (Medaris & Fournelle 2000). Because of the
relative chemical simplicity of the quartz veins, constitu-
ent tourmaline, and surrounding quartzite, it is feasible
to evaluate the nature and range of substitutions that
control X-site vacancies in tourmaline, to assess the
possible existence of “oxy-foitite” in a natural setting,
and to infer the nature of fluids associated with quartz
veins in the Baraboo Quartzite.

OCCURRENCE

The geon-17 Baraboo Quartzite is a 1500-meter-
thick sequence of supermature quartz arenite and sub-

ordinate siltstone and mudstone, which was transformed
to quartzite, argillite, and phyllonite during 1.63 Ga low-
grade metamorphism (Medaris et al. 2003). The
Baraboo metasedimentary rocks, which are composed
essentially of SiO2, TiO2, Al2O3, Fe2O3, and H2O, have
a Chemical Index of Alteration (CIA) that ranges from
96.8 to 98.8, ranking them among the most chemically
mature sedimentary rocks in the geological record [CIA
is defined as 100*molar Al2O3/(Al2O3 + K2O + Na2O +
CaO)]. Such a mature chemical composition is reflected
in the mineralogical composition of the metasediment-
ary rocks, which consist predominantly of quartz and
pyrophyllite, accompanied by accessory hematite and
rutile.

Quartz veins, which likely originated during the 1.63
Ga metamorphism and deformation, are relatively abun-
dant and widely distributed in the Baraboo Quartzite.
The quartz veins are composed almost entirely of quartz,
except for local concentrations of tourmaline and specu-
lar hematite. In addition, quartz veins that cut a paleosol
at the base of the Baraboo Quartzite contain muscovite,
which was introduced after formation of the quartz veins
by regionally extensive, but stratigraphically restricted,
migration of brine at 1.45 Ga (Medaris et al. 2003).
Three samples of tourmaline-bearing quartz veins from
low in the Baraboo stratigraphic section were selected
for investigation: Sample 1 is a folded, 1.5-cm-thick
quartz vein in the regolith of the paleosol underlying
the quartzite in Baxter Hollow (NW¼, Sec33, TllN,
R6E), Sample 2 is a 3-cm-thick quartz vein in quartzite
in Baxter Hollow (SE¼, Sec29, T11N, R6E), and
Sample 3 is a 3-mm-thick, tourmaline-rich quartz vein
that cuts quartzite and metapelite in Pine Hollow (NW¼,
Sec35, TllN, R6E).

The three samples analyzed are mineralogically
simple, consisting of quartz, specular hematite, and tour-
maline, which typically occurs in clusters of small
(<1 mm), randomly oriented, prismatic crystals (Fig. 1).
The tourmaline is strongly pleochroic, with O medium
bluish green and E almost colorless. Tourmaline in
Sample 3 is optically zoned, such that grain rims have a
darker color than the cores.

IMAGING AND ANALYTICAL PROCEDURES

Imaging

The character of chemical zoning in the Baraboo
tourmaline was revealed by back-scattered electron
(BSE) images and element-distribution maps. Because
compositional zoning in different samples involves dis-
tinct patterns of variation among the light elements, Na,
Mg, and Al, BSE images alone are insufficient to portray
the precise nature of zoning, and element-distribution
maps are required. BSE images and element-distribu-
tion maps were acquired at 15 keV with 30 nA beam
(Faraday cup) current. Element-distribution maps were
acquired at 2000� magnification, 0.05 s dwell time per
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pixel, and 2 �m/pixel spacing. We utilized a combina-
tion of WDS and EDS channels, and employed WinEDS
hardware/software for acquisition of the energy-disper-
sion spectra (EDS) and MicroImage software to produce
mosaics for the element-distribution maps.

Electron-microprobe (EMP) analysis
and normalization procedures

Tourmaline was analyzed by wavelength-dispersion
spectrometry (WDS) with a Cameca SX51 instrument,
using a 15 kV accelerating voltage, a 10 nA beam (Fara-
day cup) current, a beam diameter of 1 �m, Probe for
Windows software utilizing the matrix correction of
Armstrong (1988), and a combination of natural and
synthetic minerals as standards.

