STRUCTURE AND TOPOLOGY OF DUMORTIERITE
AND DUMORTIERITE-LIKE MATERIALS

R. James Evans and Lee A. Groat

Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, 6339Store Road, Vancouver, British Columbia V6T 1Z4, Canada

Abstract

Dumortierite, ca. (Al,□)Al₆(BO₃)Si₃O₁₃(O,OH)₂, has a complex and unusual crystal structure that is shared by several minerals and an increasing number of synthetic materials, which we group together as dumortierite-like materials (DLMs). Dumortierite has a strongly pseudo-hexagonal orthorhombic structure based on rod-like double-chains of Al octahedra in a framework based on the {6·4·3·4} semi-regular planar tiling. The large hexagonal channels contain chains of face-sharing Al octahedra attached to the framework by rings of SiO₄ tetrahedra. Smaller triangular channels contain planar BO₃ groups, while in other materials the triangular channels are occupied by tetrahedral or pyramidal groups. Holtite and magnesiadumortierite are isostructural with dumortierite, while ellenbergerite, phosphoellenbergerite, ekatite, and the synthetic materials have very similar structures to dumortierite, but with hexagonal symmetry. These minerals and materials differ from one another in the identity of the metal cations occupying the framework and face-sharing chains, and in the tetrahedral, pyramidal, or triangular groups within the hexagonal and triangular channels. We write the following structure-generating function, which describes both topological and stoichiometric properties of DLMs:

\[ X(M_2\Phi)_3(T^h\Theta^h_3\Theta^t_3)(T^t\Theta^t_3\Theta^h_3) \]

where \( X \) is the face-sharing hexagonal channel octahedrally coordinated site, \( M \) is the framework octahedrally coordinated site, \( T^h \) and \( T^t \) are three- to four-coordinate cation sites in the hexagonal and triangular channels, \( \Phi \) is a four-coordinate anion site, \( \Theta^h \) and \( \Theta^t \) are three-coordinate basal anion sites, and \( \Theta^h \) and \( \Theta^t \) are one- to three-coordinate apical anion sites. We discuss various structural and crystal chemical properties of DLMs, illustrating their commonalities as variations on the theme described by the structure-generating function. We also discuss three closely related structures which involve modifications of different geometrical or topological aspects of the DLM structure: the structure of lyonsite and its synthetic analogues, the structure of satterlyite and holtedahlite, and the structure of the AB polytype of the cancrinite group of feldspathoids.

Keywords: structure topology, dumortierite, holtite, magnesiadumortierite, ellenbergerite, phosphoellenbergerite, ekatite, lyonsite, holtedahlite, satterlyite, cancrinite

Introduction

The crystal structure of dumortierite [ca. (Al,□)Al₆(BO₃)Si₃O₁₃(O,OH)₂] possesses several unusual features: chains of face-sharing octahedra, large hexagonal channels, and double-chains of edge-sharing octahedra. Several minerals and a growing number of synthetic compounds share the same or very similar structures.

Dumortierite is a widely distributed aluminum borosilicate (Grew 1996). Prior to determination of its structure, it was frequently classified with kyanite, andalusite, sillimanite, and mullite as a sillimanite-group mineral (Jeffery 1943) on the basis of its common physical resemblance, similar Al:Si:O proportions, and tendency to decompose into mullite at high temperature. Claringbull & Hey (1958) determined the space group as \( Pmcn \) with \( c \approx 4.7 \), \( a \approx 11.8 \), and \( b \approx 20.2 \) Å. The crystal structure was first solved by Golovastikov (1965). Moore & Araki (1978b) did a detailed structural analysis which is the starting point of most contemporary crystal-chemical studies. They described Golovastikov’s structure as “a design of great beauty and complexity” and remarked that

“A pronounced pseudo-hexagonal character was evinced among the intensity distributions and it is a credit to Golovastikov’s imagination that he was able to decipher this unusually complicated structure based on Patterson projections.”

---

8 E-mail address: rjamesevans@gmail.com
Holtite \([\text{ca.} \text{(Al,TAu,Nb)}\text{Al}_6\text{(BO}_3\text{)}(\text{Si,SB,As)}_3\text{O}_{12}(\text{OH})_3])\) and magnesiodumortierite \([\text{ca.} \text{(Mg, Ti,\square)}\text{Al}_6\text{(Al,Mg)}_2\text{(BO}_3\text{)}_3\text{Si}_3\text{O}_{12}(\text{OH})_3])\) were later found to be isostructural with dumortierite. Holtite is known from complex granitic pegmatites at four localities thus far: Greenbushes, Western Australia (Pryce 1971, Hoskins et al. 1989); Voron’i Tundry, Kola Peninsula, Russia (Voloshin et al. 1977); Szklary, Lower Silesia, Poland (Pieczka & Marszalek 1996, Pieczka et al. 2011); and Víroroce, San Luis, Argentina (Galliski et al. 2012). Magnesiodumortierite has been found only in ultrahigh-pressure rocks of the western Alps (Chopin et al. 1995, Ferraris et al. 1995). Together, these three minerals comprise the dumortierite group of orthorhombic aluminum borosilicates. Dumortierite and holtite are distinctive among aluminosilicate minerals because they incorporate not only substantial amounts of the high field-strength lithophile elements Nb and Ta substituting for Al at octahedrally coordinated sites, but also significant quantities of the chalcophile elements As and Sb substituting for Si with a change of coordination (Groat 2009, 2012).

Ellenbergerite \([\text{ca.} \text{(Mg, Ti, Zr, \square)}\text{Mg}_3\text{(Al,Mg)}_3\text{(Si, P)}_4\text{O}_{12}(\text{OH})_3])\), phospoellenbergerite \([\text{ca.} \text{(Mg, Fe, \square)}\text{Mg}_6\text{(PO}_4\text{PO}_4\text{OH, AsO}_3)_3\text{(PO}_3\text{OH, CO}_3)(\text{OH})_3])\), and ekatite \([\text{ca.} \text{(Fe}^{3+}, \text{Fe}^{2+}, \text{Zn)}_6\text{(AsO}_3)_3\text{(AsO}_3, \text{Si O}_3\text{OH})(\text{OH})_3]\) have structures very similar to that of dumortierite, but with a hexagonal structure with space group \([P6_mmc]\) or \([P6_3]\), depending on cation order. Ellenbergerite is known from the same high-pressure rocks in the western Alps as magnesiodumortierite (Chopin et al. 1986). Its phosphorus-rich, Si-free, endmember phospoellenbergerite is known from the same source and from the magnesite-serpentine deposits in Modum, Norway (Raade et al. 1998). Ekatite is known only from the Tsumeb deposit in Namibia (Keller 2001). These minerals comprise the ellenerbergerite group.

Several classes of synthetic compounds isostructural with hexagonal ellenerbergerite have been produced via hydrothermal synthesis: the first-row divalent transition metal \((\text{TM})\) phosphites (Marcos et al. 1993b, 1993c, Attfield et al. 1994, Che et al. 2005, Gu et al. 2007, Ni et al. 2009, Jin et al. 2010, Liao & Ni 2010), metal pnictates (phosphates and arsenates) (Marcos et al. 1993a, 1995, Pizarro et al. 1993, Rojo et al. 2002, Hughes et al. 2003), the TM chalcogenites (selenites and tellurites) (Perez et al. 1976, Marcos et al. 1993a, Amorós et al. 1996), and the metal vanadates and sulfate-vanadates (Kato et al. 1998, Zhang et al. 1999, Đodević et al. 2008, Hu et al. 2008). Each of these compounds show crystal-chemical features seen in the dumortierite- and ellenerbergerite-group minerals, as well as some novel features. They demonstrate that the underlying structure (which we refer to as the dumortierite structure, as it is the most common of these materials) is very adaptable, and is able to accommodate a wide variety of cations. We shall refer to a mineral or synthetic compound isostructural to dumortierite or ellenbergerite as a dumortierite-like material (DLM).

In this paper, we examine the geometry and topology of the dumortierite structure in detail, and write a structure-generating function that describes both orthorhombic and hexagonal variants. We also discuss the related structures of lyonite, satterlyite, and holde-dahlite, and the AB polytype of cancrinite, all of which share significant structural and topological similarities to dumortierite.

The Dumortierite Structure

Dumortierite and other DLMs may be described as having a \((2+1)\)-dimensional structure, \(i.e.,\) a structure based on rod-like components that are assembled on a perpendicularly two-dimensional net, such that many features of the structure can be understood by examining the net and the rod-like components separately. The net in the dumortierite structure is the semi-regular \({6\cdot4\cdot3\cdot4}\) tiling (Fig. 1), and the rod-like components are the double-chains of octahedra containing the Al1, Al2, and Al4 sites (Fig. 2) and the face-sharing single chain of octahedra containing the Al1 sites (Fig. 3), using the conventional site labels for the dumortierite group. The Al4 and Al2–Al3 double-chains fit in the square regions of the net, sharing corners and forming small triangular and large hexagonal channels. The Al1 chain of face-sharing octahedra floats in the center of the hexagonal channel, and is connected to the double-chains of octahedra by “pinwheels” of tetrahedral groups \((\text{Si}_4\text{O}_4\text{})\text{in} \text{dumortierite},\) as in the “bracelet and pinwheel” structures described by Moore (1973). The small triangular channels are occupied by \(\text{BO}_3\) triangles in the dumortierite group, and by various tetrahedral or pyramidal groups in other DLMs. The complete structure is shown in Figure 1B. The double-chains of octahedra thus form a framework to which the other elements are attached; dumortierite and other DLMs can be appropriately described as metal oxides with decorations. This framework of rod-like components is responsible for the needle-like morphology of many DLMs.

Two kinds of double-chains of octahedra form the framework of the orthorhombic dumortierite structure. Both are constructed from a pair of zigzag single chains of edge-sharing octahedra. In the Al4 double-chain (top of Fig. 2), one of these single chains is stacked on top of its mirror image in the plane of connection perpendicular to \([100]\), resulting in a chain of face-sharing dimers of octahedra. Each Al4 octahedron shares a face with one other Al4 octahedron, edges with two other Al4 octahedra, and corners with two Al4 octahedra in the same double-chain, as well as corners with three tetrahedra in the hexagonal channel, one group in the triangular channel, and one Al2 octahedron in a neighboring Al2–Al3 double-chain. This kind of face-sharing...
Fig. 1. Dumortierite structure and the \{6\cdot4\cdot3\cdot4\} semi-regular tiling. (A) The \{6\cdot4\cdot3\cdot4\} tiling, showing the unit cells of hexagonal (dashed lines) and orthorhombic (dash-dotted lines) DLMs; all edges have length $s$. (B) Crystal structure of dumortierite viewed down the c-axis (space group $Pmcn$).

Fig. 2. Construction of the (A) $M^H$ (Al4) and (B) $M^C$ (Al2–Al3) double-chains of octahedra in the dumortierite structure. In the complete double chains, the points labeled $p$, $q$, $r$ on the upper single chains are joined to the corresponding $p$, $q$, $r$ points on the lower single chains. As a result, octahedra share faces as well as edges in the $M^H$ (Al4) chains, but only edges in the $M^C$ (Al2–Al3) chains. Here $s$ is the width of the double-chain, $s'$ is the height of the double-chain, and $c$ is the unit cell parameter.
double-chain also occurs in the related structures of the minerals holtedahilite (Raade & Mladeck 1979, Rømming & Raade 1989) and satterlyite (Mandarino et al. 1978, Kolitsch et al. 2002), which have other features in common with the dumortierite structure, as discussed below.

The Al2–Al3 double-chain (bottom of Fig. 2) is geometrically similar to the Al4 double-chain, but topologically it is quite different with regards to its bond connectivity. In the Al2–Al3 double-chain, one single chain is shifted with respect to a second so that the two chains are connected by edge sharing only. Alexander et al. (1986) described the doubling of the Al2–Al3 chains as an inversion through the point (½, ½, ½). The resulting double-chain is a cubic close-packed arrangement, whereas the Al4 double-chain is hexagonally close-packed (Moore & Araki 1978b). Each Al2 (Al3) octahedron shares edges with one other Al2 (Al3) octahedron and three Al3 (Al2) octahedra in the same double-chain, as well as corners with three tetrahedra in the hexagonal channel, one group in the triangular channel, and one Al4 (Al3) octahedron in a neighboring Al4 (Al2–Al3) double-chain. This type of cubic close-packed double-chain also occurs in the structure of the mineral angelellite (Moore & Araki 1978a), (Fe3+2O)2O(AsO4)2.

The orthorhombic dumortierite-group minerals contain Al2–Al3 and Al4 double-chains in a 2:1 ratio, whereas the hexagonal ellenbergerite-group minerals and synthetic DLMs contain only Al4-type double-chains. No hexagonal DLM has been reported to contain only Al2–Al3-type chains, and as discussed below, it is not possible to build a dumortierite-like structure only with Al2–Al3-type chains. In dumortierite, the Al2, Al3, and Al4 octahedra are very similar in size (that is, in volume and mean bond-length) and are distorted from octahedral symmetry in similar ways. As the two types of double-chain are based on different kinds of anion close-packing, there seems to be no spatial advantage of one type of double-chain over the other. In dumortierite, the minimum Al3+-Al3+ distance in the Al4 double-chains is 2.56 Å across shared faces, whereas in the Al2–Al3 double-chains, the minimum distance is 2.86 Å. All hexagonal DLMs observed and synthesized thus far are dominated by divalent cations, as are holte-dahilite (a magnesium phosphate) and satterlyite (its Fe2+ analogue), or by divalent and trivalent cations in equal proportions. In all three orthorhombic DLMs, the octahedrally coordinated sites in the double-chains are strictly dominated by Al3+, including magnesiodumortierite, which has small but significant Mg2+ substitution at the Al4 site; similarly, the octahedrally coordinated sites in angelellite predominantly contain Fe3+. It seems likely that trivalent cations prefer the Al2–Al3-type double-chains because the longer minimum cation-cation distance reduces electrostatic repulsion. Dumortierite, therefore, is orthorhombic because it contains (mostly) aluminum at its octahedrally coordinated framework double-chain sites. Ellenbergerite and ekatite contain mixed divalent and trivalent cations in their Al4-type double-chains in roughly equal proportions (Mg2+ or Al3+ in the former and Fe2+, Zn2+, or Fe3+ in the latter); a sufficiently large excess of trivalent cations may drive these minerals to an orthorhombic structure isostructural with dumortierite.

**Calculation of unit-cell parameters**

The symmetry of the dumortierite-group minerals is commonly given as both \(Pmcn\) (with \(c < a < b\)) and the equivalent \(Pnma\) (with \(a < b < c\)). In this work, we use the \(Pmcn\) setting for orthorhombic DLMs for two reasons: (1) for continuity with the hexagonal DLMs, which use the same labeling for equivalent \(a\) and \(c\) axes and their associated unit-cell parameters \(i.e., c_{orth} → c_{hex}, a_{orth} → a_{hex}, b_{orth} → \sqrt{3} a_{hex}\), and (2) in terms of \(xyz\) coordinates, the chains of octahedra and open channels now extend parallel to the \(z\) axis (instead of the \(x\) axis), whereas the underlying \{6·4·3·4\} tiling lies in the \(xy\)-plane (instead of the \(yz\)-plane), and it is thus more natural to speak of directions ‘up’ or ‘down’ the channels or chains.

The semi-regular tiling \{6·4·3·4\} is shown in Figure 1A. The same set of polygons meet at every vertex in the same order: hexagon, square, triangle, hexagon; hence the labeling of the vertex and thus the tiling, \{6·4·3·4\}. Where every edge has the same length \((s)\), the tiling has plane-group symmetry \(p6mm\) with a unit cell as shown by the dashed line in Figure 1A. Stretching or compression parallel to one of the three vertex-to-vertex diameters of the hexagon results in a distorted ortho-
rhombic tiling with plane-group symmetry $c2mm$ and a unit cell as shown by the dash-dotted line in Figure 1A. The contents of the unit cells have a tile stoichiometry of

$$\{6\}\{4\}_3\{3\}_2$$

where $\{n\}$ is an $n$-sided regular polygon, with $Z = 1$ and 2 for the hexagonal and orthorhombic unit cells, respectively. If we let $\{nlm\}$ indicate an edge where polygons $\{n\}$ and $\{m\}$ meet, each formula unit also contains six $\{314\}$ and six $\{46\}$ edges, as well as six $\{6\cdot4\cdot3\cdot4\}$ vertices. The tiling adheres to the version of Euler’s formula valid for graphs drawn on the surface of a torus, Faces + Vertices – Edges = 0. (Because opposite edges of the unit cell are equal, the unit cell of a 2D tiling is topologically equivalent to a torus.)

In the undistorted hexagonally symmetric tiling, $a = (1 + \sqrt{3})s$ and $b = (3 + \sqrt{3})s$, so that $b/a = \sqrt{3} \approx 1.732$. Hexagonal symmetry is preserved if every square in the $\{6\cdot4\cdot3\cdot4\}$ tiling is replaced by a rectangle with sides $(s', s')$, such that the hexagons are of side $s$ and the triangles of side $s'$, resulting in

$$a = \sqrt{3}s + s', \ b = 3s + \sqrt{3}s'. \tag{1}$$

If two squares on opposite sides of the hexagon are smaller than the other four squares it can be shown that $b/a$ is reduced below $\sqrt{3}$. In dumortierite, Al4 octahedra are smaller in volume than Al2–Al3 octahedra by about 1.3%, and $b/a = 1.714$, about 1% less than $\sqrt{3}$ (Evans et al. 2012).

