Доклады Академии наук СССР 1978. Том 239, № 4

УДК 548.736.6

КРИСТАЛЛОГРАФИЯ

Академик Н. В. БЕЛОВ, Б. А. МАКСИМОВ, Ю. З. НОЗИК, Л. А. МУРАДЯН

УТОЧНЕНИЕ КРИСТАЛЛИЧЕСКОЙ СТРУКТУРЫ ДИОПТАЗА Сu₆[Si₆O₁₈] · 6H₂О МЕТОДАМИ РЕНТГЕНОВСКОЙ И НЕЙТРОННОЙ ДИФРАКЦИИ

В «Структуре силикатов» В. Л. Брэгг (¹), следуя авторитету крупнейшего минералога Г. Чермака (²), перевел давно известный метасиликат диоптаз CuSiO₃·H₂O с неустановленной тогда кристаллической структурой в группу ортосиликатов с формулой H₂Cu[SiO₄]. В рамках общей ромбоэдрической группы $R\bar{3}$ диоптаз оказался рядом с уже расшифрованным ортосиликатом фенакитом Be₂[SiO₄]. В 1942 г. одним из авторов настоящей работы чермаковское недоразумение было разъяснено (³) и диоптаз вернулся в группу метасиликатов, но с усложненной формулой Cu₆[Si₆O₁₈]·6H₂O, в которой квадратными скобками зафиксировано шестерное кремнекислородное кольцо, но с симметрией не чисто гексагональной, как в классическом берилле Be₃Al₂[Si₆O₁₈], а ромбоэдрической с тремя Si-тетраэдрами, «смотрящими» вверх от средней плоскости центросимметричного кольца, и тремя, «смотрящими» вниз (рис. 1).

симметричного кольца, и тремя, «смотрящими» вниз (рис. 1). Позднейшими исследованиями (⁴⁻⁷) была подтверждена метасиликатная природа диоптаза с шестерными бериллоподобными кольцами [Si₆O₁₈]¹²⁻ и химическая формула минерала Cu₆[Si₆O₁₈]·6H₂O.

В наших дифракционных исследованиях использован монокристалл природного диоптаза из Минералогического музея Московского геологоразведочного Института (известное месторождение Алтын-Тюбе, Казахстан). Уточненная гексагональная «дважды центрированная» ячейка характеризуется параметрами $a=b=14,569\pm0,002$ Å, $c=7,779\pm0,002$ Å, $\gamma=120^{\circ}$ с примитивной ромбоэдрической $a_{rh}=8,802$ Å, $\alpha_{rh}=111^{\circ}42'$.

Ромбоэдрическая федоровская группа $C_{3i}^2 = R\overline{3}$, Z=18. В рентгеновском эксперименте Мо K_{α} -излучение было монохроматизировано отражением

Рис. 2. Схема приспособления кремнекислородного радикала структуры диоптаза к конфигурации почти точной вырезки из структуры льда – ледяного кольца (H₂O)₆

Таблица 1

Координаты базисных атомов в структуре диоптаза Cu₆[Si₆O₁₈].6H₂O

	x/a		y/b		z/c		Bj	
Атом	рентг.	нейтр.	рентг.	нейтр.	рентг.	нейтр.	рентг.	нейтр.
Cu	0 26/13+6	0.26/6+2	0 33737+5	0 23762+2	0.30612+0	0 306/2-2	0.20	0.60
Si	0.1715 ± 1	0,2040-2 0 1755+3	$0.00101\pm 0.00101\pm 0.00101\pm 0.0010101$	0.33702 ± 2 0.2477+3	$0,39013\pm 9$ 0.0/00+2	$0,39042\pm 2$	0,39	0,00
O.	0.1807+3	$0,1755\pm 5$ $0,1805\pm 2$	0.2175 ± 1 0.1089 ± 3	$0,2177\pm 3$ 0,1005 ± 2	$0,0409\pm2$ 0.0833 ±5	0.0411-4 0.0825+3	0,20	0,55
\tilde{O}_2	0.3525 ± 3	$0,1000 \pm 2$ $0,3520 \pm 2$	0.3865+3	0.3860+2	$0,0000\pm 5$ $0,6027\pm 5$	$0,0020\pm 31$ 0,6019+31	0.23	0,56
03	0.1594 ± 3	0.1605 ± 2	0.2676 ± 4	0.2681 ± 2	0.2148+5	0.2141 + 3	0,23	0,50
O4	0.1407 ± 4	0.1408 ± 3	0.1810 ± 4	0.1804 ± 3	0.5787 ± 7	0.5783 ± 4	1,19	1 79
H_1	-,	0.1512 ± 6	-,	0.1223 ± 6	0,0101-1	0.5567 ± 9	1,10	3.34
H_2	1	$0,1108\pm6$	1.1.1.1.1.1.1	$0,1743\pm6$		0.6911 ± 7		2,46