Analysis of tourmaline by electron microprobe
(EMP) presents a challenge because of the inability to
measure amounts of Li and H directly, the difficulty in
determining amounts of B and O precisely, and the un-
certainty in the valence of transition elements. We as-
sumed that Li contents are minimal in the Baraboo
tourmaline because of the paucity of other elements of
Group Ia, as well as Group IIa, in the geochemical envi-
ronment of the quartz veins. The preferred method for
calculating cation proportions in Li-poor tourmaline is
to normalize the sum of T + Z + Y cations to 15, assum-
ing no vacancies (or deficiencies) in the T, Z, or Y sites
(Henry & Dutrow 1996). Such a normalization proce-
dure is effective because knowledge of B concentration,
OH content, and oxidation state of Fe is unnecessary,
and it allows an approximation of OH and oxidation
state to be made, based on charge balance. The amount
of B2O3 necessary to produce three B cations in the
structural formula was calculated from stoichiometric
constraints, because we do not expect [4]B in these Fe-
rich tourmaline samples. Fe is reported as Fe2+ in the
representative EMP analyses (Table 2), but we recog-
nize that tourmaline from these hematite-bearing
samples may contain significant amounts of Fe3+. This
possibility is examined further below. Finally, O2– sub-
stitution for OH– (deprotonation), calculated by charge
balance, is assigned to the W site, owing to preferential
incorporation of O2– at the W site relative to the V site
(Henry & Dutrow 1996, Hawthorne & Henry 1999).

RESULTS

BSE images and element-distribution maps

BSE images and element-distribution maps reveal
the existence of discrete cores and rims of grains, as best
illustrated in Samples 2 and 3 (Figs. 2, 3). The euhedral
morphology of the core relative to the rim observed in
the BSE image implies that the rim is an overgrowth on
the precursor tourmaline core, rather than a replacement
of that tourmaline (cf. Henry et al. 2002). However, the
chemical variations that are responsible for the BSE

zoning are better revealed by EMP spot analyses (be-
low) and element-distribution maps (Fig. 3). Sample 2
is different from samples 1 and 3 in that it contains Mg-

FIG. 1. Photomicrographs of foitite in samples 1 (upper), 2
(middle), and 3 (lower) from quartz veins in the Baraboo
Quartzite (plane-polarized light). Scale bars are 50 �m in
each panel. Matrix material is quartz, and opaque grains
are hematite. Note the optical zoning in tourmaline of sam-
ple 3 (the grain cut is approximately perpendicular to the c
axis).
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rich, Na-poor cores surrounded by Fe-rich, Na-rich rims,
with Na decreasing at the outer rims. Sample 1 (not
shown) and Sample 3 have Al-rich, Na-poor cores sur-
rounded by Fe-rich, Na-rich rims.

Tourmaline composition and chemical
zoning characteristics

The chemical composition of the Baraboo tourma-
line reflects the chemical simplicity of the host quartz
veins and surrounding quartzite. The tourmaline was
analyzed for Si, Ti, Al, Fe, Mn, Mg, Ca, Na, K, F and
Cl, but only Si, Al, Fe, Mg and Na were detected
(Table 2). In all three samples, the T site of tourmaline
is fully occupied by Si (6.02 ± 0.05, 6.07 ± 0.05, and
6.01 ± 0.04 atoms per formula unit [apfu]). The tourma-
line is aluminous, with total Al ranging widely from 6.39
to 7.74 apfu. In terms of Fe and Mg contents, samples 1
and 3 are Fe-rich, with Fe/(Fe + Mg) values of 0.929 ±
0.01 and 0.999 ± 0.01, respectively. Sample 2 has a
wider range of Fe/(Fe + Mg), with a mean of 0.761 ±
0.16. The fundamental alkali-deficient nature of the
Baraboo tourmaline is demonstrated by less than 50%

occupancy of the X site by Na in each sample, with mean
occupancies being 0.31 ± 0.09, 0.25 ± 0.05, and 0.25 ±
0.08 apfu. Consequently, this tourmaline can be gener-
ally classed as a vacancy-group tourmaline (Hawthorne
& Henry 1999). However, the specific classification and
details of the controlling substitutions are best revealed
by plotting results of individual EMP analyses on a se-
ries of compositional diagrams (Figs. 4–7).