As a first approximation, we will assume that the double-chains of octahedra are built of identical regular octahedra with the cation M at the center, with an M–O bond length $d$ (the actual Al2, Al3, and Al4 octahedra have significant distortions). Such an octahedron will have edge-length $e = \sqrt{2}d$ and height, which we define as the distance between centers of opposite faces, $h = 2d/\sqrt{3}$. Both Al4 and Al2–Al3 chains (Fig. 2) then have a height of

$$s' = 2h = \frac{4\sqrt{3}}{3}d \tag{2}$$

and width

$$s = \frac{3}{2}e = \frac{3\sqrt{2}}{2}d \tag{3}$$

Equations 2 and 3 give $s/s' = 3\sqrt{6}/8 \approx 0.92$, so the double-chains of octahedra do not deviate from the square profiles shown in Figure 1A by more than 8%. The $a$ and $b$ unit-cell parameters from equations 1, 2, and 3 are

$$a = \left(\frac{3\sqrt{6}}{2} + \frac{4\sqrt{3}}{3}\right)d, \ b = \sqrt{3}a \tag{4}$$

Similarly, the $c$ unit-cell parameter can be also be calculated from the geometry of the double-chains. The center-to-center distance between edge-sharing regular octahedra is equal to $e$, and so

$$c = \sqrt{3}e = \sqrt{6}d \tag{5}$$

and

$$\frac{a}{c} = \frac{3}{2} + \frac{2\sqrt{2}}{3} = 2.443 \tag{6}$$

Taking an $\text{VIAl}^{III}\text{O}$ bond length of 1.90 Å (Shannon 1976) in equations 4 and 5 gives $a = 11.37$, $b = 19.69$, and $c = 4.65$ Å. For a geometric first-principles calculation, this compares reasonably well with the actual unit cell of dumortierite: $a = 11.79$, $b = 20.19$, and $c = 4.69$ Å for dumortierite without major substitutions (Evans et al. 2012).

The face-sharing chain of Al1 octahedra (Fig. 3) offers another route for calculating the $c$ unit-cell parameter. Consider an octahedron distorted into a trigonal antiprism, either stretched or flattened along an axis normal to one pair of opposite faces such that those faces remain equilateral triangles and all six M–O distances remain equal to $d$. Face-sharing octahedra are often stretched in this way, whereas edge-sharing octahedra in sheets are flattened, in both cases to reduce repulsion between cations. The height of the distorted octahedron is

$$h_{\text{Al1}} = 2d \cos \psi \tag{7}$$

where $\psi$ is the angle between the distortion axis and the M–O bonds. In a regular octahedron, $\psi = \tan^{-1}\sqrt{2} \approx 54.74^\circ$, whereas $\psi < 54.74^\circ$ for stretched and $\psi > 54.74^\circ$ for flattened octahedra. From Figure 3 and equation 7,

$$c = 2h_{\text{Al1}} = 4d \cos \psi \tag{8}$$

Equating equations 5 and 8 gives $\cos \psi = \sqrt{6}/4$ or $\psi \approx 52.24^\circ$. The actual Al1 octahedron in dumortierite is not flattened uniformly; $\psi$ differs for the Al1–O2 and Al1–O7 bonds, and Al1 is not at the center of the octahedron. However, the average $\psi$ for Al1 in dumortierite is 52.17° (Evans et al. 2012). The main determinant of distortion of the Al1 octahedron is thus a match between the Al1 chain and the framework of double-chains of octahedra.

The near-hexagonality of the orthorhombic dumortierite structure leads to the twinning commonly seen in dumortierite and holtite crystals, with the twin components related by 120° rotations about an axis parallel to $c$. An example is the (As,Sb)-bearing blue dumortierite from Lake Uvilit’dy, Russia, which shows reticular pseudomorphed twinning based on a pseudo-hexagonal lattice with $c \sim c_{\text{dum}}, a \sim 2d_{\text{dum}}, \gamma \sim 119.4^\circ$ (Groat et al. 2012). The underlying structure can be modeled based on (slightly) orthorhombic nets as in Figure 1A, rotated 120° about the near-threefold axes.
extending down the hexagonal or triangular channels and stacked on top of one another. A consequence of this stacking is the creation of faults or defects in the double-chains of octahedra, where Al4-type chains join Al2–Al3-type chains.

**Structure-Generating Function**

By examining the local connectivity of bonds and how components are assembled in the \( \{6\cdot4\cdot3\cdot4\} \) net, we can construct a structure-generating function for the dumortierite structure. The structure-generating function is a powerful generalized formula that describes both stoichiometric (i.e., composition) and topological (i.e., structure and bond connectivity) information for a class of minerals or materials with common features (Hawthorne 2010). In our case, we can write a structure-generating function that describes both hexagonal and orthorhombic DLMs.

Following Hawthorne (2010), we represent generalized cation sites by uppercase Latin letters and generalized anion sites by Greek letters. We use \( \Theta \) for a 3-coordinate anion and \( \Phi \) for a 4-coordinate anion. We represent anions with variable occupancy and coordination that occupy the apex of a tetrahedron or pyramid with a lowercase \( \theta \).

We start with the structure of dumortierite itself. Table 1 lists the 18 sites in dumortierite and their linkages. Inspection of the table shows that \( \Theta \) and \( \Phi \) are both type \( \Theta \)-type anions and \( \Theta \), \( \Theta \), O3–O6, O8, and O9 are \( \Theta \)-type anions. Note that O10 is coordinated only by Al4 and O11 only by Al2 and Al3, so that the 4-coordinate anions are contained entirely within their respective double-chains. Of the 3-coordinate anions, O1 and O3–O6 coordinate the tetrahedrally coordinated sites in the hexagonal channel (Si1 and Si2), whereas O8 and O9 coordinate the cation in the triangular channel (B); we thus designate O1 and O3–O6 as \( \Theta \) and O8 and O9 as \( \Theta \).

Atoms O2 and O7 are also 3-coordinate if the Al1 site is fully occupied, but their role in the structure is quite different from that of the other anions. They are the only anions that are not part of the double-chain framework, and where the Al1 site is vacant (which it commonly is), their coordination drops to 2. In holtite and (As,Sb)-substituted dumortierite, the O2 and O7 sites are often vacant. We therefore consider them to be \( \Theta \)-type anions and label them \( \Theta \).

Finally, we consider the possibility of replacing B in the triangular channel with a 4-coordinated cation. This is the situation in all DLMs, excluding the dumortierite-group minerals, including ellenbergerite, which has Si or P in the triangular channel. This adds an apical site \( \Theta \) inside the triangular channel, which may be 1-coordinated, 2-coordinated if shared between adjacent tetrahedral cations in the channel, or vacant as in dumortierite.

With the anions properly labeled, we can construct the local environment of the cations. Consider a closed surface centered on each cation that passes through each of its coordinating anions; for anions that are shared by \( N \) cations, each surface apportions 1/\( N \) of the anion to each cation. We consider the region bounded by the surface as the local environment of the central cation. Summing the contents of all such bounded regions in the unit cell gives some multiple of the chemical formula.

From Table 1, we see that each of the double-chain sites Al2, Al3, and Al4 are bonded to three \( \Theta \), one \( \Theta \), and two \( \Phi \) anions. In this sense, the Al4 and Al2–Al3 chains are topologically equivalent. Letting M be a general octahedrally coordinated cation site in the double-chains, the M coordination octahedron can be written as

\[
M(\Theta^{3/2})(\Theta^{1/3})(\Phi^{1/2})_2 = M\Theta^h \Theta^{1/3} \Phi^{1/2}
\]

where the fractional subscripts indicate the sharing of anions between cations. In both types of double-chains of octahedra there are four complete octahedra per repeat distance along the c-axis (see Fig. 2), so in the \( \{6\cdot4\cdot3\cdot4\} \) net

\[
\{4\} = [M\Theta^h \Theta^{1/3} \Phi^{1/2}]_4 = (M_2\Theta^h\Theta^{1/3}\Phi^{1/2})_{4/3} \tag{9a}
\]

### Table 1. Sites in Dumortierite and Their Connectivity

<table>
<thead>
<tr>
<th>Label</th>
<th>Site</th>
<th>Bonded To</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>Al1</td>
<td>O2 × 2, O7 × 4</td>
</tr>
<tr>
<td>M(^C)</td>
<td>Al2</td>
<td>O1, O3, O5, O9, O11 × 2</td>
</tr>
<tr>
<td></td>
<td>Al3</td>
<td>O3, O5, O6, O9, O11 × 2</td>
</tr>
<tr>
<td>M(^{H})</td>
<td>Al4</td>
<td>O4 × 2, O6, O8, O10 × 2</td>
</tr>
<tr>
<td>T(\text{h})</td>
<td>Si1</td>
<td>O2, O1, O3 × 2</td>
</tr>
<tr>
<td></td>
<td>Si2</td>
<td>O7, O4, O5, O6</td>
</tr>
<tr>
<td>T(\text{t})</td>
<td>B</td>
<td>O8, O9 × 2</td>
</tr>
<tr>
<td>(\Theta^h)</td>
<td>O2</td>
<td>Si1, Al1 × 2</td>
</tr>
<tr>
<td></td>
<td>O7</td>
<td>Si2, Al1 × 2</td>
</tr>
<tr>
<td>(\Theta^k)</td>
<td>O1</td>
<td>Si1, Al2 × 2</td>
</tr>
<tr>
<td></td>
<td>O3</td>
<td>Si1, Al2, Al3</td>
</tr>
<tr>
<td></td>
<td>O4</td>
<td>Si2, Al4 × 2</td>
</tr>
<tr>
<td></td>
<td>O5</td>
<td>Si2, Al2, Al3</td>
</tr>
<tr>
<td></td>
<td>O6</td>
<td>Si2, Al3, Al4</td>
</tr>
<tr>
<td>(\Theta^t)</td>
<td>O8</td>
<td>B, Al4, Al4</td>
</tr>
<tr>
<td></td>
<td>O9</td>
<td>B, Al2, Al3</td>
</tr>
<tr>
<td>(\Phi^H)†</td>
<td>O10</td>
<td>Al4 × 4</td>
</tr>
<tr>
<td>(\Phi^C)†</td>
<td>O11</td>
<td>Al2 × 2, Al3 × 2</td>
</tr>
</tbody>
</table>

* \( M^{H}, M^{C} \) are both type \( M \) in expression 10a.
† \( \Phi^H, \Phi^C \) are both type \( \Phi \) in expression 10a.
For now, we continue to neglect the difference between the Al2–Al3 and Al4 types of double-chains of octahedra. When it becomes necessary to distinguish them, we shall write \( M^H \), \( \Phi^H \) for sites in the hexagonal-close packed Al4-type and \( M^C \), \( \Phi^C \) for sites in the cubic-close packed Al2–Al3-type.

The tetrahedrally coordinated sites in the hexagonal channel, Si1 and Si2, are coordinated by three \( \Theta^h \) and one \( \Theta^q \) anion each, giving

\[
T^h(\Theta^h_{1/3})3\Theta^h_{1/3} = T^h\Theta^h\Theta^h_{1/3}
\]

for each tetrahedron, where \( T^h \) is the general tetrahedrally coordinated site. The octahedrally coordinated site in the hexagonal channel, A11, is coordinated by six \( \Theta^q \) anions. Labeling the generalized site \( X \), we have

\[
X(\Theta^h_{1/3})6 = X\Theta^h_2
\]

For each repeat distance along the \( c \)-axis, there are two complete \( X \) octahedra and two rings of three \( T^h \) tetrahedra, and so in the \( \{6\cdot4\cdot3\cdot4\} \) net,

\[
\{6\} = [X\Theta^h_2] [T^h\Theta^h_3\Theta^h_{1/3}] [X\Theta^h_2] [T^h\Theta^h_3\Theta^h_{1/3}] = [XT^h_3\Theta^h_3\Theta^h_{3/2}]
\]

(9b)

Finally, the triangular channel cation site \( B \) is coordinated by three \( \Theta^o \) anions and one \( \Theta^q \) anion (where applicable). Calling the general triangular channel site \( T' \), the local environment is

\[
T'(\Theta^o_{1/3})3\Theta^o = T'\Theta^o\Theta^o = \{3\}
\]

(9c)

as there is only one \( T' \) site per repeat distance along the \( c \)-axis.

Combining equations 9a-c with the \( \{6\cdot4\cdot3\cdot4\} \) tile stoichiometry,

\[
\{6\}\{3\}_2 = [XT^h_3\Theta^h_3\Theta^h_{3/2}] [(M_2\Phi)_3\Theta^h_3\Theta^o_{4/3}] \\
\quad = 2[X(M_2\Phi)_3(T^h\Theta^h_3\Theta^h_{3/2})(T'\Theta^o_2\Theta^o_3)]
\]

Dropping the factor of 2, this gives us the generalized structure-generating function for DLMs,

\[
X(M_2\Phi)_3(T^h\Theta^h_3\Theta^h_{3/2})(T'\Theta^o_2\Theta^o_3) \quad (10a)
\]

To emphasize the distinction between the orthorhombic and hexagonal versions of the structure, we reintroduce the two types of double-chains of octahedra:

\[
X(M^H_2\Phi^H)_3\cdots (M^C_2\Phi^C)_m(T^h\Theta^h_3\Theta^h_{3/2})(T'\Theta^o_2\Theta^o_3) \quad (10b)
\]

where \( M^H_2\Phi^H \) now indicates the Al4-type double-chain, \( M^C_2\Phi^C \) indicates the Al2–Al3-type double-chain, and \( m = 2 \) for the orthorhombic and 0 for the hexagonal structures. The expression compartmentalizes the chemically distinct structural elements - the tetrahedral/pyramidal/triangular groups \( T^h\Theta^h_3\Theta^h_{3/2} \) and \( T'\Theta^o_2\Theta^o_3 \), the double-chain elements \( M^H_2\Phi^H \) and \( M^C_2\Phi^C \), and the highly variable octahedrally coordinated hexagonal channel site \( X \). Expressions 10a or 10b can now be applied to any material, natural or synthetic, with the dumortierite structure.

**The Hexagonal Versus Orthorhombic Structures**

Despite broad similarities between the hexagonal and orthorhombic variants of the dumortierite structure, there are significant differences apart from symmetry and the presence of \( M^C \) double-chains.

As discussed by Ferraris et al. (1995), the \( (2+1) \)-dimensional structure can be broken into component slabs perpendicular to the \( a \) direction. This is shown in Figure 4A for the hexagonal structure and Figure 4B for the orthorhombic structure. In the underlying \( \{6\cdot4\cdot3\cdot4\} \) net, these slabs correspond to rows of squares and hexagons alternating with rows of triangles and squares. In Figure 4, we shift the \( T'\Theta^o_2\Theta^o_3 \) groups from the second slab to the first so that the second slab consists of only corner-sharing double-chains of octahedra, but this is arbitrary.

The hexagonal structure is built of two types of slabs, labeled 1 and 2 in Figure 4A. The type-1 slabs consist of \( M^H \) double-chains of octahedra (light and dark green in Fig. 4), \( T'\Theta^o_2\Theta^o_3 \) groups (blue), and the hexagonal channels (yellow), whereas type-2 slabs consist of corner-sharing \( M^H \) chains. The \( T'\Theta^o_2\Theta^o_3 \) tetrahedra in the hexagonal channels are oriented the same way in all the type-1 slabs (indicated by a circle with a central dot, denoting an arrow pointing out of the page), as are the \( M^H \) chains. The point-group symmetry allows the complete structure to be rotated by multiples of 120° and decomposed into the same type of slabs in the same way.

The orthorhombic structure is composed of four types of slab (Fig. 4B), but with the second two related to the first two by a simple transformation. The first slab is the same type-1 as in the hexagonal structure. The second slab, labeled type-3, consists of chains of edge-sharing \( M^C \) octahedra (pink and light blue) and is analogous to the type-2 slabs in the hexagonal structure. The third and fourth slabs, labeled types-1 and 3, are inverted slabs of types-1 and 3; as a consequence, the hexagonal channels in type-1 slabs are oriented oppositely to those in type-1 (indicated by the crossed circle, denoting an arrow pointing into the page); an alternative way of decomposing the orthorhombic structure into only two kinds of slabs can be obtained by rotating the structure by 120°, as shown in the deposited Supplemental Figure S1; available from the Depository of Unpublished Data on the Mineralogical Association of Canada website, document Dumortierite CM50_1197.}

The alternating orientations of slabs 1, 3 and 1, 3 in the orthorhombic structure show that transforming an orthorhombic DLM such as dumortierite into a hexag-
Fig. 4. Decompositions of the hexagonal (A) and orthorhombic (B) dumortierite-like structure, highlighting differences between them, after Ferraris et al. (1995). The hexagonal structure is built of alternating slabs in the bc-plane of type 1 and 2; the orthorhombic structure is built of layered slabs of type 1, 3, 1, and 3, where type \( \tilde{x} \) is related to type \( x \) by an inversion. The uppermost dimer of \( M^{H} \) octahedra is shown as a dark green rectangle within the larger \( M^{H} \) chain rectangle, with the lower dimer just behind shown as lighter green. In the \( M^{C} \) double-chains, A12 octahedra are pink and A13 are octahedra pale blue; upper octahedra are represented by full rectangles, while lower octahedra behind are represented by partial rectangles. The \( T^{\Theta}, \Phi \) groups are shown as blue triangles. The contents of the hexagonal channel are shown in yellow. The orientation of the tetrahedra in the hexagonal channels is shown by either a circle with a dot, denoting an arrow pointing out of the page, or a circle with a cross, denoting an arrow pointing into the page.
The double-chains in Figure 4 are necessarily flattened into square two-dimensional profiles; upper and lower octahedra or dimers of octahedra are indicated graphically as described in the figure caption. It can be seen that both the \( M^H \) and \( M^C \) double-chains adhere to the following matching rules: upper octahedra can only share corners with upper octahedra, and lower octahedra can only share corners with lower octahedra. By inspection, it is clear that there is no way to surround the triangular channel with \( M^C \) chains alone such that these matching rules are followed, hence a dumortierite-like structure with \( M^C \) chains but no \( M^H \) chains is impossible.

