RAMAN SPECTROSCOPIC STUDY OF VARIABLY RECRYSTALLIZED METAMICT ZIRCON FROM AMPHIBOLITE-FACIES METAGRANITES, SERBO-MACEDONIAN MASSIF, BULGARIA

ROSITSA TITORENKOVA\(^{a}\)
Central Laboratory of Mineralogy and Crystallography, Bulgarian Academy of Sciences, Acad. G. Bonchev Street 107, 1113 Sofia, Bulgaria

BORIANA MIHAILOVA
Mineralogisch-Petrographisches Institut, University of Hamburg, Grindelallee 48, D–20146 Hamburg, Germany

LUDMIL KONSTANTINOV
Central Laboratory of Mineralogy and Crystallography, Bulgarian Academy of Sciences, Acad. G. Bonchev Street 107, 1113 Sofia, Bulgaria

ABSTRACT

We investigated zircon from high-grade metagranites of the Serbo-Macedonian Massif, in Bulgaria, by cathodoluminescence (CL), back-scattered-electron imaging, electron-microprobe analysis, and Raman microspectroscopy. The structural state in various zones was assessed using: (i) the position and width of the Raman peak near 1008 cm\(^{-1}\), (ii) the relative Raman intensity of the symmetrical and anti-symmetrical SiO\(_4\) modes, (iii) the width of the peaks near 357 and 439 cm\(^{-1}\), and (iv) the occurrence of extra Raman scattering near 162, 509, 635 and 785 cm\(^{-1}\). The analyzed zones are divided into two main groups: (A) areas with a well-resolved Raman peak near 1008 cm\(^{-1}\), and (B) areas with a very weak Raman scattering near 1008 cm\(^{-1}\). Group B can be classified into two subgroups: (B-i) dark zones in CL images, with a high concentration of uranium (up to 7000 ppm), and (B-ii) outermost bright zones in CL images with a concentration of U lower than that in the inner areas and commonly below the detection limit. The samples from group A contain uranium at intermediate levels of concentration (~350–2000 ppm), and exhibit a linear correlation between the width and the position of the peak near 1008 cm\(^{-1}\). The relatively narrow width of this peak provides evidence of structural recovery due to annealing of accumulated radiation-induced damage. In zircon from equigranular metagranites, which are relatively less deformed and migmatized, three types of spatial regions are observed: the least-damaged regions with a structure altered mainly by point defects, moderately damaged regions characterized by faults with translational symmetry, and heavily damaged zircon with additional medium-range disorder involving changes in the mutual orientation of the cation–oxygen polyhedra and in their connectivity. The zircon separated from more deformed and strongly migmatized rocks is relatively homogeneous in its texture and chemical composition, and its structure consists of incipient grains of zircon.

Keywords: zircon, metamictization, Raman spectroscopy, cathodoluminescence, back-scattered-electron imagery, metagranite, Serbo-Macedonian Massif, Bulgaria.

Nous avons étudié le zircon provenant de métagranites fortement recristallisés du massif Serbo-Macédonien, en Bulgarie, par cathodoluminescence (CL), analyses d’images avec électrons rétrodiffusés, analyses par microsonde électronique, et microspectroscopie de Raman. L’état structural des diverses zones a été évalué selon (i) la position et la largeur du pic de Raman près de 1008 cm\(^{-1}\), (ii) l’intensité relative des modes SiO\(_4\) symétrique et anti-symétrique du spectre de Raman, (iii) la largeur des pics près de 357 et 439 cm\(^{-1}\), et (iv) la présence de dispersion de Raman supplémentaire près de 162, 509, 635 et 785 cm\(^{-1}\). Les zones analysées sont divisées en deux groupes principaux: (A) régions ayant un pic Raman près de 1008 cm\(^{-1}\) bien résolu, et (B) régions montrant une très faible dispersion de Raman près du pic à 1008 cm\(^{-1}\). On peut diviser le groupe B en deux sous-groupes: (B-i) zones sombres dans les images CL, avec une forte concentration d’uranium (jusqu’à 7000 ppm), et (B-ii) zones externes claires dans les images CL, avec une concentration d’uranium plus faible que dans les zones internes et généralement en dessous du seuil de détection. Les échantillons du groupe A contiennent de l’uranium à des niveaux intermédiaires de concentration (~350–2000 ppm), et montrent une corrélation linéaire entre la largeur et la position du pic près de 1008 cm\(^{-1}\). L’étroitesse de ce...
of zircon (Nasdala et al. 2001), and (ii) immobilization of radioactive waste as a host mineral for disposal of actinides and related environmental contamination, as zircon can be utilized as a host mineral for disposal of actinides (Ewing et al. 1995).

