Таблица 3 Межатомные расстояния в структуре 4{NaYSiO₄} · NaF, A

Y - O,*	2,25	Si - O ₄ *	1,62	$Na_1 - O_2^*$	2,35
0,*	2,31	O ₃	1,63	. O ₃	2,36
O _i	2,34	0*	1,63	O ₂ *	2,50
O ₃ *	2,35	0,	1,63	0,	2,57
O.*	2,35	$Na_2 - O_4$	2,57	O,*	2,65
O ₂	2,41	04[3]	2,57	O ₄	2,82
F	2,50	F [2]	2,70	O ₂ *	2,85
O_3	2,52	0,*[4]	2,79		

ся над и под кластерами. Семивершинники вокруг Na_1 образованы только кислородными атомами. С себе подобными они сочленяются по ребрам. Существенно, что Na_1 -полиэдры имеют по две общие грани с двумя соседними в группировке Y-восьмивершинниками, а также общее ребро с Y-восьмивершинниками в колонке. Атом Na_2 окружен восемью атомами O и двумя F. Представляющийся рыхлым Na_2 -десятивершинник размещается между кластерами. Чередуясь с F, Na_2 образует "гетероколонки" вдоль направления [001].

В свете результатов расшифровки структуры Na, Y-силиката представляется целесообразным провести уточнение структур TR-соединений, полученных гидротермальным методом $\binom{1}{2}$, и после этого вновь вернуться к морфотропным рядам, описанным в $\binom{4}{3}$.

Институт кристаллографии им. А.В. Шубникова Академии наук СССР, Москва Поступило 10 VII 1980

ЛИТЕРАТУРА

 1A .В. Чичагов, В.В. Илюхин, Н.В. Белов, ДАН, т. 177, № 3, 574 (1967). 2 Е.И. Аветисян, А.В. Чичагов, Н.В. Белов, Кристаллография, т. 15, 5, 1066 (1970). 3 Комплекс программ "Кристалл", в. 1, 2, 3, 4, 5, М., 1968–1974. 4 А.В. Чичагов, Б.Н. Литвин, Н.В. Белов, Геохимия, т. 13, 9, 1044 (1968). 5 А.В. Чичагов, Б.И. Литвин, Н.В. Белов, Кристаллография, т. 14, 1, 119 (1969).

УДК 548.736.625

КРИСТАЛЛОГРАФИЯ

В.Е. ОВЧИННИКОВ, Л.П. СОЛОВЬЕВА, З.В. ПУДОВКИНА, Ю.Л. КАПУСТИН, академик Н.В. БЕЛОВ

КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА КОВДОРСКИТА $Mg_2(PO_4)(OH) \cdot 3H_2O$

Природный водный фосфат магния — ковдорскит — был недавно открыт Ю.Л. Капустиным в железнорудном месторождении Ковдорского ультраосновного щелочного массива (Кольский п-ов). По первоначальным данным $\binom{1}{1}$ минералу была приписана формула

 $Mg_5(PO_4)_2 \cdot (CO_3)(OH)_2 \cdot 4,5 H_2O,$

отражающая присутствие в его составе карбонатных групп. Забегая вперед, отметим,

Таблица 1 Координатные и тепловые параметры структуры ковдорскита

Атом	$x \pm \sigma_X$	y ± σ _y	$z \pm \sigma_z$	$B \pm \sigma_{\overline{B}}$
P	0,2196(2)	0,3214(2)	0,5962(7)	0,47(3)
Mg,	0,1541 (3)	0,4882(2)	0,0500(9)	0,67(5)
Mg ₂	0,9964(3)	0,2886(2)	0,9339(8)	0,63(5)
O,	0,3493(6)	0,2661(5)	0,5864(17)	0,71(10)
O ₂	0,1380(6)	0,2463(5)	0,7295(17)	0,85(10
O ₃	0,1388(6)	0,3521(5)	0,2873(18)	0,91(11
0,	0,2560(6)	0,4192(8)	0,7905(18)	0,94(11
O ₅ (OH)	0,9797(6)	0,4351(5)	0,7720(18)	0,83(10
O ₆ (H ₂ O)	0,1659(6)	0,6467(5)	0,8735(18)	1,14(12
O ₇ (H ₂ O)	0,3228(7)	0,5328(5)	0,3604(20)	1,28(13
$O_{\bullet}(H,O)$	0,9861(7)	0,1532(6)	0.1657(19)	1,44(13