**Review of Dumortierite-Like Materials**

With the structure-generating function in place, much of the crystal chemistry of DLMs can be described with reference to the identity of the various terms in expression 10. Having a common description of the structure allows us to directly compare chemically and crystallographically distinct materials. We now review the known materials with the dumortierite structure with reference to the structure-generating function.

Previously, Zubkova *et al.* (2006) compared several chemically and structurally distinct DLMs, but here we include several additional members and go into greater detail. A summary of known DLMs is given in Table 2.

<table>
<thead>
<tr>
<th>Material</th>
<th>Space Group</th>
<th>X</th>
<th>( M^H 2\phi^H )</th>
<th>( M^C 2\phi^C )</th>
<th>( T^q\theta^3 )</th>
<th>( T^q\theta )</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dumortierite</td>
<td>Pmcn</td>
<td>Al, Fe, Mg, Ti, Ta, Zr, Ti</td>
<td>( \text{Al}_2(\text{O},\text{OH}) )</td>
<td>( \text{Al}_2\text{O} )</td>
<td>SiO(_4^{2-}), SiO(_2\text{OH}^{3-})</td>
<td>BO(_3^{2-})</td>
</tr>
<tr>
<td>Holtite</td>
<td>Pmcn</td>
<td>Al, Fe, Mg, Ti</td>
<td>( \text{Al}_2(\text{O},\text{OH}) )</td>
<td>( \text{Al}_2\text{O} )</td>
<td>SiO(_4^{2-}), SiO(_2\text{OH}^{3-})</td>
<td>BO(_3^{2-})</td>
</tr>
<tr>
<td>Magnesio-dumortierite</td>
<td>Pmcn</td>
<td>Mg, Fe, Ti</td>
<td>(Al, Mg)_2OH</td>
<td>( \text{Al}_2\text{O} )</td>
<td>SiO(_4^{2-}), SiO(_3\text{OH}^{3-}), PO(_4^{3-})</td>
<td>BO(_3^{2-})</td>
</tr>
<tr>
<td>Ellenbergerite</td>
<td>( P6_3 ) ordered or ( P6_3mc )</td>
<td>Mg, Ti, Zr, Ti, Fe</td>
<td>M(_2)OH + Al(_2)OH or (Mg, Al)(_2)OH</td>
<td>SiO(_4^{2-}), PO(_3^{3-}), SiO(_2\text{OH}^{3-}), PO(_3^{2-})</td>
<td>SiO(_4^{2-}), PO(_3^{3-}), SiO(_2\text{OH}^{3-}), PO(_3^{2-})</td>
<td></td>
</tr>
<tr>
<td>Phospho-ellenbergerite</td>
<td>( P6_3mc )</td>
<td>Mg, Ti, Zr, Fe, Ca</td>
<td>Mg(_2)OH</td>
<td>SiO(_4^{2-}), PO(_3^{3-}), SiO(_2\text{OH}^{3-}), PO(_3^{2-})</td>
<td>SiO(_4^{2-}), PO(_3^{3-}), SiO(_2\text{OH}^{3-}), PO(_3^{2-})</td>
<td></td>
</tr>
<tr>
<td>Ekatite</td>
<td>( P6_3mc )</td>
<td>Fe(_3+), Fe(_2+), Zn(_2+) OH</td>
<td>(Fe(<em>{3+}), Fe(</em>{2+}), Zn(_{2+})) (_2)OH</td>
<td>AsO(_3^{3-})</td>
<td>AsO(_3^{3-}), SiO(_3\text{OH}^{3-})</td>
<td></td>
</tr>
<tr>
<td>TM* Phosphites</td>
<td>( P6_3mc )</td>
<td>(( M_{11/2})(<em>{11/2}))(</em>{1})OH</td>
<td>(( M_{11/2})(<em>{11/2}))(</em>{1})OH</td>
<td>HPO(_3^{2-})</td>
<td>HPO(_3^{2-})</td>
<td></td>
</tr>
<tr>
<td>Metal Pnictates</td>
<td>( P6_3mc )</td>
<td>( M_{11/2})(<em>{11/2})(</em>{1})OH for ( M = ) Co(<em>{2+}), Ni(</em>{2+}), Zn(<em>{2+}), Fe(</em>{2+}), Mn(_{2+})</td>
<td>M(_2)OH</td>
<td>TO(_3\text{OH}^{3-}), TO(_4^{3-}) for ( T = ) P(_5^+), As(_5^+) for ( T = ) P(_5^+), As(_5^+)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TM* Chalcogenites</td>
<td>( P6_3mc )</td>
<td>( M^{3+}), F(<em>-) for ( M = ) Co(</em>{2+}), Ni(_{2+})</td>
<td>M(_2)OH</td>
<td>TO(_3\text{OH}^{3-}), TO(_4^{3-}) for ( T = ) Se(_4^+), Te(_4^+) for ( T = ) Se(_4^+), Te(_4^+)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zn sulfate-vanadate</td>
<td>( P6_3mc )</td>
<td>Zn(<em>2+), Zn(</em>{2+}) OH</td>
<td>Zn(_2)OH</td>
<td>VO(_3^{2-}), VO(_2\text{OH}^{3-}) for ( T = ) P(_5^+), As(_5^+) for ( T = ) P(_5^+), As(_5^+)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metal vanadates</td>
<td>( P6_3mc )</td>
<td>( M^{3+}), ( M^{2+}) for ( M = ) Mn(<em>{3+}), Mg for ( M = ) Mn(</em>{2+}), Mg</td>
<td>M(_2)OH</td>
<td>VO(_3^{2-}), VO(_2\text{OH}^{3-}), VO(_3^{2-}), VO(_2\text{OH}^{3-}), V(_5^+)O(_4^{3-}), V(_5^+)O(_6\text{OH}^{3-})</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*TM: transition metal*
Dumortierite, holite, and magnesiodumortierite

There are 18 crystallographically distinct sites in dumortierite, but many play the same roles topologically in the structure and so are considered to be equivalent in terms of the structure-generating function. For example, whereas the Si1 and Si2 sites are crystallographically distinct, they are both considered to be \( T^h \) sites. Similarly, Al2 and Al3 are both considered \( M^C \) sites, and O1 and O3-O6 are all \( \Theta^b \) sites.

In the dumortierite-group minerals, both \( M^H \) (Al4) and \( M^C \) (Al2–Al3) double-chains of octahedra are present, so \( m = 2 \) in expression 10b. In dumortierite, sites in the double-chains of octahedra are predominantly occupied by Al\(^{3+}\), so \( M^C \) and \( M^H \) are equal to Al\(^{3+}\). The O11 (\( \Phi^C \)) site seems invariably to be occupied by oxygen, so \( M^C_2\Phi^C \) is equal to Al\(_2\)O. Bond-valence calculations for all three dumortierite-group minerals (Alexander et al. 1986, Ferraris et al. 1995, Fuchs et al. 2005, Kazantsiev et al. 2005) show that the O10 (\( \Phi^H \)) site has a low incident valence and is partially occupied by OH, so that \( M^C_2\Phi^H \) is equal to Al\(_2\)(O,OH).

As discussed by Alexander et al. (1986) and Moore & Araki (1978b), the \( \Phi^H \) anion is coplanar with its four bonded \( M^H \) cations, and repulsion between the cations elongates two of the four \( M^H-\Phi^H \) bonds. This leads to the low incident valence and makes \( \Phi^H \) a receptive site for OH\(^–\) or F\(^–\). This is common in hexagonal DLMs, as shown below. In dumortierite group minerals these OH groups balance charges for divalent cations substituting for Al\(^{3+}\) at the M sites. The H at \( \Phi^H \) forms a hydrogen bond with one of the \( \Theta^h \) anions (O8 in dumortierite) (Ferraris et al. 1995).

Like the M sites, the octahedrally coordinated site Al1 in the hexagonal channel is generally dominated by Al\(^{3+}\), but it is also, on average, between 10% and 25% vacant (Moore & Araki 1978b, Alexander et al. 1986, Fuchs et al. 2005, Evans et al. 2012); thus X is equal to (Al,\( \Box \)). Large anisotropic-displacement parameters along the c-axis indicate that in some cases, the Al1 site in dumortierite is split (Evans et al. 2012, Groat et al. 2012), with Al\(^{3+}\) atoms relaxing toward adjacent vacancies so as to increase the minimum Al–Al distance in the hexagonal channel. In some cases, this produces order in individual channels of trimers of occupied Al1 octahedra separated by vacancies as found by Evans et al. (2012). In other cases, additional substitutions lead to disordered sequences of dimers, trimers, and longer sequences (Groat et al. 2012).

Vacancies at Al1 are charge-compensated by replacement of O by OH somewhere in the structure. In dumortierite, this is considered to occur primarily at the O2 and O7 positions (Moore & Araki 1978b, Alexander et al. 1986, Werding & Schreyer 1990, Ferraris et al. 1995, Cempírek & Novák 2005, Fuchs et al. 2005, Evans et al. 2012) adjacent to vacant Al1 sites; thus \( \Theta^b = (O, OH) \). \textit{Ab initio} electronic structure calculations (Evans et al. 2012) suggest that H at O2 and O7 form hydrogen bonds with under-bonded O\(^2–\) at other O2, O7 sites associated with the vacant Al1 octahedron.

Anion sites other than O2, O7, and O10 are most likely O\(^2–\) only; Ferraris et al. (1995) suggested OH at the O1 or O9 sites, but there is little supporting evidence. Endmember dumortierite has Si\(^4+\) at all Si1 and Si2 sites, so \( T^h\Theta^h\Theta^h \) is primarily SiO\(_3\)(O,OH).

The only cation that has been reported at the cation site in the triangular channel in dumortierite, holite, or magnesiodumortierite to date is B\(^3+\), so \( T^h\Theta^h\Theta^h \) is equal to BO\(_3^–\) (with \( \Theta^h = \Box \)). The full formula for endmember dumortierite written in the format of expression 10b is thus

\[
(\text{Al}, \Box)[\text{Al}_2(O,OH)][\text{Al}_2\text{O}_2(\text{SiO}_3(O,OH))]_3(\text{BO}_3)
\]

Common substituents for Al\(^{3+}\) at the octahedrally coordinated X, M\(^a\), and M\(^b\) sites include Ti\(^{3+}\), Fe\(^{3+}\), Fe\(^{2+}\), and Mg\(^{2+}\) (Claringbull & Hey 1958, Beukes et al. 1987, Taner & Martin 1993, Platonov et al. 2000, Choo & Kim 2003, Farges et al. 2004, Cempírek & Novák 2005, Fuchs et al. 2005, Mahapatra & Chakraborty 2011, Pieczka et al. 2011, Evans et al. 2012). The larger and more flexible octahedra coordinating the X site can also accommodate Nb\(^{5+}\) and Ta\(^{5+}\). Small amounts of phosphorus (typically \( \sim 0.1 \) wt.% P\(_2\)O\(_5\) or less) are commonly detected in dumortierite, presumably as PO\(_3^–\) at \( T^h\Theta^h\Theta^h \). The total content of octahedrally coordinated cations in dumortierite frequently exceeds the theoretical maximum of 7 apfu, with a closely corresponding deficit of (\( T^h \)-type) tetrahedrally coordinated cations below 3 apfu, strongly suggesting small amounts of Al\(^{3+}\) at the \( T^h \) sites (cf. Ferraris et al. 1995, Chopin et al. 1995, Evans et al. 2012, Groat et al. 2012). In synthesizing dumortierite, Werding & Schreyer (1990) found greater amounts of tetrahedrally coordinated Al\(^{3+}\) at low pressures than at high pressures.

The material that gives rose quartz its color is closely related to dumortierite: it forms fibrous nanoinclusions, ranging in width from 0.1 to 0.5 \( \mu \)m (Applin & Hicks 1987, Goreva et al. 2001). Goreva et al. (2001) found the FTIR and Raman spectra of the fibers to be similar to those of dumortierite with some slight differences in the 1000 and 350-600 cm\(^–1\) regions. Ma et al. (2002) reported that selected-area electron-diffraction (SAED) patterns and high-resolution transmission-electron microscope (HRTEM) images show that the fibers have a superstructure with a doubled periodicity along the \( a \)- and \( b \)-axes, giving cell parameters \( a = 2a_{\text{dum}} = 23.6 \) Å, \( b = 2b_{\text{dum}} = 40.5 \) Å, and \( c = c_{\text{dum}} = 4.7 \) Å. Computer simulations suggest that periodic arrangements of two different X-site occupancies give rise to the superstructure; one type of X site is occupied mainly by Al\(^{3+}\), whereas the other is dominated by Ti and Fe. Analytical electron microscopy (AEM) showed that the fibers contain significant amounts of Ti (0.15-0.25 apfu) and Fe (0.09-0.15 apfu) substituting for Al. The color of rose quartz likely originates from Fe-Ti...
Dumortierite-holtite found at the Virorco locality (Galliski et al. 2012) displays a full range of compositions including (Ta,Nb)-rich endmembers, including Si-dominant dumortierite-holtite, with high-(As,Sb), high-(Ta,Nb) with low-(As,Sb); and low-(Ta,Nb) with low-(As,Sb). These results show that not only does there exist a compositional continuum between dumortierite and holtite, but that this continuum comprises multiple endmembers, including Si-dominant dumortierite-holtite analogues where Ta$_5^+$, Nb$_5^+$, or Ti$^{4+}$ are dominant at the X site, as well as the material with total replacement of SiO$_4^{4-}$ by (As,Sb)O$_3^{3-}$:

\[
\square[\text{Al}_2(\text{OH})][\text{Al}_2\text{O}_2][(\text{As,Sb})\text{O}_3]_3(\text{BO}_3) = \\
\square\text{Al}_6(\text{As,Sb})_3\text{BO}_{14}(\text{OH})
\]

This latter material features a completely vacant X site and hence an empty hexagonal channel. Whereas ekatite and certain synthetic hexagonal DLMs possess empty hexagonal channels (see below), it is uncertain whether these hypothetical Si-free dumortierite-like endmembers would be stable. Full characterization of the dumortierite-holtite system requires a precise definition of each of these endmembers and a consistent nomenclature, specifically, clarification of what qualifies an orthorhombic Al-dominated DLM as ‘holtite’.

Magnesiodumortierite (Ferraris et al. 1995, Chopin et al. 1995) is the Mg-analogue of dumortierite. Here, Mg$_{2+}$ is dominant at the X site (over vacancies, Ti$^{4+}$, Fe$^{2+}$, and Fe$^{3+}$); up to 0.40 Mg has been observed at the M$^H$ (Al$^4$) site (Chopin et al. 1995), although Al$^{3+}$ is still dominant at the latter. The Mg$_{2+}$ replaces Al$^{3+}$ in the dumortierite structure via the mechanisms

\[
2\text{Al}^{3+} \rightarrow \text{Mg}^{2+} + \text{Ti}^{4+}
\]

and

\[
\text{Al}^{3+} + \text{O}^{2-} \rightarrow \text{Mg}^{2+} + \text{OH}^-
\]

with the latter mechanism favored at high pressures (Chopin et al. 1995). Ferraris et al. (1995) located OH at the Φ$^H$ (O10) site on a difference Fourier map, and bond-valence calculations indicate that Φ$^H$ is completely occupied by OH, with approximately 0.5 H at each Θ (O2 and O7) site. Other sites in magnesiodumortierite are the same as in dumortierite.

Figure 5 shows a plot of unit-cell parameters $b$ versus $a$ for dumortierite (30 natural samples, 21 synthetic), holtite (9 natural samples), and magnesiodumortierite (1 natural sample), together with the hexagonal ideal of $b = \sqrt{3}a$ (equations 1, 4). Nearly all measured unit-cell parameters fall below this line of hexagonality; the average $b/a$ for natural dumortierite is 1.714(5) and for holtite is 1.713(2), where figures in brackets indicate standard deviations; for the single measured sample of magnesiodumortierite (Ferraris et al. 1995), $b/a = 1.713$. Points for naturally occurring dumortierite cluster mostly in the lower left of the diagram ($b \sim 11.78$ to $11.83$ Å, $a \sim 20.17$ to $20.28$ Å), whereas the points for holtite are spread across the upper right following a similar trend ($a \sim 11.87$ to $11.98$ Å, $b \sim 20.30$ to $20.57$ Å); magnesiodumortierite falls in the holtite range. In the synthetic dumortierite prepared by Werding & Schreyer (1990) (white circles in Fig. 5), in which Al$\text{O}_3$, SiO$_2$, B$_2$O$_3$, and H$_2$O are the only components, higher synthesis pressures resulted in greater $b$ and smaller $a$ values, as well as lower analytical Al/Si ratios and lower amounts of tetrahedrally coordinated Al.