Because all of the analyzed grains of tourmaline are
aluminous (Al > 6 apfu), the optimal diagram for clas-
sification of the tourmaline species is one in which X
vacancy/(Na + X vacancy) is plotted versus Fe/(Fe +
Mg) (Fig. 4A). This diagram does not specifically take
into account the W-site anion occupancy, and each of
the fields may also represent fluor- or oxy-equivalents
of the tourmaline species. However, F contents are be-
low detection levels for all samples and, as noted be-
low, W-site O2– contents are only dominant in the core
of Sample 3 tourmaline. Consequently, the foitite field
in Figure 4A could also be considered an “oxy-foitite”
field for those “O2– dominant at the W site” composi-
tions. The compositions of the three samples overlap in
terms of X-site vacancy, with ranges of values of 0.49–
0.80, 0.66–0.82, and 0.61–0.87. However, the three
samples are distinct with respect to Fe/(Fe + Mg), which
varies from 0.904 to 0.941 in Sample 1, varies widely
from 0.347 to 0.876 in Sample 2, and is tightly con-
strained between 0.980 and 0.999 in Sample 3 (Table 2,
Fig. 4A). Most of the tourmaline data fall within the
foitite field, with the exception of the cores of Sample
2, which are best classified as magnesiofoitite, where
the Fe/(Fe + Mg) value ranges from 0.3 to 0.5. By com-
parison with available compositions of alkali-deficient
tourmaline from other localities and different geologi-
cal settings (Fig. 4B), it is apparent that tourmaline in
the Baraboo quartz veins represents the most strongly
alkali-deficient variety recorded to date.

To evaluate the controlling substitutions in the tour-
maline, a series of binary composition diagrams are
employed, and the arrays of data are compared to refer-
ence exchange-vectors that represent hypothetical
schemes of substitution (Table 3). In a plot of Fe versus
Mg (Fig. 5), tourmaline data from samples 1 and 3 ex-
hibit a distribution roughly parallel to the FeAl–1 and
�Al(NaFe)–1 exchange vectors. For Sample 2, the only
one containing appreciable amounts of Mg, a least-
squares fit to the approximately linear data array yields
the expression Fe = –0.895(Mg) + 2.053, with a corre-
lation coefficient of –0.98. Based on a slope of –0.895,
it can be argued that most of the Mg incorporation is
explained by a simple homovalent MgFe–1 substitution.
However, the minor deviation of the linear fit to the data
from a slope of –1 suggests that other substitutions, such
as �Al(NaMg)–1, �Al(NaFe)–1 and FeAl–1, contribute
to the dispersion of the data, and likely result in a devia-
tion from a slope of –1. If MgFe–1 is the predominant
mechanism of substitution, this vector may be used to
project to an Mg-free system simply by adding Mg to

FIG. 2. Back-scattered electron images of compositionally
zoned tourmaline in Samples 2 and 3. Grains cut approxi-
mately parallel and perpendicular to the c axis are shown
for each sample.
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FIG. 3. Element-distribution maps for selected elements in tourmaline in samples 2 and 3 (these are the same grains that appear
in Figure 2). Brighter tones represent higher elemental concentrations. Scale bar is 20 �m for sample 2 and 50 �m for
sample 3.
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Fe. The value R is used to denote the sum of Mg and Fe,
i.e., the vector projection associated with MgFe–1. We
recognize that some of Fe is likely to be Fe3+; the atten-
dant consequences will be examined further.