Таблица 2 Межатомные расстояния Å

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$egin{array}{cccccccccccccccccccccccccccccccccccc$	
$egin{array}{cccccccccccccccccccccccccccccccccccc$	
$egin{array}{cccccccccccccccccccccccccccccccccccc$	
O_4 1,56 O_2-O_3 2,50 O_2-O_4 2,53 O_3-O_4 2,58 O_3-O_4 2,58 O_3-O_4 2,58 O_3-O_4 2,58 O_3-O_4 2,58 O_5-O_5 O_5 3,00 $O_5^*-O_5$ O_5 2,85 O_5-O_5 O_5	
$egin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$Mg_1 - O_3$ 2,11 $O_3 - O_4$ 2,99 $O_4 - O_7$ O_5^* 3,00 $O_5^* - O_5$ O_5 2,85 O_5	
$Mg_1 - O_3$ 2,11 $O_3 - O_4$ 2,99 $O_4 - O_7$ O_5^* 3,00 $O_5^* - O_5$ O_5 2,85 O_5	
$O_5^{\circ} = 2.02$ $O_5 = 2.85$ O_7	3,01
$O_5^{\circ} = 2.02$ $O_5 = 2.85$ O_7	2,69
	2,69
0 011	3,09
0 222	3,32
0 211	2,92
Ma O 211	3,08
$O_2 = 1,99$ $O_5 = 2,97$ $O_3 = O_5$	2,85
$O_3 = 2,15$ $O_6^* = 3,01$ O_7^*	3,09
$O_s = 2.03$ $O_s = 3.00$	3,00
O_6^* 2,23 $O_2 - O_3$ 2,97 $O_6 - O_8^*$	2,69
0 200	3,01

 Π р и м е ч а н и е. Звездочкой отмечен — атом, связанный с базисным центром инверсии, буквой а — плоскостью скольжения.

что при структурной расшифровке эти данные не подтвердились и реальная формула ковдорскита приняла вид

 $Mg_2(PO_4)(OH) \cdot 3H_2O$.

Настоящее рентгенографическое исследование, проведенное на монокристальном образце неправильной формы $(0.2 \times 0.15 \times 0.1 \text{ мм})$ в камерах РКОП и КФОР

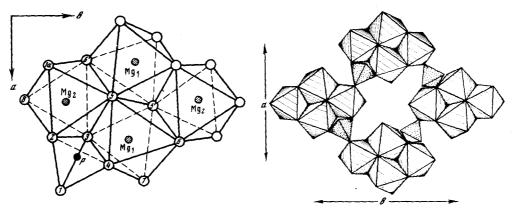


Рис. 1. Основной фрагмент структуры ковдорскита — кластер из четырех октаэдров в проекции на (001)

Рис. 2. Проекция структуры ковдорскита в полиэдрах на (001)

(λ Мо и Cu), установило моноклинную симметрию минерала и параметры примитивной решетки: $a=10,35+0,04,\;b=12,90\pm0,04,\;c=4,73\pm0,02$ Å, $\beta=102^{\circ}00\pm30$. Анализ систематических погасаний рефлексов привел достаточно однозначно к полулярной федоровской группе $C_{2\,h}^{5}=P_{2\,h}/a$. Трехмерный набор интенсивностей включал 776 независимых отражений (max sin $\theta/\lambda=0,88$ Å $^{-1}$). Поправка на поглощение не вводилась.

Структура решена прямыми методами и уточнена м.н.к. в полноматричном приближении с изотропными тепловыми параметрами до K = 0,081 по системе программ СТРУКТУРА, разработанной совместно Институтом тектоники и геофизики ДВНЦ АН СССР и Институтом кристаллографии АН СССР (2). Координаты атомов и тепловые параметры структуры приведены в табл. 1.