Ellenbergerite, phosphoellenbergerite, and ekatite

The Ellenbergerite group minerals are the only naturally occurring DLMs known with hexagonal symmetry; they possess only $M^H$-type and no $M^E$-type double-chains, such that $m = 0$ in the structure-generating function (expression 10b).

Ellenbergerite (Chopin et al. 1986) is a Mg-dominated silicate-phosphate found as inclusions in pyrope porphyroblasts from the southern Dora-Maira massif in the western Alps, Italy. Its general formula is
The hexagonal channel site, X, is occupied primarily by Mg along with the tetravalent cations Ti and Zr, vacancies and small amounts of Fe\(^{2+}\) (Chopin et al. 1986). The substitution Ti\(^{4+}\) ↔ Zr\(^{4+}\) results in color variations from purple to colorless. Cations appear to be ordered along the hexagonal channel in the following fashion:

\[
\ldots \quad \square - \text{Mg}^{2+} - (\text{Ti}^{4+},\text{Zr}^{4+}) - \square - \ldots
\]

(Chopin & Langer 1988, Comodi & Zanazzi 1993a); coloration occurs due to Fe\(^{2+}\)-Ti\(^{4+}\) (pink to purple) and Fe\(^{2+}\)-Fe\(^{3+}\) (blue) charge transfer between adjacent X sites (Chopin & Langer 1988, Chopin et al. 2009), similar to the case of dumortierite (Platonov et al. 2000).

The T\(^{6+}\)T\(^{3+}\)T\(^{4+}\) groups in the hexagonal channel and T\(^{6+}\)T\(^{3+}\)T\(^{4+}\) groups in the triangular channel can be silicate or phosphate groups. Chopin et al. (1986) proposed a silicate endmember (Mg\(_{1/3}\)Ti\(_{1/3}\)Zr\(_{1/3}\))Mg\(_3\)Al\(_3\)Si\(_4\)O\(_{14}\)(OH)\(_5\) with the main substitution mechanism a mixture of VIAl\(^{3+}\) + IVSi\(^{4+}\) ↔ VIMg\(^{2+}\) + IVP\(^{5+}\) (~80%) and VI\(^{4+}\) + IVSi\(^{4+}\) ↔ VIAl\(^{3+}\) + IVP\(^{5+}\) (~20%). The former alone can account for replacement of a maximum of 3 Si pfu. Brunet & Schaller (1996) suggest that Si\(^{4+}\) + H\(^+\) ↔ P\(^{5+}\) is also active.

Near the silicate endmember composition, Al and Mg are ordered at distinct sites in the M\(^H\) double-chain, lowering the space group symmetry to P6\(_3\). With a higher P content, Al and Mg are disordered, with only one M\(^H\) site, and the space group is P6\(_3\)mc.

Mineral compositions near the phosphate endmember are designated phosphoellenbergerite (Brunet &
AsO₄)₃(PO₃OH,CO₃). As well as phosphate, substantial Φ calculations for phosphoellenbergerite suggest that
orthorhombic structure whereas Mg²⁺ and P⁵⁺ prefer the
triangular channel at
27 kbar and 725 °C (Chopin & Sobolev 1995). Phosphoellenbergerite, H atoms in the triangular channel are
at disordered positions off the threefold axis. Hydrogen was located on Φ²⁺ and θ' on difference Fourier maps,
and bond-valence calculations suggest that both sites are entirely filled by OH⁻. Stoichiometry and bond
valences indicate an average M³⁺ valence of 2.5, which with chemical analyses leads to the given occupancy.
There was no evidence of ellenbergerite-like order in the M³⁺ chains.

Synthesis of DLMs

Two of the six mineral DLMs have been synthesized. Synthesis of dumortierite was first reported by Ono
(1981) and Werding & Schreyer (1983), and Werding & Schreyer (1990) did extensive experiments under
various synthesis conditions. Endmember phosphoellenbergerite was synthesized by Beller (1987), Brunet
& Schaller (1996), and Brunet et al. (1998).

The first new synthetic DLMs reported were Ni and
Co hydroxytellurites by Perez et al. (1976); several
other types have been produced since then. Synthetic
DLMs are grown hydrothermally in closed vessels at
various pressures (0.4 to 30 kbar) and temperatures (160
to 1100 °C). All are hexagonal with space group
P6₃/mmc. All T³⁺θ⁴ groups are AsO₃³⁻, such that the
θ' sites are occupied by the As³⁺ lone-pair electrons,
and there are no coordinating anions for the X site in
the hexagonal channel; thus X is completely vacant. Ekatiite is therefore similar to the hypothetical Si-free
dumortierite-holtite endmember. Arsenite also domi-
nates T³⁺θ⁴ groups in the triangular channel, with a
minority occupied by SiO₃OH²⁻ groups. As in phos-
phoellenbergerite, H atoms in the triangular channel are
at disordered positions off the threefold axis. Hydrogen was located on Φ²⁺ and θ' on difference Fourier maps,
and bond-valence calculations suggest that both sites are entirely filled by OH⁻. Stoichiometry and bond
valences indicate an average M³⁺ valence of 2.5, which with chemical analyses leads to the given occupancy.
There was no evidence of ellenbergerite-like order in the M³⁺ chains.

TM phosphites

One of the most studied class of synthetic DLMs are the transition metal (TM) phosphites with stoichiometry
M₁₁(HPO₄)₈(OH)₆. These have been synthesized with
M = Co²⁺ (Marcos et al. 1993b, Che et al. 2005, Ni et
al. 2009), Ni²⁺ (Marcos et al. 1993b, Gu et al. 2007,
Ni et al. 2009, Liao & Ni 2010), Zn²⁺ (Marcos et al.
1993c), Fe²⁺ (Attfield et al. 1994), and Mn²⁺ (Attfield
et al. 1994, Jin et al. 2010).

Ekatite (Keller 2001), a mixed-valence iron arsenite-
silicate found at Tsumeb, Namibia, has the empirical
formula
□(Fe³⁺₂·₉₈Fe²⁺₂·₇₇Zn₀·₄₀□₀·₄₃)(OH)₃·₀₀
(As₁·₀₁O₃)₃·₀₀(AsO₃)₀·₇₂(SiO₃OH)₀·₃₈]₀·₁₂
(rescaled from Keller 2001 for Z = 2) with space group
P6₃/mmc. All T³⁺θ⁴ groups are AsO₃³⁻, such that the
θ' sites are occupied by the As³⁺ lone-pair electrons,
and there are no coordinating anions for the X site in
the hexagonal channel; thus X is completely vacant. Ekatiite is therefore similar to the hypothetical Si-free
dumortierite-holtite endmember. Arsenite also domi-
nates T³⁺θ⁴ groups in the triangular channel, with a
minority occupied by SiO₃OH²⁻ groups. As in phos-
phoellenbergerite, H atoms in the triangular channel are
at disordered positions off the threefold axis. Hydrogen was located on Φ²⁺ and θ' on difference Fourier maps,
and bond-valence calculations suggest that both sites are entirely filled by OH⁻. Stoichiometry and bond
valences indicate an average M³⁺ valence of 2.5, which with chemical analyses leads to the given occupancy.
There was no evidence of ellenbergerite-like order in the M³⁺ chains.

Synthesis of DLMs

Two of the six mineral DLMs have been synthesized. Synthesis of dumortierite was first reported by Ono
(1981) and Werding & Schreyer (1983), and Werding
& Schreyer (1990) did extensive experiments under
various synthesis conditions. Endmember phosphoellenbergerite was synthesized by Beller (1987), Brunet
& Schaller (1996), and Brunet et al. (1998).

The first new synthetic DLMs reported were Ni and
Co hydroxytellurites by Perez et al. (1976); several
other types have been produced since then. Synthetic
DLMs are grown hydrothermally in closed vessels at
various pressures (0.4 to 30 kbar) and temperatures (160
to 1100 °C). All are hexagonal with space group
P6₃/mmc, with divalent cations dominating the octahedrally
coordinated framework (M⁶⁺) sites. None have yet been
synthesized containing Al³⁺, borate or silicate groups.

TM phosphites

One of the most studied class of synthetic DLMs are
the transition metal (TM) phosphites with stoichiometry
M₁₁(HPO₄)₈(OH)₆. These have been synthesized with
M = Co²⁺ (Marcos et al. 1993b, Che et al. 2005, Ni et
al. 2009), Ni²⁺ (Marcos et al. 1993b, Gu et al. 2007,
Ni et al. 2009, Liao & Ni 2010), Zn²⁺ (Marcos et al.
1993c), Fe²⁺ (Attfield et al. 1994), and Mn²⁺ (Attfield
et al. 1994, Jin et al. 2010).
In terms of the structure-generating function (expression 10), the general formula for the TM phosphites can be written as

$$[(M^{1-}\square)_{2}OH]_{3}(HPO_{3})_{3}(HPO_{3})$$

with \( x = \frac{1}{12} \). Both \( T'\Theta^0T' \) and \( T'h\Theta^hT'h \) are \( HPO_{3}^2^- \) groups, tetrahedral groups with oxygen at the three basal vertices and a hydride anion, \( H^- \), at the apex, so that \( \Theta^0 = O^- \) and \( \Theta^h = H^- \). With the hydrogen atoms of the phosphite group pointing into the hexagonal channel, the \( X \) site is vacant.

Phosphite tetrahedra in the triangular channel show various orientations depending on the \( M^H \) cation. In hexagonal DLMs, the \( T'h\Theta^hT'h \) tetrahedra in the hexagonal channel point in a uniform direction, so that we may describe the \( 3\Theta^h \) triangular base of a tetrahedron as pointing up the \( c \)-axis as in Figure 6A. The \( T'\Theta^0T' \) tetrahedra in the triangular channel may point either in the same or opposite directions. Ellenbergerite-group minerals seem to prefer \( T'\Theta^0T' \) pointing up, i.e., in the same direction as the \( T'h\Theta^hT'h \) tetrahedra; ellenbergerite, phosphoellenbergerite, and ekatite all have \( T'\Theta^0T' \) groups that point up (carbonate groups in phosphoellenbergerite are planar with \( q^t = \square \)). In the TM phosphites, phosphite groups in the triangular channel point up for the \( Zn^{2+}, Fe^{2+}, \) and \( Mn^{2+} \) compounds (Marcos et al. 1993c, Attfield et al. 1994). The \( Ni^{2+} \) compound, however, has phosphite groups in the triangular channel that point down, i.e., against the direction of the \( T'h\Theta^hT'h \) tetrahedra (Marcos et al. 1993b). The \( Co^{2+} \) compound has split \( T' \) and \( \theta^0 \) sites separated by 0.87 and 1.4 Å, respectively, so that approximately 80% of the phosphite groups point down and 20% point up (Marcos et al. 1993b). It is not clear why phosphite prefers to point down in these two compounds but up in most of the others, and whether this is controlled strictly by the identity of the \( M \) cation or is affected by synthesis conditions.

Note that there is no standard setting for the dumortierite or ellenbergerite group minerals with regards to which direction along the \( c \)-axis is “up”, e.g., the reduced unit-cell coordinates used for dumortierite by Moore & Araki (1978b) and for ekatite by Keller (2001) have the \( T'h \) tetrahedra pointing in the positive \( c \) direction, whereas those for ellenbergerite used by Chopin et al. (1986) and for phosphoellenbergerite by Raade et al. (1998) have the \( T'h \) tetrahedra pointing in the negative \( c \) direction.

Fig. 6. Orientation of the tetrahedral groups. (A) Section of the hexagonal channel showing the tetrahedral \( T'h\Theta^hT'h \) groups. The tetrahedral groups point in a uniform direction (defined here as the positive direction of the \( c \)-axis), and the \( T'\Theta^0T' \) groups in the triangular channel may point either up or down with respect to that direction. (B), (C), and (D) Possible distribution of tetrahedra in the triangular channels. Shaded tetrahedra indicate occupied \( T' \) sites and filled circles indicate occupied \( \theta^0 \) sites. (B) Completely ordered triangular channel with all \( T'\Theta^0T' \) groups pointing up. (C) Disordered triangular channel with no apex sharing; \( \theta^0 \) occupancy is equal to total \( T' \) (upward- and downward-pointing) occupancy. (D) Disordered triangular channel with apex sharing; \( \theta^0 \) occupancy is equal to upward-pointing \( T' \) occupancy.
Structure refinement of single-crystal (Marcos et al. 1993c) and powder (Marcos et al. 1993b) X-ray diffraction data show that the occupancy of the M\textsuperscript{II} site is very close to the \(11/12\) predicted by the ideal stoichiometry, with no evidence of order among the vacancies, although Marcos et al. (1993c) did detect some evidence of a split site 0.4 Å from the regular cation site, presumably due to relaxation near a vacancy. With the M\textsuperscript{II} cation the only variable, the unit-cell parameters show a simple linear dependence on cation size (Fig. 7). The M\textsuperscript{II} cation also controls the color of the compounds: translucent to white for Zn\textsuperscript{2+}, pink to violet for Co\textsuperscript{2+}, grey or light green to green for Ni\textsuperscript{2+}, colorless for Fe\textsuperscript{2+}, and white to pink for Mn\textsuperscript{2+}.

**Metal pnictates**

Several compounds have been synthesized with a general stoichiometry described, following the formulae used by Pizarro et al. (1993) and Rojo et al. (2002), by

\[\text{M}_{12y+x}\text{M'}_{12-12y}\text{H}_{6-2x}(\text{TO}_4)_8(\text{OH})_6\]

where M, M' = Co\textsuperscript{2+}, Ni\textsuperscript{2+}, Mg\textsuperscript{2+} and T = P\textsuperscript{5+} or As\textsuperscript{5+} with \(0 \leq x \leq 2\) and \(0 \leq y \leq 1\) (y undefined when M =

---

**Fig. 7.** Unit-cell parameters of TM phosphites (M\textsuperscript{II} cations labeled) versus cation radius (Shannon 1976). (A) \(a\) parameter, (B) \(c\) parameter. Data from Marcos et al. (1993b), Marcos et al. (1993c), Attfield et al. (1994), Che et al. (2005), Gu et al. (2007), Ni et al. (2009), and Liao & Ni (2010).

---

**TABLE 3. SYNTHETIC METAL PNICTATES, M_{12y+x}M'_{12-12y}H_{6-2x}(TO_4)_8(OH)_6**

<table>
<thead>
<tr>
<th>M</th>
<th>M'</th>
<th>T</th>
<th>x</th>
<th>y</th>
<th>c (Å)</th>
<th>a (Å)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co</td>
<td>Co</td>
<td>P</td>
<td>1.22</td>
<td></td>
<td>5.031</td>
<td>12.580</td>
<td>1, 2</td>
</tr>
<tr>
<td>Ni</td>
<td>Ni</td>
<td>P</td>
<td>0.78</td>
<td></td>
<td>not given &amp;</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Ni</td>
<td>Ni</td>
<td>P</td>
<td>0.76</td>
<td></td>
<td>4.953</td>
<td>12.470</td>
<td>2</td>
</tr>
<tr>
<td>Ni</td>
<td>Ni</td>
<td>As</td>
<td>1.33</td>
<td></td>
<td>5.031</td>
<td>12.695</td>
<td>4</td>
</tr>
<tr>
<td>Ni</td>
<td>Ni</td>
<td>As</td>
<td>1.16</td>
<td></td>
<td>5.032</td>
<td>12.702</td>
<td>4</td>
</tr>
<tr>
<td>Ni</td>
<td>Ni</td>
<td>As</td>
<td>0.96</td>
<td></td>
<td>4.997</td>
<td>12.702</td>
<td>3</td>
</tr>
<tr>
<td>Ni</td>
<td>Ni</td>
<td>As</td>
<td>0.78</td>
<td></td>
<td>5.026</td>
<td>12.678</td>
<td>2</td>
</tr>
<tr>
<td>Mg</td>
<td>Ni</td>
<td>P</td>
<td>0.00</td>
<td>(\frac{2}{3}) &amp;</td>
<td>4.974</td>
<td>12.419</td>
<td>5</td>
</tr>
<tr>
<td>Mg</td>
<td>Ni</td>
<td>As</td>
<td>1.50</td>
<td>0.76</td>
<td>5.062</td>
<td>12.715</td>
<td>5</td>
</tr>
<tr>
<td>Mg</td>
<td>Mg</td>
<td>P</td>
<td>1.80</td>
<td></td>
<td>5.003-5.008</td>
<td>12.431-12.437</td>
<td>6*</td>
</tr>
</tbody>
</table>


*endmember phosphoellenbergerite.
M'). The endmember phosphoellenbergerite described by Brunet & Schaller (1996) and Brunet et al. (1998) fits this category, with \(M = M' = \text{Mg}^{2+}, T = \text{P}^{5+}\) and \(x = 1.8\), so these compounds might be considered further extrapolations of ellenbergerite. Various compositions with \(M = M' = \text{Co}^{2+}, \text{Ni}^{2+}\) were synthesized by Pizarro et al. (1993), Marcos et al. (1993a, 1995), and Hughes et al. (2003). Rojo et al. (2002) synthesized mixed compositions with \(M = \text{Mg}^{2+}, M' = \text{Ni}^{2+}\). All compositions in this class, along with unit-cell parameters, are summarized in Table 3. The \(\text{Co}^{2+}\) and \(\text{Ni}^{2+}\) compounds show similar colors to the analogous TM phosphites.