Таблица 2

Межатомные расстояния (Å) и валентные углы водородной связи в структуре пиоптаза

		Cu-полиэдр	1-пол и эдр			Расстояния и валентные углы водородной связи		
$\begin{array}{c} {\rm Cu-O_3} \\ {\rm O_2} \\ {\rm O_2'} \\ {\rm O_3'} \\ {\rm O_4} \\ {\rm O_4'} \end{array}$	$\begin{array}{c} 1,947(1,951)\\ 1,957(1,957)\\ 1,963(1,966)\\ 1,976(1,989)\\ 2,521(2,526)\\ 2,660(2,664) \end{array}$	$\begin{array}{c} O_{3}-O_{3}'\\ O_{3}-O_{2}'\\ O_{2}-O_{2}\\ O_{2}-O_{3}'\\ O_{4}'-O_{3}'\\ O_{4}-O_{2}\end{array}$	2,588 2,785 2,848 2,943 3,010 3,048	$\begin{array}{c} O_4' - O_2' \\ O_4 - O_3 \\ O_4 - O_3' \\ O_4' - O_2 \\ O_4' - O_3 \\ O_4 - O_2' \end{array}$	3,048 2,785 3,130 3,365 3,493 3,749	$\begin{array}{c c} O_4 \cdots O_4' \\ O_4 - H_1 \\ H_1 \cdots O_4' \\ O_4 \cdots O_4 \\ O_4 - H_2 \\ H_2 \cdots O_1 \\ H_1 - H_2 \\ O_4 - H_1 \cdots O_4 \end{array}$	(2,696) (0,957) (1,798) (2,832) (0,968) (1,869) (1,573) (153°,6)	
	$\begin{array}{c} O_4 - H_2 \cdots O_1 \\ H_1 - O_4 - H_2 \end{array}$	(171°,4) (110°,5)						
$\begin{array}{c}\mathrm{Si-O_3}\\\mathrm{O_2'}\\\mathrm{O_1'}\\\mathrm{O_1}\end{array}$	1,610 (1,609) 1,611 (1,616) 1,640 (1,645) 1,652 (1,658)	0 0 0 1 0 0	$^{3}-O_{1}'$ $^{1}-O_{1}'$ $^{\prime}-O_{2}'$ $^{1}-O_{2}'$ $^{1}-O_{3}$ $^{3}-O_{2}'$	2,640 (2,65) 2,636 (2,63) 2,645 (2,66) 2,659 (2,66) 2,683 (2,68) 2,684 (2,68)	1) 8) 2) 2) 1) 7)			

(002) от кристалла графита. Интегральные интенсивности от образца сферической формы (диаметр ~0,02 см) измерены в атоматическом четырехкружном дифрактометре «Энраф-Нониус» ($\omega - \theta$)-методом. Набор экспериментальных интенсивностей включал 985 отражений с $I > 2\sigma_I$ в области

значений $\frac{\sin \theta}{\lambda} \leq 0,80$ Å⁻¹. Поглощение в образце (µR=0,74) учтено

в процессе выделения из интенсивностей модулей структурных амплитуд, В расчетах использовали комплекс программ для структурного анализа «Кристалл» (⁸, ⁹). Координаты атомов Cu, Si, O уточнены методом наименьших квадратов. В изотропном приближении это привело к фактору расходимости R=5,2%, в анизотропном -R=3,68%. На построенном после уточнения разностном синтезе электронной плотности две независимые системы пиков с интенсивностями, превышающими уровень фона в ~1,5 раза, достаточно уверенно можно было отождествить с атомами водорода. Полученные из рентгеновских данных координатные параметры базисных атомов структуры диоптаза и изотропные тепловые параметры приведены в табл. 1, основные межатомные расстояния в табл. 2.