Our aim in this study is to document the variations in the local structure of naturally inhomogeneous zircon and to compare the structural peculiarities with textural features and the distribution of radioactive elements. For this purpose, we have applied micro Raman spectroscopy to estimate the degree of structural modification in different spatial regions in samples of zircon from metagranites with various degrees of deformation and metakatization and from melanocratic enclaves.

BACKGROUND INFORMATION

The structure of zircon has been extensively investigated by various techniques, such as cathodoluminescence (CL) and back-scattered-electron (BSE) imaging, infrared and Raman spectroscopy, X-ray and electron diffraction, high-resolution transmission electron microscopy and sensitive high-mass-resolution ion microprobe (Ewing et al. 2003, Nasdala et al. 2003, and references therein). Raman spectroscopy is a versatile and powerful experimental tool for structural investigations, and it has also been applied to zircon. The position and the width of the peak near 1008 cm⁻¹, arising from the B₁g[v₁(SiO₄)] phonon mode, are very sensitive spectral parameters to the degree of structural damage of zircon. Nasdala et al. (1995) has proposed to use the full width at half maximum (FWHM) of this peak for quantitative analysis of the degree of metakatization of zircon and, further, to estimate the annealing history of unknown samples via the dependence of FWHM on the radioactive α-dose (Nasdala et al. 2001a, Falenik et al. 2003). However, Geisler & Pidgeon (2002) have stated that phonon-confinement effects may also contribute to the spectral parameters of the B₁g[v₁(SiO₄)] mode, i.e., the α-dose is not the only factor determining the FWHM. The authors have suggested that the dependence of wavenumber versus FWHM of the B₁g[v₁(SiO₄)] mode as a more appropriate way to estimate the effects of geological events.

Zhang et al. (2000) have performed a series of dry-annealing experiments. Their Raman spectroscopic study reveals that depending on the initial stage of damage, the zircon structure undergoes diverse modifications upon heating. The recrystallization of heavily metakatized zircon passes through an intermediate stage of decomposition into ZrO₂ and SiO₂ phases, whereas partially metakatized zircon recovers directly at relatively low temperatures. In addition, Geisler & Pidgeon (2001), and Nasdala et al. (2002) showed that both the integrated CL intensity and the panchromatic CL images of natural zircon correlate well with the radiation-induced degree of structural disorder, as determined by Raman spectroscopy. Further, the stability of zircon under hydrothermal conditions has been studied experimentally using vibrational spectroscopy, but the type of hydrous species and their role in the metakatization and recrystallization processes are still not clarified (Nasdala et al. 2001b, 2003, Geisler et al. 2003a, b).
MATERIALS AND METHODS

In this study, fifteen crystals of zircon were analyzed at thirty-nine different points. The zircon samples were separated from metagranite samples recrystallized under amphibolite-facies conditions (650°C, 6–7 kbar) and exposed in the Ograzhden Mountains, Serbo-Macedonian massif, Bulgaria. The Ograzhdenian block of the Serbo-Macedonian Massif consists of amphibolite-facies metamorphic rocks belonging to the Ograzhdenian Supergroup, Maleshevska Group. Two types of metagranite are distinguished: one has an equigranular texture, and the other is porphyritic, with K-feldspar phenocrysts. K-feldspar-phryic metagranites are coarse- to medium-grained, selectively partially melted (migmatized), with an augen, augen-layered or layered structure. Equigranular metagranites are relatively less deformed and migmatized, and reveal well-preserved magmatic characteristics, such as microgranular enclaves and foliated aplastic and pegmatitic dikes. Reticulate magmatic minerals are rarely preserved. The chemical composition of both varieties of metagranite corresponds to an S-type protolith. The zircon we investigated comes from equigranular and porphyritic metagranites, as well as from microgranular enclaves. The age of granite intrusion was determined by thermal metagranites, as well as from microgranular enclaves. The rim observed in the majority of samples taken from porphyritic metagranites, which are most affected by the migmatization, may result from surface-controlled recrystallization (Fig. 1c). The origin of the texture consisting of irregularly shaped regions that overlap the growth zoning (Fig. 1d) can be related to solid-state recrystallization on a defect-enriched front (Hoskin & Black 2000), to fluid interaction on a chemical reaction