Where \(M = M'\), the general formula can easily be written in the style of the structure-generating function as

\[
(\text{M}_{1/2}\square_{1-\alpha/2})(\text{M}_2\text{OH})_3[(\text{T} \text{O}_3)_4][\text{O}_2\text{OH}]
\]

The parameter \(x/2\) describes the occupancy of the hexagonal-channel X site. Hydroxyl fully occupies the \(\Phi^d\) and \(\theta^d\) sites, and some \(\theta^d\) sites where X is vacant (Pizarro et al. 1993, Marcos et al. 1993a, 1995, Hughes et al. 2003). Compounds with \(x > 1\) necessarily have adjacent non-vacant face-sharing octahedra in the hexagonal channel.

Transition-metal cations, particularly \(\text{Ni}^{2+}\), seem to have a significant stereochemical effect on the structure and possible compositions. Marcos et al. (1993a) found the composition with minimum \(x\) that could be synthesized was \(\approx 0.76\); attempts to synthesize compounds with \(x = 0\) (i.e., with an empty X site) resulted in a final structure with at least \(x = 0.76\). Similarly \(x \approx 1.33\) seems to be the maximum for the \(\text{Ni}^{2+}\) compounds (Marcos et al. 1995). At this composition, the X site is \(2/3\) occupied, with the hexagonal channel occupied by dimers of face-sharing octahedra ordered such that

\[\square - \text{Ni}^{2+} - \text{Ni}^{2+} - \square - \ldots\]

with the cations relaxing towards the vacancies. Cation-cation repulsion across the shared face is strong for \(\text{Ni}^{2+}\), creating positional disorder at all the heavy-atom sites in the \(x = 1.33\) \(\text{Ni}^{2+}\) arsenate compound (Marcos et al. 1995). The authors argued that the strong repulsion between divalent cations is due to the 3d\(^8\) electronic configuration of \(\text{Ni}^{2+}\) with its fully occupied \(t_2g\) orbitals. However, \(\text{Co}^{2+}\) has both a larger radius (0.74 Å in the electronic high-spin state versus 0.69 Å for \(\text{Ni}^{2+}\)) and the same fully occupied \(t_2g\) orbitals, yet similar disorder was not reported in the analogous \(\text{Co}^{2+}\) arsenate (Hughes et al. 2003).

In addition to possible stereochemical effects, transition-metal cations in the DLM structure produce characteristic magnetic behavior. All \(\text{Ni}^{2+}\), \(\text{Co}^{2+}\), and \((\text{Mg}^{2+},\text{Ni}^{2+})\) compounds follow the Curie-Weiss law above 80 K, with a negative Weiss temperature (Pizarro et al. 1993, Rojo et al. 2002, Hughes et al. 2003).

Antiferromagnetic interactions predominate above 50 K for all the Ni-bearing compounds and the \(\text{Co}^{2+}, \text{As}^{5+}\) compounds (Pizarro et al. 1993, Rojo et al. 2002, Hughes et al. 2003), whereas ferromagnetic interactions predominate in the \(\text{Co}^{2+}, \text{P}^{5+}\) compounds (Pizarro et al. 1993). The low temperature (< 50 K) behavior is more complex and depends on occupancy of the X, M, and T sites.

The mixed \((\text{Mg}^{2+},\text{Ni}^{2+})\) compositions prepared by Rojo et al. (2002) have stoichiometries \(\text{Mg}_{7.5}\text{Ni}_{0.5}\text{H}_3(\text{AsO}_3)_3(\text{OH})_6\) and \(\text{Mg}_x\text{Ni}_{1-x}(\text{PO}_4)_3(\text{OH})_6\). Rietveld refinements showed that in the arsenate, \(M^H\) is occupied by \(\text{Mg}_{0.5}\text{Ni}_{0.5}\) with no order detected, and X is occupied by \(\text{Mg}_{10.75}\square_{0.25}\). The phosphate synthesized contained impurities which precluded Rietveld refinement, but the stoichiometry strongly suggests that X is vacant and \(M^H\) is occupied by \(\text{Mg}_{2/3}\text{Ni}_{1/3}\). Unlike the pure \(\text{Ni}^{2+}\) phosphates of Pizarro et al. (1993) and Marcos et al. (1993a), with partial occupancy of \(\text{Mg}^{2+}\) at the octahedrally coordinated framework sites, \(\text{H}\) at \(\theta^h\) in the hexagonal channel is sufficient to charge-balance the framework and tetrahedra, with no X cations needed.

The \(T^d\theta^h\theta^h\) groups in the triangular channel point up with respect to the \(T^d\theta^h\theta^h\theta^h\) groups in the hexagonal channel in both \(\text{Co}^{2+}\) (Hughes et al. 2003) and \(\text{Ni}^{2+}\) (Marcos et al. 1995) arsenates. Orientations for the \(T^d\theta^h\theta^h\) groups were not determined for the phosphates or for the mixed \((\text{Mg}^{2+}, \text{Ni}^{2+})\) compositions.

Marcos et al. (1995) investigated the thermal stability of the \(\text{Ni}^{2+}\) arsenates and phosphates. They found that upon heating, the pnictogen \(\text{T}^{5+}\) cations were reduced to \(\text{T}^{3+}\) as \(\text{T}^{3+}\text{O}_3\text{OH}^{2-}\) groups convert to \(\text{HTO}_3^{-2}\). The reduction occurs in two stages; in the hexagonal channels from 375 to 500 °C, then in the triangular channels up to 700 °C. A complete collapse of the structure occurs at 830 °C.

**TM chalcogenites**

The transition metal chalcogenites have the general stoichiometry

\[(\text{M}_2\text{OH})_3(\text{TO}_3)_4\text{X}\]

with \(T = \text{Se}^{4+}\) or \(\text{Te}^{4+}\), \(M = \text{Ni}^{2+}\) or \(\text{Co}^{2+}\), and \(X = \text{OH}^-\) or \(\text{F}^-\) (Perez et al. 1976, Marcos et al. 1993a, Amorós et al. 1996). They are unique among the DLMs in having the X sites in the hexagonal channel occupied by anions.

Both \(T^d\theta^h\theta^h\) and \(T^d\theta^h\theta^h\theta^h\theta^h\theta^h\) are \(\text{TO}_3^{2-}\) pyramidal groups, with \(\theta^h\), \(\theta^h\) representing the stereochemically active lone pairs of electron associated with the \(T^d\) chalcogen cation. As in ekatite and the hypothetical Si-free dumortierite-holtite endmembers, this leads to a lack of coordinating anions around the hexagonal channel, and thus no cations at the X site. However, the \([(\text{M}_2\text{OH})_3(\text{TO}_3)_4\text{X}]^+\) framework is positively charged, and so small monovalent “guest” anions \(\text{OH}^-\) or \(\text{F}^-\) are incorporated into the hexagonal channel for charge stabilization.
balance (Marcos et al. 1993a, Amorós et al. 1996). The X anions are octahedrally coordinated by the lone pairs of electrons on the chalcogens. The anions Cl− and Br− have ionic radii too large for incorporation into the channel, which has a radius of 1.58 Å as defined by the ring of three T4+ lone-pairs of electrons (Amorós et al. 1996). Infrared spectra of the X = OH− compounds display two OH− stretching bands corresponding to the Φ’ and X sites, whereas X = F− compounds display only one, showing that F in the latter occurs at the X sites exclusively rather than being distributed over both sites (Amorós et al. 1996).

In the triangular channel, the T’θ3θ’ groups point down with respect to the T6θ3θ’ groups for M = Ni2+, Co2+ and T = Se4+, Te4+, contrary to most other DLMs except the Ni2+ phosphate. The Ni2+ and Co2+ chalcogenites show the same coloration as the corresponding Ni2+ and Co2+ phosphites, phosphates and arsenates.

**Metal vanadates and sulfate-vanadates**

Open-framework vanadium oxides are of interest to solid-state chemists owing to their potential use as secondary cathode materials in advanced lithium batteries (Zhang et al. 1999, Hu et al. 2008). Vanadate DLMs have been investigated during this research, along with the similar lyonsite-like compounds discussed below.

Kato et al. (1998) synthesized the compound Zn(Zn2OH)3(VO4)3(SO4) with Zn2+ at the X and MII sites, VO43− as the T6θ3θ’ groups lining the hexagonal channel, and SO42− as the T’θ3θ’ groups in the triangular channel (pointing up with respect to the T6θ3θ’ groups). One hydrogen is attached to the Φ’ oxygen atom. Although Zn occupancy of the X site was not refined, it is unlikely to be fully occupied, on the basis of other DLMs described. In this case, additional H+ should be present as well, most likely as VO3OH2− (with OH− at the Φ’ position pointing into the hexagonal channel) but also possibly as SO3OH− in the triangular channel. Whereas Kato et al. (1998) did not address mixing of SO42− and V5+ between the two tetrahedrally coordinated sites, bond lengths are consistent with a complete order of V5+ at T6 and SO42− at T’.

Two vanadate-only DLM compositions have been synthesized, with Mn and Mg as the octahedrally coordinated metal cations. Zhang et al. (1999) synthesized the Mn vanadate

\[
(Mn^{3+}_{1-z}(Mn^{2+}/2)OH)_{3}(VO_{4})_{3}
\]

with \(z = 0.199\). The triangular channel contains both upward-pointing VO43− tetrahedra and apex-sharing V2O74− pairs of tetrahedra. Two distinct V sites in the triangular channel, one above the ring of three basal θ’ oxygen atoms and one below, indicate that like the Co2+ phosphate mentioned above, the triangular channel contains both upward- and downward-pointing VO43− tetrahedra (with \(z\) the fraction of downward-pointing groups). However, unlike the Co2+ phosphate, there are not two distinct θ’ oxygen sites, meaning that adjacent T’θ3θ’ groups of opposite orientations must either be separated by vacancies (Fig. 6C) or share apical oxygen atoms (Fig. 6D); face-sharing tetrahedra place the V5+ cations far too close to each other and so are ruled out. In the former case, the triangular channel contains randomly oriented single VO43− tetrahedra, and there is exactly one apical θ’ oxygen atom per occupied tetrahedron. In the second case (Fig. 6D), the triangular channel contains both single upward-pointing VO43− tetrahedra and pairs of tetrahedra that share an apical θ’ oxygen atom.

\[
V_{2}O_{7}^{4+} = T’θ’3θ’3T’.
\]

In this case, there are only as many θ’ oxygen atoms as there are upward-pointing tetrahedra, so the occupancy of θ’ equals the occupancy of the upward-pointing T’ site. Zhang et al. (1999) found significant θ’ vacancies, approximately equal to the population of down-pointing tetrahedra in the triangular channel, and so concluded that the triangular channel of the Mn vanadate resembles that shown in Figure 6D (See also Ch. 23 in Pecharsky & Zavalij 2009). The structure-generating function can be modified to include apex-sharing T’θ3θ’ groups as

\[
X(M^{II}_{1+z}Φ’_{1-z})_{3-m}(M^{II}C_{2}Φ’_{1-z}C_{2}Φ’_{1-z})_{m}(T^{6}θ^{6}θ’3θ’3)_{3}
\]

where 0 ≤ \(z\) ≤ \(1/2\) indicates the degree of polymerization in the triangular channel.

For charge balance, Mn in the hexagonal channel X site is assigned a valence of 3+. The material decomposes into Mn2+2V2O7 and Mn3+2O3 between 400 and 550 °C in oxygen (Zhang et al. 1999), which suggests that both valence states of Mn may be present at room temperature. No H positions other than Φ’ were found, although bond-valence analysis of the published structure suggests that θ’ is likely occupied by OH− whereas θ’ in the hexagonal channel is dominated by O2−.

Hu et al. (2008) and Đođević et al. (2008) synthesized the similar compound

\[
(Mg_{2/3}Zn_{1/3})(Mg_{2}OH)_{3}[(VO_{4})_{1+x}(VO_{3}OH)_{2-x}](VO_{4}OH)
\]

with \(x = 0.30\). In this case, charge balance for vacancies in the hexagonal channel are provided by OH− at the θ’ and θ’ sites, similar to the metal pnictates. Bond-valence analysis of the published structures suggests that Φ’ and θ’ are fully occupied by OH− and θ’ is occupied by both O2− and OH−. Infrared spectra (Đođević et al. 2008) show the presence of strong hydrogen bonds between θ’ and Φ’ and weak hydrogen bonds between Φ’ and θ’.
As with the Mn vanadate, both upward- and downward-pointing T'O_3θ' groups are present in the triangular channel with a single θ' site: 35% and 29% point down in Hu et al. (2008) and Đođević et al. (2008), respectively. In neither case was the θ' occupancy refined, so it is undetermined whether the triangular channel contains isolated upward- and downward-pointing VO_4^{3–} tetrahedra or V_2O_7^{4–} pairs. (Hu et al. 2008, likewise did not refine the X site occupancy.) If the structure is the same as the Mn vanadate and contains upward-pointing VO_4^{3–} groups and V_2O_7^{4–} pairs, the stoichiometry is modified to

\[
\text{(Mg}_{2/3}\square_{1-x/2})\text{(V}_{2/3}\text{O}_{4/3}\text{H})_{2/3}\text{(VO}_{3/3}\text{OH})_{1-x/2}\text{[VO}_{3/3}\text{OH}]_{z}\text{[V}_{2/3}\text{O}_{7/3}\text{OH}]_{z-1/2}}
\]

Đođević et al. (2008) found an X site occupancy \((x/2 = 0.698)\) approximately equal to the independently refined occupancy of up-oriented T' sites \((1 - z = 0.706)\); if this is generally true, then the simplified stoichiometry is

\[
\text{(Mg}_{1-z/2})\text{(V}_{2-z/2}\text{O}_{6-z/2})\text{[VO}_{3/3}\text{OH}]_{2-z/2}[\text{VO}_{3/3}\text{OH}]_{z/2}\text{[V}_{2/3}\text{O}_{7/3}\text{OH}]_{z}}
\]

The V–O bond length in the VO_4^{3–} tetrahedra varies considerably among the three vanadate materials. Among the T' groups, the V–O bond lengths range from 1.694 to 1.729 Å in the Zn sulfate-vanadate (Kato et al. 1998), from 1.629 to 1.700 Å in the Mn vanadate (Zhang et al. 1999), and from 1.699 to 1.736 Å (Hu et al. 2008) and 1.704 to 1.734 Å (Đođević et al. 2008) in the Mg vanadate. Among the triangular channel groups, the bond lengths range from 1.664 to 1.963 Å in the Mn vanadate (Zhang et al. 1999) and 1.701 to 1.905 Å (Hu et al. 2008), and 1.711 to 1.93 Å (Đođević et al. 2008) in the Mg vanadate. The exceptionally long bonds are all T'–θ' bonds.

Crystals of the Mn vanadate are dark brown in color, while the Mg vanadate ranges from yellow (Hu et al. 2008) to light orange (Đođević et al. 2008), all typical colors for V^{5+} compounds. Crystals of the Zn sulfate-vanadate range from colorless to pale purple.

**Unit-cell parameters: a/c**

Using a simple model based on the underlying \{6·4·3·4\} net and undistorted coordination octahedra, we calculated above that in both orthorhombic and hexagonal DLMs, the ratio of \(a\) and \(c\) unit-cell parameters should be close to

\[
\frac{a}{c} = \frac{3}{2} + \frac{2\sqrt{2}}{3} = 2.443
\]

i.e., approximately four times that of a hexagonally close-packed unit cell.

The \(a\) and \(c\) unit-cell parameters of 102 natural and synthetic DLMs, both orthorhombic and hexagonal, are plotted in Figure 8; these include data for dumortierite-group minerals from the same sources as Figure 5 as well as data for ellenbergerite (5 natural samples), phosphaellenbergerite (1 natural and 4 synthetic samples), ekatite (1 natural sample), and synthetic DLMs (30 samples of diverse chemistry). All show \(a/c\) ratios significantly higher than the approximation of equation 6, from 2.47 (for the carbonate-bearing phosphaellenbergerite from Modum: Raade et al. 1998) to 2.62 (for the Ni tellurite with OH at the X site: Perez et al. 1976). Averages and ranges for different groups of DLMs are given in Table 4.
There is a significant gap between the orthorhombic dumortierite-group minerals, clustered tightly together in the lower left corner of the plot, and the hexagonal materials. The dumortierite-group minerals have smaller unit-cell parameters than the hexagonal DLMs, largely because $\text{Al}^{3+}$ is significantly smaller than the divalent cations that dominate the hexagonal DLMs; $\text{VI}_{\text{Al}} = 0.54 \AA$ versus 0.69 Å for Ni$^{2+}$, 0.72 Å for Mg$^{2+}$, 0.74 Å for Co$^{2+}$ and Zn$^{2+}$, and 0.78 Å for Fe$^{2+}$ (Shannon 1976), and as Figure 7 shows for synthetic TM phosphites, the unit-cell parameters depend strongly on the size of the M cation. The hexagonal DLMs are spread over a wider region of the plot than the orthorhombic dumortierite group, most likely owing to the greater variation in composition at both octahedrally and tetrahedrally coordinated sites.