The R (Fe+Mg) versus Al diagram (Fig. 6A) illus-
trates the very large range of Al and R, from almost
schorl through foitite to “oxy-foitite” (Fig. 6A). A least-
squares fit of these data produces a well-constrained
line, R = –0.938(Al) + 8.568, with a correlation coeffi-
cient of –0.99. The slope of nearly –1 is consistent with
Al variation being due to any or all of the following
exchange vectors: �Al(NaR)–1, AlO[R(OH)]–1 and
FeAl–1. However, to estimate the relative contribution
of each of these substitutions to the range in Al and R, it
is useful to isolate the influence of the �Al(NaR)–1 ex-
change.

The X vacancy versus Al diagram (Fig. 6B) permits
some separation of the influence of the �Al(NaR)–1 ex-

FIG. 4. A) Compositions of Baraboo tourmaline plotted in
terms of X vacancy and Fe/(Fe + Mg). End-member com-
positions of foitite, “oxy-foitite”, magnesiofoitite, schorl,
and dravite plot at the corners of the diagram. B) Composi-
tions of alkali-deficient tourmaline reported in the litera-
ture. Symbols designate various modes of occurrence: bold
cross: type foitite, pegmatite (MacDonald et al. 1993),
crosses: pegmatites (Aurisicchio et al. 1999, Dutrow &
Henry 2000, Novák & Taylor 2000, Pezzotta et al. 1996,
Selway et al. 1999, 2000), bold plus sign: type magne-
siofoitite, hydrothermally altered volcanic rock (Haw-
thorne et al. 1999), plus signs: hydrothermally altered vol-
canic and sedimentary rocks (Foit et al. 1989, Jiang et al.
1997, Pesquera et al. 1999), filled diamond: quartz vein in
Ortega Quartzite (Francis et al. 1999), open diamonds:
quartz veins in monzonite and syenite (Yavuz et al. 1999),
open squares: quartz vein in the Tauern Window (Henry et
al. 2002), star: metakarstbauxite (Henry & Dutrow 2001).

FIG. 5. Fe (total) versus Mg diagram for tourmaline data from
all samples. The solid line represents a linear least-squares
regression through the data for Sample 2. The directions of
several selected exchange-vectors are shown for reference.
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change from those of the AlO[R(OH)]–1 and FeAl–1
exchanges on the range of Al and R. If Al is incorpo-
rated into tourmaline exclusively via the �Al(NaR)–1
substitution, the slope of the data array in the plot will
be +1, but if it is exclusively due to the AlO[R(OH)]–1
or FeAl–1 substitution, or both, the slope of the data ar-
ray will be 0. The data from all three of the Baraboo
samples generally have values for X-site vacancy greater
than 0.5, and a least-squares linear fit to the data results
in a rather poorly correlated regression expression for X
vacancy = 0.195(Al) – 0.615, with a correlation coeffi-
cient of 0.70. This relatively shallow slope implies that
the range of Al associated with chemical zoning is a
consequence of roughly 20% substitution of Al via the
�Al(NaR)–1 exchange and 80% from that of the
AlO[R(OH)]–1 and FeAl–1 exchanges. However, the in-
fluence of the �Al(NaR)–1 substitution remains impor-
tant, because extrapolation of the least-squares fit to Al
= 6 apfu still yields a highly alkali-deficient tourmaline.
The original local chemical environment must have been
Al-rich and Na-poor, resulting in tourmaline that reflects
a significant amount of �Al(NaR)–1 exchange (e.g., von
Goerne et al. 2001).

The (R [Fe + Mg] + X vacancy) versus (Al – X va-
cancy) diagram (Fig. 7A) strips out the influence of
�Al(NaR)–1 by projecting down this vector to the Al–
R compositional plane, yielding a rough indication of
the relative importance of AlO[R(OH)]–1 and FeAl–1,
and condensing the compositions of schorl and foitite
to a common point. A linear least-squares fit to the trans-
formed data has a slope close to –1, (Fe + Mg + X