RESULTS

Internal texture and chemical composition

Zircon from high-grade metamorphic rocks commonly exhibits a complex internal texture visible by CL and BSE microscopy (Benisek & Finger 1993, Vavra et al. 1999). The petrological and geochemical data show that all the metagranite samples from which the zircon grains were separated are peraluminous (an Aluminum Saturation Index between 1.02 and 1.48). This suggests a low solubility of zircon in the melt, and the existence of inherited cores. Figure 1 displays different types of inner texture of zircon. The presence of an inherited core is clearly seen in Figures 1a, b. A fine zonal growth is evident for all of the samples. However, the zoning is blurred to various extents owing to the increase in diffusion during the metamorphic processes.
front (Schaltegger et al. 1999) or to luminescence of REE$^{3+}$ ions (Hänch & Rudnik 1995). In Table 1, we summarize the chemical composition, the location in the grain, the type of host rock, the CL response of the regions studied by Raman spectroscopy, and the position and FWHM of the peak near 1008 cm$^{-1}$ for four representative samples of zircon. The regions richest in U (up to 0.5 wt% UO$_2$), Y (up to 0.6 wt% Y$_2$O$_3$), Hf (up to 1.8 wt% HfO$_2$), and P (up to 0.5 wt% P$_2$O$_5$) were detected in the dark CL areas and are considered to be metamict. The inherited cores are characterized by a lower content of the above-listed elements: up to 0.1 wt% UO$_2$, 0.1–0.4 wt% Y$_2$O$_3$, 1.2–1.6 wt% HfO$_2$, and up to 0.3% P$_2$O$_5$, which is related to their primary origin. The irregular, featureless areas that appear bright in the CL images exhibit a low content of uranium and thorium. Usually, such areas are considered to be recrystallized zircon (Pidgeon 1992).

Raman microspectroscopy

The normal Raman-active phonon modes of zircon have been studied extensively (Dawson et al. 1971, Syme et al. 1977, Kolesov et al. 2001). The most intense Raman scattering appears at 1008, 439 and 357 cm$^{-1}$. The first two peaks have been attributed to the internal antisymmetrical stretching mode $B_{1g}[\nu(\text{SiO}_4)]$ and to the symmetrical bending mode of SiO$_4$ tetrahedra $A_{1g}[\nu(\text{SiO}_4)]$, respectively. The signal at 357 cm$^{-1}$ has been inconsistently related to internal antisymmetrical bending (Dawson et al. 1971) and to the external rotational mode of the SiO$_4$ units (Syme et al. 1977). The latter assignment is based on experimental observation of the complete number of Raman-active modes predicted by the group-theory analysis and has been supported by further structural investigations of non-metamict zircon (Kolesov et al. 2001). Thus, we assume that the peak at 357 cm$^{-1}$ arises from the $E_g[\text{rot(SiO}_4)]$ mode.

![Fig. 1. CL images of zircon exhibiting an inherited core and zonal growth (a), an inherited core and blurred zoning (b), fine zonal growth and a metamorphic rim (c), and secondary stage transgressive zones, marked by the arrow (d).](image-url)
Figures 2–5 illustrate four representative grains of zircon exhibiting substantially differing types of internal textures. Figure 2 shows a grain of zircon from equigranular metagranites. The magmatic zonal-growth features, barely affected by secondary post-crystallization processes, are clearly seen in the BSE image. The preserved zoning and chemical composition indicate a low rate of diffusion of impurities within this grain of zircon. The Raman spectra taken from this crystal resemble that of well-crystallized zircon, which shows that the structure has slightly been affected by radiation-decay damage. Palenik et al. (2003) have shown that the width of the Raman peak at 1008 cm$^{-1}$ is proportional to the degree of disorder in zircon. As this peak is related to the v_3(SiO_4) stretching mode, the structural disorder resulted in variations in the Si–O bond-lengths, most probably provoked by the presence of point defects. The lower wavenumber of the peak, the larger peak-
width, and the lower overall intensity of the spectrum collected from Z1b, compared to the spectrum at Z1a (Fig. 2), indicate a higher degree of metamictization in the peripheral zone than in the inner areas. On the other hand, it is known that the degree of structural damage depends on the accumulated radiation-dose, which is approximately proportional to the concentration of uranium (Palenik et al. 2003). Hence, zircon samples of higher concentration of uranium should exhibit a larger width of the peak at 1008 cm⁻¹, and such a correlation is in fact observed for Z1a and Z1b (Table 1).