In general we find that the $a$ and (in orthorhombic minerals) $b$ unit-cell parameters vary with the size of the $T^6$ groups, whereas $c$ is largely independent or only weakly dependent on $T^6$ size; thus the Co and Ni tellurites have the highest $a$ parameters and $a/c$ ratios, as TeO$_3^{2-}$ has Te–O bond lengths around 1.88 Å (Shannon 1976). This effect was investigated by Marcos et al. (1993a). Figure 9A shows $a$ versus average tetrahedral bond length in Co and Ni DLMs with $T^6 = T^7$ (with data from Perez et al. 1976, Marcos et al. 1993a,b,c, Amoros et al. 1996, and Hughes et al. 2003). For both Co and Ni compounds, there is a roughly uniform increase of $a$ as $T$–O bond length increases across the phosphates, arsenates, selenites, and tellurites. No clear dependence is apparent in the $c$ unit-cell parameter (Fig. 9B).

If the Co and Ni phosphites are added to the same graphs, either versus the average of all four P–(O,H) bonds (triangles in Figs. 9A,B) or the average of the three P–O bonds only (squares), we see that the $a$ parameter is significantly greater (by at least 0.3 Å for Co, 0.2 Å for Ni) than expected from the other materials. The HPO$_4^{2-}$ groups seem to be behaving like much larger tetrahedra than they actually are. The cause of this anomaly is not clear. In the phosphites, the P–H bonds extend into the hexagonal channel, and the X sites are empty owing to a lack of coordinating oxygen atoms. The vacancies at the X site alone are not enough to be responsible for the expansion of $a$, because the $a$ parameters of the selenites and tellurites, which also have empty channels, are not anomalously large in comparison to the phosphates and arsenates; in particular, the mean Se$^{4+}$–O and As$^{5+}$–O bond lengths are similar (~1.7 Å), and these materials have similar $a$ parameters (~12.7 Å), although the arsenates have occupied X sites. Similarly, the stoichiometry of the mixed Mg-Ni phosphate (Rojo et al. 2002) suggests that it too has an empty hexagonal channel (and similar cation radii for Mg$^{2+}$ and Ni$^{2+}$, 0.72 Å and 0.69 Å respectively), and it has a similar $a$ (12.42 Å) to the Ni$^{2+}$ phosphate of Marcos et al. (1993a) (12.47 Å), which has a 34% occupied X site. The remaining major difference between the phosphates and the phosphites is the dangling H ions in the hexagonal channel in the latter; electrostatic repulsion may be sufficient to cause an expansion in the plane normal to the c-axis to increase the distance between adjacent H atoms.

There is a similar dependence on the mean size of $T^6$ groups in the orthorhombic minerals; in the dumortierite-holtite solid-solution a and $b$ increase with increasing AsO$_3^{3-}$ and SbO$_3^{3-}$ content (which leads to

<table>
<thead>
<tr>
<th>N</th>
<th>$a/c$</th>
<th>$b/a$</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>2.512(5)</td>
<td>1.714(5)</td>
</tr>
<tr>
<td>21</td>
<td>2.503 - 2.516</td>
<td>1.712 - 1.726</td>
</tr>
<tr>
<td>9</td>
<td>2.536(2)</td>
<td>1.713(2)</td>
</tr>
<tr>
<td>1</td>
<td>2.518</td>
<td>1.713</td>
</tr>
<tr>
<td>4</td>
<td>2.486(1)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2.507</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2.482 - 2.489</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2.529</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>2.549 - 2.592</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>2.497 - 2.542</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>2.581 - 2.621</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2.492</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2.518 - 2.544</td>
<td></td>
</tr>
<tr>
<td>102</td>
<td>2.52(3)</td>
<td></td>
</tr>
</tbody>
</table>
Fig. 9. Unit-cell parameters varying with mean bond lengths in tetrahedral groups (calculated from structure data where available, otherwise estimated from Shannon 1976). (A), (B) Co (black symbols), and Ni (white symbols) compounds with $T^h = T^r$; circles: phosphates, arsenates, selenites, and tellurites; squares: phosphites versus the average of three P–O bond lengths; triangles: phosphites versus the average of three P–O and one P–H bond lengths. (C)-(E) Dumortierite and holtite, mean bond length calculated based on the occupancy of Si,As and Sb $T^h$ sites. For references, see the text.

Summary

We have seen that the dumortierite-like materials are a group of natural and synthetic materials with highly diverse chemical compositions, and structures that can be described by the generalized structure-generating function (expression 10a) $X(M_2\Phi_3(T^{h}\Theta^h,\Theta^h)_{3},(T^{h}\Theta^h,\Theta^h))$. The structure-generating function encapsulates a structure based on the $\{6\cdot4\cdot3\cdot 4\}$ semi-regular tiling, with wide hexagonal and smaller triangular channels, created by a framework of double-chains of octahedra. The double-chains are of two types: chains of face-sharing dimers of octahedra, resulting in a hexagonal close-packed rod ($M^H$ chain), and chains of staggered edge-sharing octahedra which form a cubic close-packed rod ($M^C$ chain); the hexagonal structure contains only $M^H$ chains whereas the orthorhombic structure contains $M^C$ and $M^H$ chains in a 2:1 ratio. The triangular channels contain tetrahedral, trigonal pyramidal or trigonal planar $T^h\Theta^h,\Theta^h$ groups. The hexagonal channels are lined by tetrahedral or trigonal pyramidal $T^h\Theta^h,\Theta^h$ groups. Where present, the apical $\Theta^h$ anions create a chain of face-sharing X octahedra, which are generally only partly occupied, parallel to the c-axis down the center of the hexagonal channel.

Occupancy of the X sites is controlled in part by the need to charge-balance the combination of the double-chain M framework and the $T^h$ and $T^q$ groups, that is, the ‘decorated framework’ $[(M_2\Phi_3(T^{h}\Theta^h,\Theta^h)_{3},(T^{h}\Theta^h,\Theta^h))_{q}]$. In the majority of DLMs, the decorated framework has a net negative charge, and so cations are distributed over the X sites for charge balance, i.e., $X = (M,□)_{q}^{+}$. Additional constraints on this distribution are imposed by the nature of the coordinating $\Theta^h$, as $O^{2-}$ and OH$^-$ will coordinate a cation at the X site, but H$^+$ or a lone pair of electrons will not, and by repulsion between the cations: for example, the distance between X sites in hololite is too short for adjacent sites to be occupied by Ta$^{5+}$, so these cations must be separated by a vacancy. In some DLMs, the decorated framework has a net positive charge. In the phosphites, this is charge-balanced by an empty X site and a partial vacancy at the $M^H$ site, bringing the net charge on the decorated framework to zero. In the chlorcogenites, this is charge-balanced by filling the X sites with OH$^-$ and F$^-$. The structure and symmetry of the DLMs lead to certain common properties. The unit-cell parameters and ratios between them can be estimated reasonably well on the basis of the geometry of the $\{6\cdot4\cdot3\cdot 4\}$ tiling and idealized chains of octahedra. The framework of rod-like components (the double-chains of octahedra) leads to crystals that are needle- or fiber-like, and generally hexagonal or pseudohexagonal at the microscopic scale. Micrographs of synthetic crystallites (e.g., Marcos et al. 1993b, Zhang et al. 1999, Gu et al. 2007, Ni et al. 2009, Liao & Ni 2010) strikingly resemble the crystal forms of dumortierite (see in particular Fig. 8 of Schaller 1905). In the dumortierite-group minerals, the strongly pseudohexagonal structure leads to commonly-observed twinning along axes parallel to the structure’s near-threefold symmetry axes.

Examining the commonalities among DLMs can be helpful in deciding questions about the crystal chemistry of dumortierite. For example, the synthetic DLMs incorporate OH$^-$ at the four-coordinate $Φ^h$ sites and the apical $Θ^h$ and $Θ^h$ sites. In the dumortierite-group minerals, the O2 and O7 ($Θ^h$) sites are generally believed to host OH$^-$, but whether the O10 ($Φ^h$) site hosts OH$^-$, as suggested by bond-valence calculations, is less certain. The dominance of OH$^-$ at $Φ^h$ sites in synthetic DLMs and in ellenbergerite-group minerals strongly suggests that O10 in the dumortierite-group minerals should contain significant OH$^-$ Bond-valence sums for O10 in dumortierite-group minerals are typically 1.5-1.7 valence units (vu), versus an ideal 2.0 vu for O$^{2-}$ and 1.0 for OH$^-$, so that OH$^-$ occupation is only partial.

As explained by Alexander et al. (1986), the affinity of $Φ^h$ sites for OH$^-$ comes from local distortions of the $M^H$ double-chain. In the $M^H$-type double-chains, the four-coordinate vertices are in a flattened square-pyramidal arrangement. Assuming undistorted $M^H$ octahedra with $M^H$–O bonds of 1.90 Å, the square pyramid has an apical angle of 132° and the apex ($Φ^h$) is 0.78 Å from the center of the base. But with these ideal octahedra, the shortest edge of the pyramid (that is, the shortest $M^H$–$M^H$ distance) is only 2.19 Å. The real $M^H$ polyhedron is considerably distorted to prevent this; as Alexander et al. (1986) describe it, contraction of the five shared edges leads to a very asymmetrically distorted octahedron. The minimum Al–Al distance between Al4 sites increases to 2.56 Å (structural data from Evans et al. 2012), but the $Φ^h$ pyramid is even flatter, with apical angle 151° and the apex only 0.50 Å from the center of the base. This also results in one very long $M^H$–$Φ^h$ bond in the $M^H$ octahedron (2.016 Å versus the average 1.895 Å for Al4–O in dumortierite; other DLMs show similarly long bonds), which is primarily responsible for the low incident bond-valence of the $Φ^h$ anion, making it a desirable site for OH$^-$.

The Al4 octahedron is the most distorted of the four octahedrally coordinated sites in dumortierite, with a quadratic elongation (QE) of 1.0187 and a bond angle variance (BAV) of 0.0185 radians$^2$, compared with Al1 (QE 1.0042, BAV 0.0046) and Al2, Al3 (QE 1.0141, BAV 0.0142). Similar degrees of distortion occur in other DLMs.
What about the other four-coordinate oxygen site in the dumortierite structure, the $\Phi^C$ position in the $M^C$-type double-chains? Despite the local bond-topological similarities between the $M^H$- and $M^C$-type chains, and the identical roles they play as structural elements, geometrically the two local environments are quite different. The $M^C$ octahedra have only four shared edges each, and although these are again contracted the overall polyhedral distortion is less. The local coordination geometry of the $\Phi^C$ site is that of a distorted tetrahedron (actually close to an octahedron with two cis vertices deleted), with a minimum $M^C-M^C$ distance of 2.85 Å. The $\Phi^C$ oxygen atom is thus fully satisfied and an extra H atom is not needed.

The dumortierite-group minerals contain the trigonal planar BO$_3^{3-}$ group in their triangular channels, but both the ellenbergerite-group minerals and synthetic DLMs feature tetrahedral or trigonal pyramidal $T^O^h\theta^h$ groups. In ekatite and the TM chalcogenites, the atom at $\theta^h$ has a lone pair of electrons, and the group is a trigonal pyramid. In the remaining DLMs, $\theta^h$ is an anion (O$^2-$ or OH$^-$ or H$^-$) and the group is tetrahedral. The only other trigonal planar group found in DLMs is CO$_3^{2-}$ in phosphoellenbergerite (Raade et al. 1998), which does not dominate the triangular channel. In hexagonal DLMs, the uniform orientation of the $T^O^h\theta^h$ groups defines a unique “up” direction along the c-axis (Fig. 6A), and so in the triangular channel, non-planar $T^O^h\theta^h$ groups may point up, down, or both. Most hexagonal DLMs have $T^O^h\theta^h$ groups pointing up: ellenbergerite, phosphoellenbergerite and ekatite, and the Zn, Fe, and Mn phosphites, Ni and Co arsenates, and the Zn sulfate-vanadate. However, the Ni phosphite and all TM chalcogenites (Ni and Co selenites and tellurites) have $T^O^h\theta^h$ groups pointing down, and others are mixed: Co phosphate (80% down), Mn vanadate (80% up), and Mg vanadate (65-70% up). In the Mn and Mg vanadates, adjacent upward- and downward-pointing $T^O^h\theta^h$ groups share apices forming $T^O_2\theta^h$ groups; this does not occur in the Co phosphate, as upward- and downward-pointing $T^O_2\theta^h$ groups have distinct $\theta^h$ sites.

What determines the orientation of tetrahedral or pyramidal groups in the triangular channel? Is there a crystal-chemical reason why certain compositions favor one orientation over the other or a disordered mix of orientations, or could this be a function of synthesis conditions? These questions should be investigated in any future program of syntheses and structure refinement of DLMs.

In the orthorhombic DLM structure, the $T^O^h\theta^h$ groups may define a local up direction in individual hexagonal channels but not globally for the structure, as $T^O^h\theta^h$ groups point in opposite directions in alternating rows of hexagonal channels (see Fig. 4B, slabs of type 1 versus type 1). The $T^O_2\theta^h$ groups in the triangular channels would likely alternate in a similar way. The dumortierite-group minerals avoid this issue by incorporating only planar BO$_3^{3-}$ groups. No substitution for boron has yet been reported in any dumortierite-group mineral.

**Closely Related Structures**

Next, we discuss structures that are closely related to the dumortierite structure: the lyonsite structure, which replaces the double-chains of octahedra in dumortierite with single chains of octahedra and trigonal prisms; the satterlyite-holstedahelite structure, which is built of trimers of $M^H_3$-type double-chains of octahedra assembled in a different way; and the cancrinite AB-polytype, which is based on the same cation lattice as the hexagonal DLM structure.

**The lyonsite structure**

Lyonsite, $\alpha$-Cu$_3$Fe$_4$(VO$_4$)$_6$, has the crystal structure (space group $Pmcn$) shown in Figure 10A, which we shall refer to as the lyonsite structure. It is strikingly similar to the dumortierite structure, with a chain of face-sharing octahedra connected via pinwheels of tetrahedral groups to a framework of chains of 6-coordinate metals in an orthorhombic variation of the {6·4·3·4} semi-regular tiling. The key difference is that in lyonsite there are single chains of edge-sharing octahedra and trigonal prisms in a 2:1 ratio, instead of double-chains of octahedra (Fig. 10B). This shrinks the triangular channels so that there is no longer room for $T^O_2\theta^h$ groups.

In addition to lyonsite (Hughes et al. 1987), many synthetic compounds with the same structure incorporate diverse 6-coordinate cations with valencies from 1+ to 5+, although with the exception of Na$^+$ and Cu$^+$, all with cation radii between 0.65 and 0.75 Å. The tetrahedrally coordinated cations are thus far restricted to V$^{5+}$, Mo$^{6+}$, W$^{6+}$, or a disordered mix of two of these, with the majority of compositions lithium molybdates. A thorough review is given by Smit et al. (2006a). By analogy with the DLMs, we refer to any mineral or synthetic compound with the lyonsite structure as a lyonsite-like material (LLM).

The corresponding changes to the generalized structure-generating function (expression 10a) for the lyonsite structure are straightforward; the general double-chain term $M_2\Phi$ is replaced by $M$ for a single chain and the $T^O_2\theta^h$ term is dropped, giving

$$XM^3(T^O_2\theta^h)^3$$  \hspace{1cm} (11a)

for the generalized lyonsite structure-generating function. Note that all anions in the structure are now at most 3-coordinate. Representing the octahedrally coordinated single chain sites by $M^O$ and the trigonal-prism sites by $M^P$, a full structure-generating function for lyonsite can be written

$$XM^PM^O_3(T^O_2\theta^h)^3$$  \hspace{1cm} (11b)
More rigorously, in the lyonsite structure, the coordination of the M site becomes \( M(\Theta^h_{1/3})_6 = M\Theta^h_2 \), and with now two M per \{4\} instead of four, equation (9a) becomes \( \{4\} = [M\Theta^h_2]_2 \). Equation (9b) for the \{6\} channel is unchanged, and with the \{3\} channels empty, equation (9c) becomes simply \( \{3\} = [] \). The \{6·4·3·4\} tile stoichiometry then gives

\[
\{6\}\{4\}_3\{3\}_2 = [XT^h_3\Theta^h_3\Theta^h_3][M\Theta^h_2][\Theta^h_2][\Theta^h_2]_2
= 2[XM_3(T^h_3\Theta^h_3\Theta^h_3)]_3
\]

where \( n = 1 \) corresponds to lyonsite and \( n = 2 \) to the dumortierite- and ellenbergerite-group minerals. The size of the triangular channel increases with \( n \). A hexagonal version of the hypothetical \( n = 3 \) structure is shown in the deposited Supplementary Figure S2 (available from the Mineralogical Association of Canada Depository of Unpublished Data, document Dumortierite CM50_1197).

The first LLM was discovered by Smith (1960) during an investigation of desulfurization catalysts used in petroleum refinement, a mixture of alumina laced with Co and Mo oxides (it was these oxides Smith was attempting to characterize). Single crystals in the form of deep blue needles and platelets were synthesized in a melt of sodium molybdate and anhydrous cobalt chloride with NaCl as a flux. The space group and unit-cell parameters (equivalent to \( Pmcn \),
\[a = 10.778, \quad b = 18.017, \quad c = 5.245 \text{ Å}; \quad \text{as with the dumortierite-group minerals, both } Pnma (a < b < c) \text{ and } Pmcn (c < a < b) \text{ settings are used for LLMs with such symmetry} \]

were determined from Weissenberg photographs, and the Co and Mo positions were determined using Patterson methods. From this partial structure solution, the underlying pseudohexagonal net \{6·3·4\} was visible. The full structure of the material determined to be NaCo2.31(MoO4)3 was described by Ibers & Smith (1964). Later, Klevtsova & Magarill (1970) synthesized the first Li molybdates, Li2Fe2(MoO4)3 and Li3Fe(MoO4)3, and identified their structures as that described by Ibers & Smith (1964). Other LLMs were rapidly produced as the materials hold interest as potential catalysts for selective oxidation of hydrocarbons (Smit et al. 2006a) and as ionic conductors (Sebastian et al. 2003).