По результатам расшифровки ячейка ковдорскита содержит четыре единицы Mg_2 (PO₄) (OH) · $3H_2$ О. Найденный состав подтверждается хорошим соответствием между экспериментальными и вычисленным значениями плотности (2,28 и 2,30 г/см³ соответственно). Повторное химическое исследование на тщательно отобранных в иммерсии кристаллах ковдорскита (частная реакция на CO_2) также указало на отсутствие в минерале карбонат-иона. Ошибка в первом определении химического состава и плотности (1) объясняется малым количеством минерала и загрязненностью его близко ассоциирующими с ним другими минералами.

Характерной деталью строения ковдорскита являются дискретные группировки (кластеры) из четырех соединенных по ребрам Mg-октаэдров (рис. 1). Каждый такой кластер можно разбить на два сорта независимых октаэдров Mg1 и Mg2, связанных в пары центром инверсии. Mg1-полиэдр имеет реберные контакты с одним себе подобным и двумя Mg2-октаэдрами. Последние имеют связь только с двумя Mg1-полиэдрами. Дифференциация кислородных группировок на О, ОН и H2O осуществлена на основании локального баланса валентностей. В координации Mg1 участвуют по два лиганда каждого сорта, а в сфере Mg2 — три атома О, одна ОН-группа и две молекулы H_2O . В итоге все анионы разбиваются на три сорта следующим образом: атомы кислорода — общие вершины Mg-октаэдров с P-тетраэдрами, группы ОН — общие вершины трех Mg-полиэдров, молекулы H_2O — общие для двух Mg-октаэдров и свободные их вершины. Развернутая формула группировки из октаэдров может быть представлена в виде $[Mg_4O_8 \, (OH)_2 \, (H_2O)_6]$.

Описанные островные группировки Mg-октаэдров (рис. 2) послойно сосредоточены в плоскостях (001) по псевдогексагональному мотиву. Между соседними

трансляционно идентичными слоями располагаются ортотетраэдры [PO₄], связывающие Mg-группировки в слое и между слоями. В направлении оси z структуру пронизывают бесконечные каналы крестообразного сечения. Можно предполагать, что в пределах этих каналов действует система водородных связей, на что указывает наличие достаточно коротких векторов О—ОН₂ (2,64; 2,82; 2,90 и т.д.), не являющихся ребрами катионных полиэдров. Межатомные расстояния (табл. 2) хорошо согласуются со средними, приводимыми для фосфатов.

Кристаллическая постройка ковдорскита представляет собой новый структурный тип. Подобные кластеры, но состоящие из двух октаэдров и двух пятивершиников Al, соединенных между собой PO_4 -тетраэдрами, встречены в структуре аугелита — Al_2 (OH) $_3$ (PO $_4$) (3). Послойное распределение вдоль короткого ребра элементарной ячейки октаэдрических групп и связывающих их в трехмерный каркас ортотетраэдров $[PO_4]$ наблюдается в кристаллических постройках вивианита — Fe_3 (PO $_4$) $_2$ · $8H_2$ O (4) — и псевдомалахита — Cu_5 (PO $_4$) $_2$ (OH) $_4$ (5). В структуре вивианита октаэдрический слой составлен из одиночных октаэдров и сдвоенных по ребрам, вершинами которых являются молекулы воды и атомы кислорода. Как и в ковдорските, атомы кислорода в вивианите занимают общие вершины октаэдров и тетраэдров, а молекулы воды — свободные вершины Fe-полиэдров, между которыми существуют водородные связи.

Авторы выражают благодарность Γ .С. Гавриловой за помощь в обработке экспериментального материала.

Поступило 30 VI 1980

ЛИТЕРАТУРА

¹Ю.Л. Капустин, А.В. Быкова, З.В. Пудовкина, Зап. Всесоюзн. мин. общ-ва, т. 109, № 3, 341 (1980). ²Л.П. Соловьева, В.Е. Овчинников и др., Кристаллография, т. 17, № 4, 773 (1972). ³Z. Araki, J.J. Finney, T. Zoltai, Am. Mineral., v. 53, 1096 (1968). ⁴H. Mori, T. Ito, Acta crystallogr., v. 3, 1 (1950). ⁵S. Ghose, ibid., v. 16, 124 (1963).