In Figure 3, a grain of zircon shows well-resolved zoning in the BSE image (sample Z2 from an equigranular metagranite). In the CL image, the sample appears dark owing to a high degree of structural disorder and a large amount of impurities, as detected by electron-microprobe analysis (Table 1). The Raman spectra collected from sample Z2 exhibit features revealing a high degree of structural damage: a broadening of the zircon peaks at 1008, 439 and 357 cm⁻¹, a change in the relative intensities of the stretching and bending modes of the SiO₄ units, and a number of additional peaks. These spectral peculiarities are more pronounced for the external zones Z2b and Z2c, which is related to the higher concentration of radioactive elements than in the internal zone Z2a. The overall broadening of the peaks generated by zircon modes points to a wide range in both the bond lengths and the bond angles, i.e., to a high degree of metamictization of the structure in this sample. The strong decrease in the relative intensity of B1g[v₁(SiO₄)] for Z2b and Z2c suggests a high degree of faults in the periodicity in the structure and, hence, fragmentation and misorientation of the crystalline domains. The appearance of a hump between 900 and 1200 cm⁻¹ points to a substantial structural damage in Z2b and Z2c. The Raman scattering at 162, 509 and 635 cm⁻¹ lies in the spectral range of the vibrational modes of Zr–O–Zr species, but the signals do not match strictly the Raman peaks of polymorphs of zirconia or zirconate phases (Zhang et al. 2000, Dobal & Katiyar 2002). Thus, we attribute these peaks to Zr-rich clusters of linked ZrO₄ polyhedra or to the presence of a submicrometric non-crystalline Zr–O phase. The position of the extra Raman scattering at 785 cm⁻¹ is close to the spectral range of the most intense Raman peaks of silicates containing quasi-isolated SiO₄ tetrahedra. Therefore, we suggest that this signal arises from Si-rich phases that are formed together with ZrO₂ clusters as a result of the strong violation of the framework topology of zircon. The content of radioactive elements is lower in the internal zone Z2a and higher in the outer areas (Z2b and Z2c), thus indicating that radioactive decay is the major factor for the enhanced metamictization of the peripheral zones.

Figure 4 shows the BSE micrograph and the Raman spectra of sample Z3. According to the CL and BSE images, this grain of zircon possesses a core and an overgrowth. Because of the high content of U and the preserved zoning, both typical of crystal growth in a granitic melt, we assume that the rim of Z3 is of granitic origin, whereas the core is inherited. The Raman scattering reveals that the structure of the core (Z3a) is more ordered than that in the outermost zones. However, within the overgrown rim, one can distinguish two zones, Z3b and Z3c, differing from each other both in chemical composition and in Raman spectral features. The inner zone Z3b adjacent to the core has a higher content of U and a higher degree of metamictiza-
The structural state of Z3b resembles that of the peripheral zones of Z2: an extensive loss of periodicity, a wide range of the bond angles, and discrete Zr- and Si-rich domains. According to the Raman spectra, the structure of the outermost zone Z3c has a lower degree of metamictization than Z3b. At the same time, the electron-microprobe data show that Z3c is poor in U, a fact indicating the occurrence of recrystallization processes due to secondary heating.