Lyonsite, α-Cu3Fe4(VO4)6, was found in summit crater fumaroles of the Izalco volcano, El Salvador, among minerals formed as sublimate products from volcanic gases (Hughes et al. 1987). It has space group \(Pmcn\), \(a = 10.296, \quad b = 17.207, \quad c = 4.910 \text{ Å, and empirical composition } \text{Cu}_{1.52} \text{Fe}^{3+}_{1.73} \text{Mn}^{3+}_{0.24} \text{Ti}^{4+}_{0.16} \text{V}_{0.97} \text{O}_{4}\). Copper appears to be predominantly divalent, although some monovalent Cu may be present as well. The connection with the growing family of synthetic compounds was not immediately made, although Hughes et al. (1987) did recognize the kinship with dumortierite. The connection between lyonsite and the Ibers & Smith (1964) structure was made by Wang et al. (1996).

Although LLMs possess three distinct types of 6-coordinate sites, most do not show a clear order of cations. Low-valence cations (Li\(^+\) and Na\(^+\)) seem to prefer the prismatic M\(^6\) sites (Smit et al. 2006a). High-valence cations (i.e., 4+ or 5+) may prefer X sites (Klevtsova et al. 1979, Smit et al. 2006a, 2008) buffered by vacancies or low-valence cations. Compositions where the average valence at M\(^O\) is greater than the average valence at X (e.g., Ozima et al. 1977, Hughes et al. 1987, Wang et al. 2000), and the converse (Klevtsova et al. 1979, Sebastian et al. 2003) have both been observed.

As in DLMs, the X sites may have a high vacancy content, with up to 50% reported (Klevtsova et al. 1979). Conversely, compositions in the series \(\text{Li}_x \text{Mg}_{2-x} \text{(MoO}_4\text{)}_3\) and \(\text{Li}_x \text{Mn}_{3+} \text{(MoO}_4\text{)}_3\), with \(\text{A}^+\) mostly Li\(^+\) or occasionally Na\(^+\), have been found to be vacancy-free, likely because X sites occupied by \(\text{A}^+\) are nearly as good as vacancies for separating more highly charged cations. Smit et al. (2006b) found complete solid-solution between the vacancy-free Li2Mg2(MoO4)3 and (Mg\(_{0.75}\)O\(_{0.25}\))Mn\(_3\)(V\(_{0.7}\)O\(_{4.3}\)). Those LLMs with substantial vacancies (like DLMs) have high anisotropies at the X sites (e.g., Katz et al. 1971, Hughes et al. 1987, Wang et al. 1996, 2000, Smit et al. 2008), suggesting relaxation of cations toward adjacent vacancies. In the aforementioned Mg vanadomolybdate, Smit et al. (2006b) suggested trimers of face-sharing Mg\(^{2+}\) octahedra in the hexagonal channel with relaxed end positions, similar to those observed in dumortierite by Evans et al. (2012). The X sites in vacancy-free compositions tend to have anisotropies similar to the M\(^O\) sites (e.g., Klevtsova & Magarill 1970, Sebastian et al. 2003).

In the high-valence compositions \(\text{Li}_3.35 \text{Ta}^{5+}_{0.53} \text{(MoO}_4\text{)}_3\) (Smit et al. 2006a) and \(\text{Li}_2 \text{Zr}^{3+} \text{(MoO}_4\text{)}_3\) (Klevtsova et al. 1979), order of the high-valence cation and (Li\(^+\)□) at the X site doubles the c-axis and reduces a mirror plane to a 2_1 screw axis, converting the space group to \(Pmn\text{2}_1\). Such order is conceivable in dumortierite-group minerals but has not yet been observed.

Several LLMs have been synthesized with both \(\text{VO}_3\)\(^2−\) and \(\text{MoO}_4\)\(^2−\) or \(\text{WO}_3\)\(^2−\) as the \(T^6\Theta^3\Theta^3\) groups (Wang et al. 1996, Pless et al. 2006). None show long-range order of V\(^5+\) and Mo\(^6+\), W\(^6+\) at the T\(^h\) sites; however, Raman spectroscopy (Pless et al. 2006, Smit et al. 2006b), EXAFS and computational modeling (Smit et al. 2007) suggest that local order places Mo\(^6+\) or W\(^6+\) near X vacancies over V\(^5+\).

The chains of edge-sharing trigonal prisms are an unusual feature of the lyonsite structure, Sebastian et al. (2003) showed that the series \(\text{Li}_{2-x} \text{Mg}_{2+x} \text{(MoO}_4\text{)}_3\) and \(\text{Li}_3 \text{Mn}^{3+} \text{(MoO}_4\text{)}_3\) show good ionic conductivity that increases with Li content, with conduction occurring parallel to the c-axis along the \(M^p\) chains. This suggests that some vacancies assigned to the X sites may actually occur at the \(M^p\) sites.

Some Cu and Zn LLMs, including lyonsite itself, show significant distortion from regularity around the \(M^p\) sites. The \(M^p\) cation is generally coordinated to four OA and two OB oxygen atoms (labeled O7 and O2, respectively, in Hughes et al. 1987), and the prism is defined by the three parallel edges OA–OA, OA–OA, and OB–OB. The two OA–OA edges are shared with adjacent prisms in the chain, whereas the OB vertices are shared with individual M\(^O\) octahedra. As is typical for coordination polyhedra, the shared edges are shorter than the unshared edge. The six bond lengths are approximately uniform, with the \(M^p–OB\) bond lengths intermediate between two \(M^p–OA\) distances; e.g., from Klevtsova & Magarill (1970), \(M^p–OB = 2.176 \text{ Å and } M^p–OA = 2.164, 2.186 \text{ Å for } \text{Li}_2 \text{Fe}_2 \text{(MoO}_4\text{)}_3 (M^p = \text{Li}^+)\) This is the situation for most LLMs. However, in several LLMs with Cu or Zn at the \(M^p\) sites, the cation is pushed towards one of the square faces of the prism, as indicated by the arrows in Figure 10B, significantly increasing one set of \(M^p–OA\) distances.

In lyonsite, this distortion transforms the trigonal prism into a site with square planar coordination with \(M^p–OA_{\text{short}} = 1.982 \text{ Å, } M^p–OB = 1.963 \text{ Å, } M^p–OA_{\text{long}} = 2.575 \text{ Å (Hughes et al. 1987). In other compositions, the Cu or Zn cation moves toward one OB vertex, creating one very long } M^p–OB \text{ distance (~2.7 Å) and transforming the prism into a distorted square pyramid. In this case, the distortion is severe enough to reduce...}
the glide plane parallel to the c-axis to a 21 screw axis, reducing the space group of the entire structure from Pmcn to P212121 (Wang et al. 1997). This occurs for (Cu0.85,Fe0.15)Cu3(MoO4)3 (Katz et al. 1971); (Cu, Zn)3.75(MoO4)3 (Szillat & Müller-Buschbaum 1995); (Cu, Fe)3.63(MoO4)3 (Sedello & Müller-Buschbaum 1996); and (Zn0.77,Fe0.23)Zn3(VO4)1.54(MoO4)1.46 (Wang et al. 1997). These distortions are attributed to the Jahn-Teller effect for Cu2+, but the origin of the distortion in the Zn compound is unclear (Wang et al. 1997).

No hexagonal analogue of the lyonsite structure, containing only chains of MO octahedra (or only chains of MP trigonal prisms), analogous to the hexagonal variant of the dumortierite structure, has been reported so far. Such a structure is not ruled out by component-matching rules like an MC-only dumortierite structure.

Estimates of unit-cell parameter ratios in the lyonsite structure can be calculated by the same method as for the dumortierite structure, on the basis of model octahedra and the underlying {6·4·3·4} tiling (Figs. 2 and 1B, respectively). As before, equation 1 gives $a = \sqrt{3}s + s', b = 3s + \sqrt{3}s'$ and $b/a = \sqrt{3} \approx 1.732$, as expected from the symmetry of the tiling. Assuming ideal octahedra with bond length $d$ and height $h = (2\sqrt{3}/3)d$ in the single M chains again gives $c = \sqrt{6}d$ (equation 5) and $s = (3\sqrt{2}/2)d$ (equation 3), but now $s = h$ instead of $2h$ for dumortierite. The result is

$$\frac{a}{c} = \frac{3}{2} + \frac{\sqrt{3}}{3} = 1.971$$

$$\frac{b}{a} = \frac{8}{\sqrt{3}} = 1.649$$


Ozima et al. (1977) discussed structural topological aspects of the lyonsite structure and proposed an alternative way of deriving the structure from a modified spherical close-packing. Figure 11 shows a net derived from the {33·42} semi-regular tiling of squares and equilateral triangles. Each vertex in the net is the position of an oxygen atom in one layer, and all solid edges have a unit length corresponding to the average close-packed oxygen-oxygen distance (~2.8 Å); the dashed edges represent slight distortions of the triangles from regularity, with lengths $[13/3 - 2\sqrt{3}]^{1/2} \approx 0.932$ and $[7/3 - 2/\sqrt{3}]^{1/2} \approx 1.086$ units each. The next layer of oxygen atoms is identical to the first shifted along a displacement vector of $\frac{1}{2}a + \frac{1}{2}b$ (where $a$, $b$ are the orthorhombic unit-cell vectors), with atoms sitting in the hollows of the first layer. Subsequent layers are stacked in an identical way. Voids created in this stacking correspond to the T6, X, M6, and M9 cation sites. Expanding the O–O distance slightly so that atomic spheres no longer touch (i.e., transforming the close packing into an open packing) preserves the symmetry of the net and allowed Ozima et al. (1977) to calculate approximate bond-lengths. The $b/a$ ratio calculated for the net in Figure 11 is

$$\frac{b}{a} = \frac{8}{\sqrt{3}} = 1.649$$

**Fig. 11.** Close-packed net from which Ozima et al. (1977) derived the lyonsite structure. Oxygen atoms sit at the vertices, and successive layers are displaced along the vector $\frac{1}{2}a + \frac{1}{2}b$. Solid edges have a unit length corresponding to the distance between the centers of close-packed spheres (~2.8 Å for oxygen), and dashed edges indicate triangles distorted from regularity.
The estimate for \( c \) from equation 5 is still applicable if recast in terms of the edge length of the octahedron (= one O–O distance), so \( a/c \) becomes

\[
\frac{a}{c} = 1 + \frac{2}{\sqrt{3}} = 2.154 \tag{15}
\]

In reality, we find the average values for the LLM unit-cell parameter ratios lie almost exactly midway between the estimates derived from these two geometrical models. More importantly, the net of Ozima et al. (1977) successfully explains the departure of the lyonsite structure from the hexagonality of the \( \{6\cdot4\cdot3\cdot4\} \) net. A similar model should be able to explain the orthorhombic dumortierite structure, but this model is not obvious.

Despite the diverse compositions that have been synthesized with the lyonsite structure, lyonsite itself has not been produced synthetically (Smit et al. 2006a); laboratory synthesis has always resulted in the triclinic \( \beta\)-Cu\(_3\)Fe\(_4\)(VO\(_4\))\(_6\), isostructural (Lafontaine et al. 1994) with howardevansite, which occurs at the same locality. The \( \beta \) phase is less closely packed and has lower coordination of both cations and anions (Wang et al. 2000), hence it is less dense than the \( \alpha \) phase (3.97 g/cm\(^3\) versus 4.21 g/cm\(^3\)). The lyonsite structure is also considerably denser than the dumortierite structure; replacing double-chains with single chains and reducing the size of the triangular channels leads to smaller average unit-cells.

**The Satterlyite-Holtedahlite Structure**

Satterlyite, ideally Fe\(_{12}\)(OH,\(_x\)O\(_y\))(PO\(_3\)OH,PO\(_4\))(PO\(_4\))\(_5\) (Mandarino et al. 1978, Kolitsch et al. 2002), and isostructural holtedahlite, Mg\(_{12}\)(OH,\(_x\)O\(_y\))(PO\(_3\)OH,PO\(_4\),CO\(_3\)) (PO\(_4\))\(_5\) (Raade & Mladeck 1979, Rømming & Raade 1989) possess a structure, which we will refer to as the satterlyite-holtedahlite structure, based on chains of face-sharing dimers of octahedra like the \( M^H \) chains in the dumortierite structure (Fig. 12). Bundles of three \( M^H \)-type double-chains share corners to form a triangular channel containing \( T^Q \) tetrahedral groups just as in the hexagonal version of the dumortierite structure. These bundles can be bound by trigonally symmetric hexagonal supertiles (Fig. 13). In hexagonal DLMs, the supertiles contain three squares and one equilateral triangle, giving them two side lengths in a ratio of \( \sqrt{3}:1 \) which alternate around the perimeter. To form the \( \{6\cdot4\cdot3\cdot4\} \) tiling, the supertiles share corners, leaving triangular gaps (Fig. 13A). In satterlyite and holtedahlite, the supertiles become equilateral hexagons due to distortion of the squares (which contain the \( M^H \) chains) to quadrilaterals. The supertiles fill the plane without gaps by sharing edges, forming a pattern of quadrilaterals, equilateral triangles and obtuse isosceles triangles with plane-group symmetry \( p31m \) (Fig. 13B). The full (2+1)-dimensional structure has space group \( P31m \).

The squares are transformed into quadrilaterals by the distortion of alternate pairs of \( M^H \) octahedra, stretching one very long (Mg,Fe)–O bond to 2.32 to 2.35 Å (the other five bonds in the same octahe-
dron average 2.095 Å in holtedahlite and 2.154 Å in satterlyite; the other octahedrally coordinated site has average bond-length 2.076 Å in holtedahlite and 2.119 Å in satterlyite; Rømming & Raade (1989), Kolitsch et al. (2002)). The satterlyite-holtedahlite M$_H^1$ chain contains two cation sites that are crystallographically and topologically distinct: the distorted M$_H^1$ site (orange in Fig. 13) and the less-distorted M$_H^2$ site (green in Fig. 12), and two corresponding 4-coordinate anions, Φ$_H^1$ and Φ$_H^2$, completely internal to the double-chain (the Φ$_H^1$ and Φ$_H^2$ are not topologically distinct, but it is still convenient to distinguish them in the structure-generating function). There are six of each octahedrally coordinated site per unit cell (see Fig. 12).

There are three separate tetrahedral groups in the satterlyite-holtedahlite structure. The T$^t$Θ$_t^3$Θ$^t$ groups (grey in Fig. 12) are unchanged in symmetry or topology from the DLM structure; there is one per unit cell.

A second tetrahedral group (blue in Fig. 12) nestles in the corners between M$_H^t$ chains, similar to the T$^h$Θ$_h^3$Θ$^h$ groups in the dumortierite structure. However, the apex of this tetrahedron is not in a hexagonal channel but on a 3-coordinate oxygen site in another M$_H^t$ chain (where an additional Θ$^t$ is found in the dumortierite structure). We designate this bridging anion as Θ$^br$ and write the group as T$^h$Θ$_h^3$Θ$^br$. There are three of these groups per unit cell.
The distorted vertex on the $M_{HI}$ site is shared by three $M_{HI}$ octahedra in separate chains and sits on a threefold symmetry axis. Above sit three vertices on $M^{H2}$ octahedra in the three chains (which would coordinate additional $T^h$ sites in dumortierite). These four vertices create an interstitial tetrahedrally coordinated site, $T'$ (red in Fig. 12); the distorted vertex is therefore 4-coordinated. We write this final tetrahedral group as $T'\Theta^3\Phi^t$, and there are two per unit cell. The topological difference between the coordinations of the $M^{HI}$ and $M^{H2}$ cations is now apparent: $M^{H2}$ is coordinated by four 3-coordinate $[2 \times \Theta^h, \Theta', \Theta'']$ and two 4-coordinate ($\Phi^{HI}, \Phi^{H2}$) anions, the same as $M^{HI}$ in DLMs, but $M^{HI}$ is coordinated by three 3-coordinate ($\Theta'^v, \Theta^h, \Theta')$ and three 4-coordinate ($\Phi^{HI}, \Phi^{H2}, \Phi'$) anions.

Both $T'$ and $T''$ tetrahedra are oriented in the same direction, i.e., with $T''-\Theta^h$ and $T'-\Phi^t$ bonds pointing up the c-axis. Where the $T''$ orientation is defined as above for the DLM $T^h$ groups, they also point up. There is no evidence in satterlyite or holtedahlite for downward-pointing $T'\Theta^3\Phi^t$ tetrahedra or apex-sharing $T'\Theta^3\Phi^t$ groups in the triangular channels.

In deriving the satterlyite-holtedahlite structure from elements of the dumortierite structure, we have constructed its structure-generating function:

$$(M^{HI}_2\Phi^{HI})_3(M^{H2}_2\Phi^{H2})_3(T'\Theta^3\Phi^t)(T'\Theta^3\Phi^t)(T''\Theta^3\Phi^t)(T''\Theta^3\Phi^t)$$

(18)

As in the case of the lyonsite structure, a more rigorous derivation by the partitioning of local cation environments arrives at the same result as our more heuristic approach.