vacancy) = –0.932(Al – X vacancy) + 8.578, with a cor-
relation coefficient of –0.98, implying that most of the
residual Al variation is due to a combination of the
AlO[R(OH)]–1 and FeAl–1 exchanges. However, it is
possible to establish the relative importance of each
substitution. Those data points that plot to the left of the
schorl–foitite point will represent a minimum contribu-
tion of the FeAl–1 exchange (up to roughly 0.2 apfu),
and those data to the right of the schorl–foitite point will
represent a minimum contribution of the AlO[R(OH)]–1
exchange (0–0.9 apfu). These are minimal contributions
because they react to offset calculation effects (Henry
& Dutrow 1996). Nonetheless, it is unlikely that the
AlO[R(OH)]–1 vector will extend beyond the “oxy-
foitite” composition, so this will serve as a reasonable
minimum estimate of the amount of deprotonation in
the tourmaline, i.e., O2– for OH– at the W site. Of par-
ticular note is that five compositions of the core of
Sample 3 tourmaline fall closer to the “oxy-foitite” end-
member composition than the foitite–schorl point, and
can be most reasonably classified as “oxy-foitite”, al-
though H2O has not been determined directly.

The (excess charge) versus (R[Fe + Mg] + X va-
cancy) diagram (Fig. 7B) serves as a rough approxima-
tion of the amount of Fe as Fe3+ and the amount of
deprotonation. Because these two factors have offset-
ting effects on charge calculation, the calculated values
of excess charge represent minima. However, a number
of compositions have a charge deficiency (<0), which
indicates that some Fe3+ is present in portions of the
tourmaline. The presence of Fe3+ is also indicated by

FIG. 6. A). R(Fe + Mg) versus Al diagram for tourmaline data from all samples. R represents the sum of Fe(total) + Mg, i.e., the
condensation of the data down the FeMg–1 vector. The solid line represents a linear least-squares regression through the data
from all samples. The directions of several selected exchange-vectors are shown for reference. The locations of end-member
schorl, foitite and “oxy-foitite” are designated by the filled circles. B) Diagram showing Al versus X vacancy for tourmaline
data from all samples. The solid line represents a linear least-squares regression through the data from all samples. The
directions of several selected exchange-vectors are shown for reference. The location of the end-member schorl, foitite and
“oxy-foitite” are designated by the filled circles.
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the intense pleochroism of the Baraboo tourmaline,
which reflects the interaction of Fe3+ with Fe2+. The
tourmaline data in Figure 7B have a linear least-squares
fit with a negative slope of ~1: (excess charge) =
–0.974(Fe + Mg + X vacancy) + 2.931, with a correla-
tion coefficient of –0.98. The relatively high excess
charge for many compositions is further evidence for
deprotonation at the W site, and several of the core com-
positions in Sample 3 extend very close to the hypo-
thetical “oxy-foitite” end-member. It should be noted
that the Baraboo tourmaline coexists with hematite, and
experiments have demonstrated that tourmaline crystal-
lized at high levels of f(O2) can have a relatively high
ratio of Fe3+ to total Fe (Fuchs et al. 1998). A complete
chemical characterization of the Baraboo tourmaline
requires independent measurements of Fe3+ and OH;
thus, the calculated cation charges and estimated oxy-
foitite contents given here may not be entirely accurate.
Nevertheless, the high Al contents and the high calcu-
lated excess charges for the cores of tourmaline grains
in Sample 3 require a substantial “oxy-foitite” compo-
nent, on the order of 70 to 80 mol.%.

DISCUSSION

Foitite from other occurrences differs from that at
Baraboo in containing appreciable quantities of Ti, Mn,
Ca, Li and F, depending on locality, and in being asso-
ciated with a variety of silicate minerals, including al-

bite, “adularia”, micas and zeolites, among others. In
contrast, the Baraboo foitite is chemically simple, con-
taining only Si, Al, Fe, Mg, and Na (+ B+ O + H), and
is accompanied solely by quartz and hematite.