Some of the investigated samples exhibit spectra in which the most intense Raman band is between 945 and 985 cm\(^{-1}\) (Fig. 5, bottom curve). This band consists of two relatively narrow components, with wavenumbers of 956 and 968 cm\(^{-1}\), and FWHM values of 8 and 10 cm\(^{-1}\), respectively. We assign the higher-energy component at 968 cm\(^{-1}\) to the symmetrical stretching mode of SiO\(_4\) tetrahedra in the atomic environment of zircon, whereas we attribute the lower-energy signal at 956 cm\(^{-1}\) to perturbed Si–O bonds, e.g., Si–OH species. Peaks arising from the antisymmetrical stretching, symmetrical bending and rotational mode of SiO\(_4\) groups are seen at 1003, 438 and 352 cm\(^{-1}\), respectively. These peaks are unusually weak compared to the Raman scattering near 968 cm\(^{-1}\). It is worth noting that a broad Raman band near 962 cm\(^{-1}\) and a subtle scattering near 1006 cm\(^{-1}\) have been detected by Veytizou et al. (2000) in precursor gels for the synthesis of zircon. The latter has been attributed to the B\(_{1g}[v_1(SiO_3)]\) zircon peak, whereas the former is attributed to Si–O–Zr bonds or Si–OH linkages (or both). Generally, the symmetrical stretching mode of an isolated T\(_O_4\) group generates the most intense Raman peak, and its suppression in crystalline matrices compared to the other internal tetrahedron modes results from constraints in the corresponding space-group symmetry. Thus, the high intensity of the zircon peak related to the \(v_1(SiO_3)\) mode, compared to the other zircon peaks (near 1008, 439 and 357 cm\(^{-1}\)), indicates the prevalence of structural species in which the selection rules required by the zircon crystal-lattice symmetry have significantly deteriorated. We propose that the structure of the samples, exhibiting atypical Raman scattering, with the most intense bands at 956 and 968 cm\(^{-1}\), consists of incipient grains of zircon of a very small size, with OH groups on the intergranular interface. This assumption is supported by the observed laser-induced spectral changes (Fig. 5). An increase in laser power leads to the disappearance of the peak at 956 cm\(^{-1}\) and to an increase in the relative intensity of the zircon peak arising from the B\(_{1g}[v_1(SiO_3)]\), A\(_{1g}[v_2(SiO_3)]\) and E\(_g[rot(SiO_4)]\) modes. The former effect indicates a removal of OH groups, whereas the latter is indicative of the development of the zircon structure. Obviously, the laser irradiation leads to local heating, which enhances the growth of the zircon nuclei. Thus the atypical Raman scattering with an intensified symmetrical SiO\(_4\) stretching mode points to the presence of incipient zircon species, \textit{i.e.}, to a structural state of incipient recrystallization. Among the zircon grains investigated, those from porphyritic granites and melanocratic enclaves possess such a Raman spectrum. These grains are relatively homogeneous in structure, as revealed by Raman microspectroscopy and CL textural features. As the zircon grains considered are separated from strongly deformed samples, one can suggest that the structural state of zircon is a result of a structural alteration related to fluid activity.
According to their Raman spectral features, the spatial regions in the zircon samples can be divided into two groups: (A) regions with well-resolved Raman scattering near 1008 cm\(^{-1}\), and (B) regions with very weak Raman scattering near 1008 cm\(^{-1}\), pointing to a highly disordered state of zircon.

The latter group (B) can further be divided into two subgroups depending on the internal textures and chemical composition. The B-i subgroup shows dark areas in CL images, with high concentrations of uranium (up to 7000 ppm); the high concentrations of U and Th confirm that radiation damage is the main factor causing the observed structural damage. Subgroup B-ii shows bright areas in CL, with a low concentration of U and Th, but with a high level of structural damage; such zones usually are external rims, suggesting the occurrence of subsequent chemical alteration and migration of uranium.

The degree of metamictization is commonly determined on the basis of the FWHM of the B\(_{1g}\)([\(\nu\text{(SiO}_4)\)]) mode, giving rise to the peak near 1008 cm\(^{-1}\) (Nasdala et al. 1995, Palenik et al. 2003). There is a linear correlation between the width and the position of this peak for those areas in group A that exhibit resolved Raman scattering near 1008 cm\(^{-1}\) (Fig. 6a). These areas contain intermediate concentrations of uranium (~350–2000 ppm). The FWHM ranges between 3 and 10 cm\(^{-1}\). Thus
the degree of metamictization varies from well-ordered crystalline to an intermediate metamict state (Nasdala et al. 1995). However, the FWHM of the peaks are narrower than expected for unannealed primary zircon (Geisler et al. 2001). This anomaly is more pronounced for the peaks shifted to the lower wavenumbers (down to 1001 cm$^{-1}$). Such a dependence has been reported by Geisler et al. (2001) for experimentally annealed zircon. They observed two stages of recovery characterized by regression lines of different slope and a relatively low dependence of the peak position on FWHM for the higher-temperature recovery stage. Thus the large dispersion of data points in Figure 6a can be explained by different initial accumulation of structural damage and to various thermal histories among the zircon crystals in the present study.