В нейтронографическом анализе использован изометричный монокристалл со средним сечением ~5 мм. Трехмерный набор интенсивностей из 539 отражений с $I_{hhl}>3\sigma_I$ получен на автоматическом нейтронном дифрактометре «Синтекс» при максимальном $\frac{\sin\theta}{\lambda} = 0,73$ Å⁻¹. В расчетах

843

Таблица 3

Атом	B ₁₁	B_{22}	B ₃₃	B_{12}	B_{23}	B ₁₃
$\begin{array}{c} Cu\\Si\\O_1\\O_2\\O_3\\O_4\\H_1\\H_2\end{array}$	0,0013(1) 0,0011(2) 0,0021(2) 0,0017(1) 0,0015(1) 0,0040(2) 0,0047(4) 0,0053(4)	$ \begin{bmatrix} & & & & & \\ & 0 & , 0020 & (1) \\ & 0 & , 0015 & (2) \\ & 0 & , 0015 & (1) \\ & 0 & , 0012 & (1) \\ & 0 & , 0021 & (1) \\ & 0 & , 0036 & (2) \\ & 0 & , 0050 & (4) \\ & 0 & , 0071 & (5) \end{bmatrix} $	0,0022 (2) 0,0022 (4) 0,0017 (3) 0,0018 (3) 0,0023 (3) 0,0047 (4) 0,0156 (11) 0,0056 (7)		$\begin{array}{c} (\underline{3}, \underline{2}, \underline{2}, \underline{3}, \underline{3}$	0,0008 (2 0,0002 (4 0,0005 (3 0,0007 (3 0,0008 (3 0,0004 (5 0,0014 (1 0,0022 (5

Анизотропные тепловые колебания базисных атомов в форме $\exp\{-(B_{11}h^2+B_{22}k^2+B_{33}l^2+B_{12}hk+B_{13}hl+B_{23}kl)\}$ в структуре диоштаза по данным нейтронографии

Примечание. В скобках приведены стандартные отклонения.

использовали следующие значения амплитуд когерентного рассеяния нейронов ядрами (вединицах Ферми, $1fm=10^{-12}$ см): $b_{\rm Cu}=7,6, b_{\rm S1}=4,2, b_0=5,8,$ $b_{\rm H}=-3,74$. Поглощение в образце не учитывали ($\mu R < 0,001$). Координаты ядер водорода определены из Фурье-синтезов ядерной плотности с использованием координат атомов Cu, Si и O по рентгеновским данным. После полноматричного уточнения всех позиционных и анизотропных тепловых параметров с учетом вторичной экстинкции (размер блоков мозанки $r\approx 6500$ Å) значение фактора расходимости было R=5,2%. В табл. З приведены анизотропные тепловые параметры. Геометрические характеристики водородных связей в диоптазе приведены для неводородных атомов из данных рентгенографии, для атомов водорода — из нейтронографических данных.

Еще в 1942 г. в работе (³) было показано, что основным кристаллохимическим «моментом» структуры диоптаза являются шестерные кремнекислородные кольца [Si₆O₁₈]¹²⁻. Разброс межатомных расстояний внутри Si-тетраэдров Si-O (1,610-1,652) Å при среднем 1,631 Å; O-O=2,640-2,684 А при среднем 2,657 А. Угол связи Si-O-Si=129°,9, средний угол O-Si-O=109°,1. Диоптазовые шестерные кольца с симметрией шестерной зеркальной оси 6=3, располагаясь на трех уровнях дважды центрированной гексагональной ячейки (только одно в примитивной ромбоэдрической ячейке!), играют роль обручей вокруг широкой центральной трубы с водой. Между кольцами вокруг производных винтовых осей 3₁ и 3₋₁=3₂ тянутся более узкие каналы. Проходящие через эти каналы тройные винтовые оси (правые 3₁ и левые 3₋₁=3₂) закручивают вокруг себя Си-катионы в спирали, а вместе с атомами О и группами ОН в «качающиеся» колонки из октаэдров Cu(O, OH)6, которые связаны общими ребрами (рис. 1). Такие «качающиеся» колонки в турмалине составлены из Al-октаэдров, которые размещают вокруг себя на трех уровнях ромбоэдрической ячейки полярные шестерные кремнекислородные кольца.

В диоптазе вокруг колонки из Си-октаэдров размещены на трех уровнях центросимметричные шестерные кольца (рис. 1), а между ними в крупных каналах шестерные кольца из молекул H₂O такого типа, что их можно назвать «вырезками» из структуры льда (рис. 2). В своей колонке Си-октаэдры связаны между собой общими ребрами. Расстояние Си-Си в колонке равно 2,949 Å. Винтообразные колонки из Си-октаэдров не изолированы, а сочленяются с соседними по короткому ребру октаэдра в трехмерный ажурный каркас из Си-полиэдров. Кратчайшее расстояние между атомами меди, принадлежащими двум соседним винтообразным колонкам, составляет 3,156 Å. Ближайшие «анионные лиганды» меди четыре свободные вершины (атомы O₂ и O₃) трех разных колец [Si₆O₁₈]-

844

окружают атом Си по почти правильному квадрату с расстояниями Cu-O=1,947; 1,957; 1,963 и 1,976 Å (экваториальные связи) и длинными ребрами 0-0=2,588; 2,783; 2,848 и 2,943 А. Координация атома меди дополняется до октаэдрической двумя удаленными от молекул воды атомами O₄ с расстояниями Cu-O=2,521 и 2,660 Å. Расстояния атома O₄, входящего в молекулу воды, до чисто кислородных вершин Си-октаэдра тоже увеличены (от 3,010 до 3,749 Å). Такое («4-2») расщепление меж-атомных расстояний Си-О отмечено в сульфатах (¹⁰, ¹¹). Для силикатов подобный эффект зафиксирован (12) в кристаллической структуре синтетического Na₂CuSi₄O₁₀.