Satterlyite is a yellow to brown mineral found in nodules in shales at Big Fish River, Yukon, Canada (Mandarino et al. 1978). Its empirical composition is equivalent to

$$(Fe^{2+}_{0.61}Mg_{0.18}Fe^{3+}_{0.03}Na_{0.08}Mn_{0.02}Si_{0.05}O_{12})_6(OH)_{12}(PO_{4})_{0.797}(PO_{3}OH)_{0.126}O_4)_{5.04}$$

with maximum SiO$_2$ content approximately 0.2 wt.% (Mandarino et al. 1978). Infrared spectroscopy shows no CO$_3^{2-}$ groups present. Kolitsch et al. (2002) found that the larger Fe$^{2+}$ cation has a slight preference for the larger, more distorted $M^{HI}$ octahedron, with approximately Fe$^{0.84}$Mg$_{0.16}$ at $M^{HI}$ and Fe$^{0.71}$Mg$_{0.29}$ at $M^{H2}$. The authors conjectured that a minimum amount of Mg may be necessary to stabilize the structure. Optical absorption spectroscopy suggests Fe$^{2+}$ is at a more distorted site than Fe$^{3+}$, i.e., Fe$^{3+}$ may prefer $M^{H2}$, and EPR spectroscopy confirms the presence of small amounts of Mn$^{2+}$ (Chandrasekar et al. 2003). The structure was determined by Y. Le Page but was not published (Rømming & Raade 1989, Kolitsch et al. 2002).

Holtedahlite occurs at the Tingelstadtjern quarry, Modum, Norway (Raade & Mladeck 1979) and Gole Gohar, Bafq district, Iran (Mücke & Younessi 1994), and is colorless or greyish from inclusions of magnetite. At Modum, where it occurs with carbonate-bearing phosphoellenbergerite, its empirical composition is equivalent to

$$(Mg_{0.987}Na_{0.066}F_{0.028})_{12}[(OH)_{0.972}F_{0.028}]_6$$

plus an additional 0.06 wt.% MnO. Carbonate groups substitute for phosphate as the $T'^{v}\Theta^t$ groups in the triangular channel (Rømming & Raade 1989), similar to phosphoellenbergerite from the same locality. At both localities, holtedahlite may contain up to 2-4 wt.% SiO$_2$, 0.2-0.8 wt.% SO$_3$, and 0.05-0.4 wt.% Na$_2$O (Brunet et al. 1998). Synthetic holtedahlite $[Mg_2(OH,O)]_6(PO_3OH,PO_4)(PO_4)_3$ has also been produced by hydrothermal synthesis (Rømming & Raade 1989, Raade 1990, Brunet et al. 1998). No other materials with the satterlyite-holtedahlite structure have been synthesized. Holtedahlite has slightly smaller unit-cell parameters than satterlyite ($a = 4.977$, $c = 11.203$ Å for naturally occurring holtedahlite; $a = 5.039$, $c = 11.355$ Å for satterlyite) commensurate with the larger cation radius of Fe$^{2+}$ versus Mg.

Bond-valence analysis (Rømming & Raade 1989, Kolitsch et al. 2002), infrared (Rømming & Raade 1989, Brunet & Schaller 1996), and NMR spectroscopy (Brunet & Schaller 1996) suggest that OH occupies analogous positions to those in DLMs, at $\Phi^{HI}, \Phi^{H2}$, and $\Theta'$. However, charge-balance requirements mean that all three H sites cannot be fully occupied, hence H is disordered in the structure. On the basis of OH···O distances of 3.0 to 3.2 Å from IR (Raade & Mladeck 1979, Rømming & Raade 1989, Brunet & Schaller 1996), hydrogen bonding in the structure is weak.

Bond valence also indicates that the distorted vertex of the $M^{HI}$ octahedron, the 4-coordinate $\Phi^t$, has low incident bond-valence: around 1.69 valence units (Rømming & Raade 1989, Kolitsch et al. 2002). Rømming & Raade (1989) found that bond-lengths involving $\Phi^t$ show significant differences between naturally occurring and synthetic holtedahlite: $T'(P)\Phi^t$ is shorter (1.549 Å synthetic, 1.592 Å natural) and $M^{HI}(Mg)\Phi^t$ longer (2.361 Å synthetic, 2.324 Å natural) in carbonate-free synthetic holtedahlite versus naturally-occurring holtedahlite. Satterlyite, which also is carbonate-free, has $T''\Phi^t$ and $M^{H2}\Phi^t$ bond lengths that resemble synthetic holtedahlite, 1.555 and 2.359 Å, respectively (Kolitsch et al. 2002). The $\Phi^t$ anion has a higher anisotropy than most others in the structure (the exception is 1-coordinate $\Theta'$): $U_{11/22}$ and $U_{33}$ for $\Phi^t$ are nearly equal in naturally occurring holtedahlite, whereas in synthetic holtedahlite and satterlyite, $U_{33}$ is less than 1/3 $U_{11/22}$ (Rømming & Raade 1989, Kolitsch et al. 2002). A small amount of OH may substitute at the $\Phi^t$ position, as suggested by Kolitsch et al. (2002), locally lengthening the $T''\Phi^t$ bond and shortening the $M^{HI}\Phi^t$ bond. This small amount may increase with
carbonate substitution at T'θ'[4Φ', thus increasing both the average T'–Φ' bond length and disorder in the e-axis direction. However, Brunet & Schaller (1996) could detect no evidence of OH in the T'θ'[4Φ' group via IR or NMR; Rønning & Raade (1989) conjectured that the low bond-valence total of Φ' is due to inadequacies of bond-valence functions in modeling long Mg–O bonds.

Endmember holtedahlite is one of several polymorphs of Mg2PO4OH (Raade 1990); another, althausite, also has Modum, Norway, as its type locality. Raade (1990) and Brunet et al. (1998) found that holtedahlite is favored at low temperature (below 600 °C) and intermediate pressure (~5-10 kbar), whereas althausite is favored at higher temperature and lower pressure. Brunet et al. (1998) found that where the two polymorphs occur together at Modum, small amounts of Si, C, and Na are partitioned into holtedahlite, whereas F is partitioned into althausite; they suggested that the counteracting stabilization effects of these minor substituents allow the coexistence of holtedahlite and althausite over a wider range of temperature and pressure. Larger amounts of F stabilize wagnerite, Mg2PO4F, over both minerals (Brunet et al. 1998); the ferrous analogue of wagnerite, wolfeite, occurs with sattlerlyte at Big Fish River (Mandarino et al. 1978).

The cancrinite-AB Structure

The cancrinite group of minerals (Deer et al. 2004, Bonaccorsi & Merlino 2005, Pekov et al. 2011) are feldspathoids with tectoaluminosilicate frameworks consisting of layers of six-membered rings of tetrahedra perpendicular to the c-axis. Each layer has rings centered on three- or sixfold axes at (1/3, 2/3, z) (type A), (2/3, 1/3, z) (type B), or (0, 0, z) (type C). The simplest stacking sequence without adjacent repeats is the two-layer ...ABAB... repeat sequence, which we will refer to as the cancrinite-AB structure. More complex stacking sequences are known with up to 36 layers (cf. Smith 1988, Deer et al. 2004, Bonaccorsi & Merlino 2005, Câmara et al. 2012).

The framework created by the AB stacking contains wide channels bound by twelve-membered rings of tetrahedra and narrower channels bound by six-membered rings. Various extra-framework ions (both “point” cations such as Na+ or Ca2+, and anion groups such as CO32–, PO43–, or C2O42–) occupy certain positions inside these channels. Tecto(alumino)silicate structures are usually simplified by representing each tetrahedron by a node and each (Si,Al)–O–(Si,Al) connection by an edge, reducing the structure to a graph on a three-dimensional lattice. Using this representation, the narrow channel becomes a stack of polyhedral cages called cancrinite or [466362] cages (Smith 1988). The latter notation derives from the eleven faces of the cage; two parallel hexagonal faces are joined by pairs of quadrilateral faces alternating with non-planar hexagonal faces (Fig. 14B). The cages stack by sharing the parallel hexagonal faces such that the narrow channels are lined by zigzag ribbons of quadrilateral faces and ribbons of hexagonal faces. Each stack of cages (i.e., each narrow channel) contains nodes from either the A layers or the B layers, but not both; A stacks join B stacks by sharing quadrilateral faces, and the wide channels (lined by non-planar hexagonal faces alone) are gaps created by rings of six stacks. By once again replacing nodes in the ribs of quadrilateral faces with tetrahedra, we obtain double-chains of tetrahedra. If instead each node is replaced by an octahedron, we obtain Mf-type double-chains of octahedra, and the entire framework becomes the framework of the dumortierite structure with hexagonal symmetry (i.e., the ellenbergerite structure). The underlying cation-only lattices of the cancrinite-AB and the hexagonal DLM frameworks are topologically identical. In addition, the extra-framework ions in most cancrinite-AB structures occupy positions analogous to T8 and X in the wide channel and T6 in the narrow channel.

The structure of cancrinite (Fig. 14A) was first solved by Jarchow (1965). Eleven minerals of the cancrinite group have the AB stacking sequence, including cancrinite itself; their detailed structures and chemical compositions are described in Deer et al. (2004), Bonaccorsi & Merlino (2005), and Pekov et al. (2011). Their general composition can be described approximately by

(Y12Z12)(Y26Z21+)[Al6–xSi6+xO24]; in almost every cancrinite-AB mineral, the Si and Al positions are ordered (resulting in space group P63 or P63/m) and Si:Al = 1:1, but cancrisilite is disordered (P63/mmc) with ideally Si:Al = 7:5. Cancrinite itself is ideally Na7Ca[Al6Si6O24](CO3)1.5·2H2O (Pekov et al. 2011).

A diverse group of cations and anions occur at the extra-framework sites. The contents of the narrow channel are usually either Na2(H2O)2 as in cancrinite or Ca2Cl2 as in davyne (Pekov et al. 2011). Cations in the wide channel are usually occupied by Na+, K+, Ca2+, or , and anion sites can be occupied by CO32–, SO42–, OH−, S2–, Cl–, PO43–, C2O42–, or . Some minerals also have H2O sites in the wide channels with no hexagonal-channel analogues in the dumortierite structure.

The minimal cancrinite-AB unit-cell parameters lie in the ranges 5.1-5.4 Å for c and 12.55-12.85 Å for a. This leads to a/c ratios of around 2.45 for minerals with Na2(H2O)2 in the narrow channel, and around 2.39 for those with Ca2Cl2. Ordering of extra-framework ions...
between the wide channels can increase the unit cell, multiplying $a$ by $\sqrt{3}$ as in microsommitite and pitiglianoite or by 2 as in quadridavyne (Bonaccorsi & Merlino 2005, Pekov et al. 2011).

In addition to the cancrinite-group aluminosilicates, the beryllophosphate tiptopite, $K_2(Li_{2.9}Na_{1.7}Ca_{0.7}^{\#}Na_{0.7})\Sigma_6[Be_6P_6O_{24}](OH)_2\cdot1.3H_2O$, also has the cancrinite-AB structure, with $a = 11.655$, $c = 4.692$ Å ($a/c = 2.484$) and space group $P6_3$ (Peacor et al. 1987). Its framework is $[Be_6P_6O_{24}]$, with Be and P ordered. The narrow channel contains $\square_2K_2$, with $Li^+$, $Na^+$, $Cu^{2+}, OH^-$, and $H_2O$ in the wide channel. Many synthetic materials with the cancrinite-AB structure are also known, and are summarized in Table 1 of Sirbescu & Jenkins (1999) and Table 3 of Bonaccorsi & Merlino (2005). They include structures with the frameworks $[Al_6Ge_6O_{24}]$, $[Ga_6Ge_6O_{24}]$, $[Zn_6P_6O_{24}]$, and $[Co_6P_6O_{24}]$, as well as several exotic extra-framework ions.

Comparison of structures

The lyonsite, satterlyite-holtedahlite and cancrinite-AB structures each show similarities to the dumortierite and ellenbergerite structures in different ways, and these similarities highlight different aspects of the structure. The lyonsite structure, like the dumortierite structure, is based on a framework of chains of 6-coordinate sites assembled into the $\{6\cdot4\cdot3\cdot4\}$ net, with the same “bracelet and pinwheel” structure in the hexagonal channels; however, the double-chains of octahedra are replaced by single chains of octahedra and triangular prisms, and the triangular channels are empty. Like the dumortierite structure, the lyonsite structure contains two types of framework chains in 2:1 proportion, altering the hexagonal structure to an orthorhombic one with space-group symmetry $Pmcn$. The satterlyite-holtedahlite structure contains the same bundles of three corner-sharing zigzag chains of face-sharing dimers of octahedra around a triangular channel as the ellenbergerite structure, but assembled in a different way. The cancrinite-AB structure is based on a framework of tetrahedra that, where tetrahedra are replaced by octahedra, gives the ellenbergerite framework. Both structures also have additional elements at similar positions in their open channels: positions of the extra-framework ions in the cancrinite-AB structure correspond to the tetrahedrally and octahedrally coordinated sites inside the triangular and hexagonal channels in the ellenbergerite structure. In other words, the cancrinite-AB and ellenbergerite structures are based on similar underlying lattices. Finally, the orthorhombic dumortierite and hexagonal ellenbergerite structures, although geometrically and topologically similar in many ways, themselves differ not only in symmetry, but also in how they are constructed from slabs of slightly different geometric elements (Fig. 4).

These comparisons all feature different ways of (dis)assembling the DLM structure; as geometrical elements combined in different ways, as designs on different tilings, as connectivity graphs on an underlying lattice, or as done by Ozima et al. (1977) for lyonsite, as a close-packed layers of anions. Each of these decompositions highlight different features of the parent structure, and lead to different ways of generalizing the structure and recognizing commonalities with other structures. The structure-generating function is one way of describing some of these commonalities in a formula that contains both chemical and topological information about a structure or class of structures. It suggests the possibility of treating classes of crystal structures algebraically.
These types of in-depth descriptive studies of crystal structures touch on many seemingly abstract mathematical ideas from geometry, group theory, topology, and graph theory. The geometrical and topological similarities among different structures, and among isostructural materials, can go far beyond chemistry, as the diverse compositions of the dumortierite-like materials, lyonsite-like materials, and materials with the cancrinite-AB structure demonstrate. Understanding the geometrical and topological natures of crystal structures is an important step in answering the deeper questions of why materials assume the structures that they do.

ACKNOWLEDGEMENTS

The authors thank Robert Martin, Joel Grice, and Frank Hawthorne for their comments. Financial support was provided by the Natural Sciences and Engineering Research Council of Canada in the form of a Discovery Grant to LAG.

REFERENCES


Amorós, P., Marcos, M.D., Roca, M., Beltrán-Porter, A., & Beltrán-Porter, D. (1996) Synthetic pathways for new tubular transition metal hydroxy- and fluoroselenites: crystal structures of M\textsubscript{12}(X\textsubscript{2}(SeO\textsubscript{3})\textsubscript{3}OH\textsubscript{6} (M = Co\textsuperscript{3+}, Ni\textsuperscript{3+}; X = OH\textsuperscript{–}). Journal of Solid State Chemistry 126, 169-176.


Attfield, M.P., Morris, R.E., & Cheetham, A.K. (1994) Synthesis and structures of two isostructural phosphites, Fe\textsubscript{11}(HPO\textsubscript{3})\textsubscript{8}(OH)\textsubscript{6} and Mn\textsubscript{11}(HPO\textsubscript{3})\textsubscript{8}(OH)\textsubscript{6}. Acta Crystallographica C50, 981-984.


Brunet, F., Chopin, C., & Seifert, F. (1998) Phase relations in the MgO-P\textsubscript{2}O\textsubscript{5}-H\textsubscript{2}O system and the stability of phospohellenbergerite: petrological implications. Contributions to Mineralogy and Petrology 131, 54-70.


Hoskins, B.F., Mumme, W.G., & Pryce, M.W. (1989) Holtite, (Si12.52Sb0.75)B1[(Al0.43Ta0.27□0.30)O15(O,OH)2.25]: crystal structure and crystal chemistry. Mineralogical Magazine 53, 457-463.


PLESS, J.D., KIM, H.S., SMIT, J.P., SMIT, J.P., WANG, X., STAIR, P.C., & POEPPELMEIER, K.R. (2006) Structure of Mg$_{2,56}$V$_{1.12}$W$_{0.88}$O$_8$ and vibrational Raman spectra of Mg$_{2.5}$VWO$_8$ and Mg$_{2.3}$VMO$_8$. *Inorganic Chemistry 45*, 514-520.


ROJO, J.M., MESA, J.L., PIZARRO, J.L., GARCÍA-TOJAL, G., ARRIORTUA, M.I., & ROJO, T. (2002) Hydrothermal synthesis at high pressure and temperature of the Mg$_{2.5}$Ni$_6$H$_3$(AsO$_4$)$_6$(OH)$_6$ and Mg$_8$Ni$_8$H$_3$(PO$_4$)$_8$(OH)$_6$ compounds. *High Pressure Research 22*, 569-572.


Wang, X., Stern, C.L., & Poeppelmeier, K.R. (1996) Phase relations in the MgMoO$_4$-Mg$_3$V$_2$O$_8$ system and crystal structure of Mg$_{2.54}$V$_{1.08}$Mo$_{0.92}$O$_8$. Journal of Alloys and Compounds 243, 51-58.


Submitted May 16, 2012, revised manuscript accepted August 17, 2012.