In addition, we considered the correlation of the FWHM with the position of the peaks near 439 and 357 cm$^{-1}$, derived from the modes $A_{1g}[\nu_2(SiO_4)]$ and $E_g[\text{rot}(SiO_4)]$, respectively (Figs. 6b, c). The experimental data were fitted using the function $\Gamma = \Gamma_0 - k\omega$, where Γ and ω stand for FWHM and peak position, respectively, whereas k gives the line slope, which turns out to be approximately the same for the two modes, namely $k = 1.62 \pm 0.25$ (R$^2 = 0.75$) for $A_{1g}[\nu_2(SiO_4)]$ and $k = 1.58 \pm 0.20$ (R$^2 = 0.80$) for $E_g[\text{rot}(SiO_4)]$. Well-pronounced Raman signals near 439 and 357 cm$^{-1}$ were detected for all the samples studied, regardless of the degree of metamictization. Because of the type of generating modes (SiO$_2$ bending and rotation), these peaks are indicative of the existence of ZrO$_8$–SiO$_4$ linkages characteristic of zircon. Therefore, the peaks at 439 and 357 cm$^{-1}$ are representative of zircon-type medium-range order and can also be used to estimate the degree of metamictization in cases where there is not a pronounced Raman peak at 1008 cm$^{-1}$. Further investigations of the diversity of zircon samples are necessary to clarify the relationship between these peaks and the degree of structural damage.

Conclusions

The structural state of micrometric areas in heterogeneous grains of zircon was estimated on the basis of the Raman scattering in the spectral range 50–1250 cm$^{-1}$ as follows: 1) a spectrum differing from that of well-crystalline synthetic zircon only in position and width of the 1008 cm$^{-1}$ peak reveals a variation in the Si–O bond lengths; 2) a substantial decrease in the intensity of the phonon mode B_{1g} related to the antisymmetric stretching mode $\nu_2(SiO_4)$, points to a nanoscale misorientation of the zircon crystallites and a partial loss of periodicity; 3) the appearance of additional Raman scattering near 162, 509 and 635 cm$^{-1}$ reveals clustering of ZrO$_4$ polyhedra, whereas extra Raman scattering near 785 cm$^{-1}$ can be attributed to Si-rich domains. Substantial broadening of the peaks near 357 and 459 cm$^{-1}$ indicates a large range in the Zr–O–Si bond angles; 4) the enhanced two-component band between 945 and 985 cm$^{-1}$ related to $\nu_1(SiO_3)$ speaks in favor of an abundance of incipient grains of zircon.

The well-pronounced Raman peaks at 357 and 439 cm$^{-1}$, originating from SiO$_2$ rotational and bending modes, respectively, are sensitive to the structural state of zircon and may be used to estimate the degree of metamictization of zircon.

For most of the zircon samples considered in the present study, the degree of metamictization varies even within a single grain, suggesting that the recrystallization processes had not been strong enough to ensure a complete recovery of the damaged structure. The grains from equigranular metagranites show a broad range of structural variations: (i) zones exhibiting peak positions and values of FWHM close to those of synthetic crystalline zircon; (ii) zones for which the $B_{1g}[\nu_2(SiO_4)]$ peak has small FWHM (5–8 cm$^{-1}$), but is positioned at anomalously low wavenumbers (1003–1001 cm$^{-1}$); (iii) zones characterized by a low-intensity or missing peak at 1008 cm$^{-1}$ and by the appearance of additional non-zircon Raman peaks.

Samples separated from highly migmatized rocks show chemical, textural and structural homogeneity. They show a low-intensity peak near 1008 cm$^{-1}$ and instability to high-power laser irradiation. These structural characteristics most probably result from a strong secondary alteration in the presence of a fluid phase.

Acknowledgements

We acknowledge the support of the European Community Access to Research Infrastructure action of the Improving Human Potential Programme, contract HPR1–CT–1999–00008 awarded to Prof. B.J. Wood (EU Geochemical Facility, University of Bristol) for electron-microprobe analysis and BSE images. We thank Dr. Bernd Güttler, PTB–Braunschweig, for enabling the Raman spectroscopic measurements in his laboratory. Financial support from the National Science Fund – Bulgarian Ministry of Education and Science (F1212 and NT 1–02) is gratefully acknowledged. Thanks are due to referees S. Utsonomiya and N. Tomasic, and to R.F. Martin, for their constructive suggestions and valuable comments.

References

Received March 15, 2006, revised manuscript accepted June 8, 2006.