Доклады Академии наук СССР 1975. Том 225, № 4

УДК 549.533

МИНЕРАЛОГИЯ

В. С. ГРУЗДЕВ, Н. М. МЧЕЛЛИШВИЛИ, Г. А. ТЕРЕХОВА, 3. Я. ЦЕРЦВАДЗЕ, Н. М. ЧЕРНИЦОВА, Н. Г. ШУМКОВА

ТВАЛЧРЕЛИДЗЕИТ Hg_{12} (Sb, As) $_8S_{15}$ — НОВЫЙ МИНЕРАЛ из мышьяково-сурьмяно-ртутного месторождения гоми (KABKA3) *

(Представлено академиком Ф. В. Чухровым 7 V 1975)

Название дано по имени основоположника грузинской минералого-

петрографической школы А. А. Твалчрелидзе.

Твалчрелидзеит (Tvalchrelidzeite) обнаружен в ассоциации со сферолитовыми агрегатами тонкоигольчатой киновари, имеющими коричневый цвет, метациннабаритом, частично замещенным киноварью, реальгаром и диккитом на мышьяково-сурьмяно-ртутном месторождении Гоми (Грузия).

Месторождение расположено в центральной части южного склона Большого Кавказа в Уцерском тектоническом узле в зоне южного краевого разлома. Мышьяково-сурьмяно-ртутная минерализация приурочена к южному крылу Гомрульской синклинали и локализована в окварцованных песчаниках флишевых отложений верхнеэоценового возраста.

Твалчрелидзеит является главным минералом отдельных участков рудоносной зоны. Обычно встречается в зернистых агрегатах. Хорошо образованные кристаллы не обнаружены, развиты только отдельные грани

индивидов, штриховка на гранях не установлена.

Минерал обладает совершенной спайностью в одном направлении, излом неровный и раковистый. Твердость немногим менее 3, микротвердость вдавливания изменяется от 143 до 220 при среднем значении в 172 кг/мм² (ПМТ-3, Р=20 г, среднеарифметическое по 20 замерам). Удельный вес 7,38±0,005 г/см³. Цвет выделений размером до 1 см свинцово-серый, при наблюдении в лупу хорошо заметно вишнево-красное просвечивание. Черта почти черная с темно-красным оттенком. Блеск сильный, алмазный. Плохой проводник электрического тока.

В шлифах в проходящем свете темный вишнево-красный, полупрозрачный. Полируется хорошо. В отраженном свете светлый, белый до сероватобелого с очень слабым сиреневым оттенком по R_p и отчетливым зеленоватым оттенком по R_q . Двуотражение отчетливое, характерны довольно сильные внутренние рефлексы темно-красного цвета. Анизотропный с цветными эффектами от темно-оливкового по R_q до темно-фиолетового по R_p . По относительному рельефу несколько выше киновари. Измерения отражательной способности твалчрелидзеита выполнены на установке ПООС. Минерал обладает индивидуальной спектральной кривой коэффициента отражения (об. 21×; апертура 0,40; эталон Si; воздух).

λ, нм	440	4€0	480	500	520	540	560	580	600	620	640	660
$R_{q'}$	40,0	40,0	40,4	40,7	40,3	39,5	38, 2	36,7	35,5	34,4	33,5	33,0
$R_{n'}$	43,0	41.6	40,4	39,0	37,8	36,7	35,7	34,7	33,9	33, 2	32,6	32, 2

Химический состав изучался на двух образцах, отобранных из одного обнажения на расстоянии нескольких десятков сантиметров один от дру-

^{*} Утвержден в качестье минерального вида Комиссией по новым минералам Международной Минералогической Ассоциации 5 II 1975 г.

Таблица 1 Результаты химического анализа твалчрелидзеита *

Эле- мент	· ·	Co	Атомные		Коэффици-				
	обр. 1	обр. 1 привед. к 100%	обр. 2	обр. 2 привед. к 100%	Teop. coctab Hg ₁₂ Sb ₄ As ₄ S ₁₅	обр. 1	обр. 2		обр. 2
Hg Sb As S	64,60 14,32 7,60 12,83	65,02 14,41 7,65 12,92	64,94 14,12 7,75 12,71	65,25 14,19 7,79 12,77	65,51 13,25 8,15 13,09	11 835 10 212	32 526 11 654 10 399 39 824	12,00 4,38 3,78 14,92	12,00 4,30 3,84 14,69
Σ	99,35	100,00	99,52	100,00	100,00				

^{*} Аналитик Н. Г. Шумкова.