Compositions of alkali-deficient tourmaline reported
in the literature span the same range of Fe/(Fe + Mg) as
that for the Baraboo tourmaline, but typically display a
higher occupancy of the X site (Fig. 4B), with many
samples having less than 50% vacancy, thus being Na-
poor schorl and dravite, rather than true foitite. Among
the various occurrences of alkali-deficient tourmaline,
those from pegmatites have the highest X-site vacan-
cies, comparable to those in the Baraboo tourmaline,
although such tourmaline typically may contain signifi-
cant amounts of Li.

In terms of geological occurrence, foitite from Cop-
per Mountain, New Mexico (Francis et al. 1999) is most
comparable to that at Baraboo. The Copper Mountain
foitite occurs in a quartz vein that cuts the Ortega
Quartzite, which is considered to be correlative with the
Baraboo Quartzite (Medaris et al. 2003). With respect
to mineral assemblage, the Copper Mountain foitite is
associated with scheelite and “wolframite”, rather than
hematite, and crystallized at relatively low oxygen
fugacity, below that of the quartz – fayalite – iron buffer.
The Copper Mountain foitite is compositionally similar
to foitite in Baraboo Samples 1 and 2 (cf. Figs. 4A, B),

FIG. 7. A). Diagram showing (R + X vacancies) versus (Al – X vacancies) for tourmaline data from all samples. R represents the
sum of Fe(total) + Mg, i.e., the condensation of the data down the FeMg–1 vector. The (Al – X vacancies) and (R + X
vacancies) terms result in the condensation of the data down the �Al(NaR)–1 exchange-vector. The solid line represents a
linear least-squares regression through the data from all samples. The directions of several selected exchange-vectors are
shown for reference. The locations of end-member schorl, foitite and “oxy-foitite” are designated by the filled circles. B)
Diagram showing (excess charge) versus (R + X vacancies) for tourmaline data from all samples. The excess charge is the sum
of the total cation charge that is in excess of a total charge of 58, assuming all Fe as Fe2+ (cf. Henry & Dutrow 1996). The solid
line represents a linear least-squares regression through the data from all samples. The directions of several selected ex-
change-vectors are shown for reference. The locations of end-member schorl, foitite and “oxy-foitite” are designated by the
filled circles.
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except for the presence of small amounts of Ti (0.35
wt% TiO2) and F (0.20 wt%). The major compositional
distinction in tourmaline from the two localities is the
high aluminum content and presence of substantial
“oxy-foitite” component in the cores of tourmaline
grains in Baraboo Sample 3.

The composition of the Baraboo tourmaline reflects
in large part its environment of formation within the
chemically mature Baraboo metasedimentary rocks.
However, the zoning characteristics of the tourmaline
are the result of chemical changes in the hydrothermal
fluids associated with quartz vein formation. During
post-Penokean folding and low-grade metamorphism at
1.63 Ga, hydrothermal fluids migrated through the al-
kali-depleted Baraboo sequence, where they scavenged
B and the other elements necessary to precipitate quartz,
hematite, and foitite. The exceptionally mature Baraboo
Quartzite, which consists almost entirely of SiO2, Al2O3,
Fe2O3, and H2O, is the product of Proterozoic weather-
ing and sedimentation (Medaris et al. 2003), and the
chemical and mineralogical compositions of quartz
veins in the quartzite are largely inherited from such
processes. However, the core-to-rim compositional
variation in the Baraboo tourmaline demonstrates that
an evolving hydrothermal fluid was also an important
factor influencing tourmaline composition. From a
qualitative comparison with experimental results on the
distribution of Na between tourmaline and fluid (von
Goerne et al. 2001), the composition of the hydrother-
mal fluid is considered to have evolved from an initial
Na-poor and relatively alkaline condition to one that was
richer in Na and more acidic (cf. Henry et al. 2002). In
the case of the magnesiofoitite cores in Sample 2, Mg
was likely to be locally derived in the early stage of tour-
maline growth. In general, the core-to-rim composi-
tional changes in the Baraboo tourmaline may have
resulted from the predominant, buffering influence of
the host quartzite in the early stage of quartz vein for-
mation and the increasingly important role of hydrother-
mal fluids as the system matured.
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