Как указано выше, трансляционно-идентичные вдоль оси 3 шестерные кольца [Si₆O₁₈] (рис. 1) разделены между собой льдоподобными кольцами

Таблица 4

из 6 молекул воды (рис. 2). Внутренние диаметры «водяных» и кремнекислородных колец приблизительно одинаковы и составляют ~4,8 Å. В кольце из 6 молекул воды участвуют 2 сорта независимых атомов водорода. Шестерки Н₁ расположены в средней плоскости водяных колец, остальные 6 атомов Н2 создают поочередно водородные связи с выше и нижележащими кремнекислородными кольцами, а именно, с теми атомами О₁, которые оказываются общими соседним Si в шестерных кольцах [Si₆O₁₈]. Геометрический анализ водородных связей в диоптазе показывает, что расстояния и углы в донорно-акцепторных треугольниках, образованных атомами

Средне-квадратичное отклонение о вдоль главных осей э. т. к. и углы между кристаллографическими осями и главными осями э. т. к. молекул воды в

структуре диоптаза

Атом	i = 1, 2, 3	σ, Å	\angle^{a_i}	$\angle b_i$	∠c _i
04	1	0,181	40°	80°	93°
	2	0,162	130	12	83
	3	0,119	83	96	8
H ₁	1	0,222	100	98	19
	2	0,205	135	16	87
	3	0,191	47	76	72
H_2	1	0,241	96	24	91
	2	0,204	16	113	76
	3	0,125	83	83	14

кислорода молекул воды и атомами кислорода, вовлеченными в водородную связь, типичны для кристаллогидратов, так же как типичны расстояния и углы в молекуле воды (табл. 2). Вычисленные по нейтронографическим данным эллипсоиды тепловых колебаний (э.т.к.) атомов, составляющих молекулу воды, приведены в табл. 4. Общей особенностью э.т.к. атомов О, и H₂, указывающей на коррелированный характер их химической связи, является то, что у каждого из этих атомов две полуоси э.т.к. мало различаются по величине, в то время как третьи полуоси существенно короче и одинаково направлены вдоль гексагональной оси элементарной ячейки (перпендикулярно средней плоскости «водяного» кольца). Э.т.к. атома H₄, осуществляющий связь внутри «водяного» кольца, не имеет таких особенвостей и характеризуется приблизительно равными полуосями.

Авторы благодарны П. В. Калинину и М. Г. Спиридоновой, предостазившим образец для исследования, а также Л. Е. Фыкину и В. И. Букину за помощь в нейтронографическом эксперименте.

Институт кристаллографии им. А. В. Шубникова Академии наук СССР Москва

Поступило 26 XII 1977

ЛИТЕРАТУРА

ПИТЕРАТУРА ¹ В. Л. Брэге, Структура силикатов, Основные идеи геохимии, т. 3, Л., 1937. G. Tschermak, Sitzungsler. Wiener Akad., В. 115, 217 (1906). ³ Н. В. Белов, ДАН, 37, № 4, 156 (1942). ⁴ Н. В. Белов, В. П. Бугузов, Н. И. Головастиков, ДАН, т. 87, 6, 953 (1952). ⁵ Н. G. Heide, K. Boll-Dornberger, Acta crystallogr., v. 8, № 4, 425 1955). ⁶ В. И. Букин, Ю. З. Ногик и др., Геохимия, № 9, 1238 (1976). ⁷ Р. Н. 1966, G. V. Gibbs, М. М. Натіе, Ат. Mineral., v. 62, 807 (1977). ⁸ А. Е. Товбис, И. Симонов, Кристаллография, т. 16, 1131 (1971). ⁹ Л. А. Мурадян, В. И. Симо-с, там же, т. 18, 75 (1973). ¹⁰ G. Е. Васол, Acta crystallogr., v. A28, № 4, 357 (1972). G. M. Brown, R. Chidambaram, ibid., v. B25, № 4 (1969). ¹² А. Н. Корнев, Б. А. Искимов и др., ДАН, т. 205, № 4, 831 (1972).