Таблица 2 Результаты расчета рентгенограммы порошка твалчрелидзеита

I d_{α} эксп		$d_{ m BMY}$	hkl	I	да эксп	$d_{ m BMY}$. hkl		
12	4,70	4,68; 4,71	103; 202	8	1,567	1,567	2 19		
12 21 100 25	4,10 3,60 3,49 3,35	4,10 3,61 3,49 3,36	110 112 210 0,13	8 5 18 18	1,489 1,458 1,444 1,369	1,490; 1,492 1,458 1,444 1,370	713; 2.0.10 524 620 034		
71 29 12 100 100 8 8	3,29 3,19 3,00 2,92 2,89 2,557 2,468	3,29 3,20 3,03 2,92 2,89; 2,88 2,558; 2,556 2,468	204 413 303 014 310; 400 403; 313 115	6 15 7 15 5 7	1,348 1,329 1,318 1,308 1,294 1,282 1,250	1,347; 1,351 1,329 1,318 1,308 1,294 1,283 1,250	707; 4.0.10 4.1.10; 234 333 721 329 432 236		
6	2,363	2,366	411	7	1,233	1,233	6.0.10; 531		
$\frac{2}{15}$	2,291 2,199	2,291 2,210	314 116	4 7	1,208 1,182	1,210; 1,207 1,182,	2.1.12; 533 1.2.11		
15	2,157	2,156; 2,158	120; 413	5.	1,161	1,162; 1,160	$\bar{6}.0.11; 22.11$		
100 35	2,080 2,031	2,082 2,030	122 221	5 7	1,153 1,134	1,153; 1,150 1,134	7.0.10; 10.0.0 3.0.13		
25 25	1,959 1,890	1,960; 1,956 1,894; 1,893	307; 512 406; 124	5 12	1,129 1,120	1,128; 1,130 1,121; 1,120	809; 633 60.11; 3.1.13		
18 12 12	1,826 1,809 1,764	1,827; 1,825 1,805 1,766	208; $\bar{2}24$ 224 $\bar{3}08$	5 7 7	1,071 1,065 1,054	1,071 1,065 1,054	636; 537 3.2.12 243; 4.2.12		
29	1,750	1,747; 1,753	6 04; 118	5	1,041	1,041	0.0.15; 11.0.1		
10	1,726	1,727; 1,725	6 12; 3 24	8	1,014	1,014	3.0.15		
10 7 21	1,711 1,694 1,646	1,711 1,695 1,643; 1,648	422 422 700; 613	7	0,9645	0,9638 0,9665 0,9626	544 1.3.12 930		
8	1,633	1,632	507	7	0,9474	0,9471	8.0.12; 12.0.2		
12	1,595	1,596	702			0,9476	$\bar{6}42$		

Примечание. Fe-излучение, без фильтра, камера РКУ-114, аналитик Н. М. Черницова. Интенсивность оценивалась по шкале из марок почернения.

гого. Содез жание отдельных элементов в обоих образцах практически совпадает (табл. 1). При пересчете химических анализов получаются эмпирические формулы $Hg_{12.00}(Sb_{4.38}, As_{3.78})_{8.16}S_{14.92}$ (обр. 1) и $Hg_{12.00}(Sb_{4.30}, As_{3.84})_{8.14}S_{14.69}$ (обр. 2), которые находятся в хорошем соответствии с теоретическим составом минерала $Hg_{12}(Sb, As)_8S_{12}$. Для твелчрелидзеита характерно небольшое число и количество примесей; по данным полуколичественного спектрального анализа в материале, использованном для изучения химического состава, установлено присутствие свинца, меди и серебра от 0,001 до 0,01%.

В кислотах и щелочах твалчрелидзеит нерастворим, растворяется в царской водке. Травление в аншлифах стандартными реактивами положительных результатов не дало. В отличие от киновари и метациннабарита, не растворяется в растворах сульфидов щелочных металлов. В образцах руд твалчрелидзеит может быть принят за антимонит, в меньшей мере — за галенит; при наблюдении в бинокуляр похож на темную киноварь, от которой отличается более сильным блеском и характерным для отдельных участков выделений раковистым изломом. При окислении замещается ярко-красной киноварью с сохранением направления спайности и текстуры агрегатов.

Рентгенограмма порошка твалчрелидзеита приведена в табл. 2. По данным монокристальной съемки относится к моноклинной сингонии: $a=11,51\pm0,04;\ b=4,39\pm0,02;\ c=15,62\pm0,06$ Å; $\beta=92,14^\circ;$ элементарная ячейка примитивная.

Авторы признательны Т. Н. Чвилевой за изучение оптических характеристик минерала.

Образцы с твалчрелидзеитом переданы в Минералогический музей АН СССР.

Институт минералогии, геохимии и кристаллохимии редких элементов Москва Поступило 7 V 1975

Грузинское геологическое управление Тоилиси