Доклады Академии наук СССР 1985. Том 282, № 2

УДК 548.736

КРИСТАЛЛОГРАФИЯ

Е.А. ГЕНКИНА, Б.А. МАКСИМОВ, О.К. МЕЛЬНИКОВ

КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА СИНТЕТИЧЕСКОГО ТАРБУТИТА Zn₂[PO₄](OH)

(Представлено академиком Б.К. Вайнштейном 20 VII 1984)

При исследовании кристаллизации в гидротермальной многокомпонентной системе $L_{12}O-ZnO-P_2O_5-H_2O$ были получены бесцветные прозрачные кристаллы изометричной формы, размером 0,1–0,3 мм, которые уже на первых этапах рентгенофазового анализа были достаточно надежно отождествлены с минералом тарбутитом.

Первые данные о кристаллической структуре природного ортофосфата цинка (тарбутита) относятся к 1966 г. Авторами этой работы с использованием фотографического массива дифракционных данных при $R_{hkl} = 0,12$ была выявлена общая модель структуры без покализации водородного атома [1].

Настоящее исследование — уточнение структурных характеристик и локализация атомов водорода в структуре синтетического тарбутита — выполнено в рамках систематического исследования Fe-, Zn-, Al-фосфатов, проводимого в плане поиска соединений, обладающих интересными физическими свойствами (электрофизическими, люминесцентными, магнитными).

Уточнение констант элементарной ячейки (табл. 1) и набор дифракционных интенсивностей с $I_{hkl} \ge 3\sigma I$ с изометрического образца тарбутита (r = 0,1 мм) выполнены на автоматическом монокристальном дифрактометре CAD-4F "Энраф-Нониус" (Мо K_{α} -излучение, графитовый монохроматор, ω -метод съемки с переменной скоростью сканирования). При уточнении констант решетки использованы 25 отражений.

Уточнение структуры МНК по программе "Рентген-75" на ЭВМ БЭСМ-6 [2] с использованием кривых атомного рассеивания из [3] и без учета рассеивания на атоме Н привело к значению фактора недостоверности R_{hkl} 0,056 в изотропном и 0,040 в анизотропном приближениях. Локальный баланс валентных усилий в структуре синтетического тарбутита, рассчитанный по методике [4], вполне удовлетворителен (D=9,9%), а отклонения сумм валентных усилий катионов от формальной валентности 2 для кислородных атомов O₁ ($\Delta i = 0,18$) и O₅ ($\Delta i = 1,17$) указывали

Таблица 1 Рентгенографические данные синтетического тарбутита

a = 5,5517(5) A	$\alpha = 102,67(1)^{\circ}$	$\Phi.rp. P\bar{1}$	$\theta \leq 28^{\circ}$
b = 5,7001(8) A	$\beta = 102,81(1)^{\circ}$	$V = 194,803 A^3$	$711 F_{hkl} $
c = 6,4707(8) A	$\gamma = 86,88(1)^{\circ}$	Z = 2	$R_{hkl} = 0,039$

Атом	x/a	y/b	z/c	Bj	B ₁₁	B ₂₂	B 3 3	B _{1 2}	B13	B23
7.n '	0.3862 (2)	0.2482 (2)	0.4916(2)	0 44	12	49	59	02	49,	48
Zn,	0.0276(2)	0,7384(2)	0.1897(2)	0.31	24	30	40	06	37	28
Р́	0,8371 (4)	0,2497 (4)	0,2757 (3)	0,22	17	31	19	05	39	36
O,	0,7759 (11)	0,9935(11)	0,1498 (10)	0,99	66	59	66	37	51	08
0,	0,9421 (11)	0,3845 (10)	0,1336(9)	0,75	97	58	61	77	99	82
0 ₃	0,6029(11)	0,3782 (10)	0,3342(10)	0,68	50	56	83	34	83	59
O ₄	0,9696 (10)	0,7514(11)	0,5137(9)	0,70	33	63	53	29	22	47
O _s	0,3595(11)	0,8872(11)	0,2954(9)	0,85	56	76	53	19	57	19
Н	0,428(5)	0,946 (5)	0,193(5)	1,57						

.

Таблица 2 Координатные и изотропные и анизотропные (× 10⁴) тепловые параметры атомов

Таблица З

Межатомные расстояния в структуре Zn₂ [PO₄] (OH)

			Z n-поли	эдры		
$\begin{array}{c} Zn_{1} - O_{4}^{\prime} \\ O_{5}^{\prime} \\ O_{3} \\ O_{5} \\ O_{5} \\ O_{3}^{\prime} \end{array}$	1,96 1,99 2,00 2,16 2,17	8(6) 3(6) 1(6) 1(6) 7(6)				1,979(6) 1,985(6) 2,033(6) 2,097(6) 2,176(6)
Среднее 2,060 Следующее ≥ 3,177				Среднее Следующее	2,054 ≥ 3,112	
$O_3 - O'_3$ O'_4 O'_5 $O'_3 - O'_4$ O'_5 $O'_4 - O_5$ O'_5 $O'_5 - O'_5$ Среднее	2,72 3,68 3,06 3,17 2,89 3,17 2,93 3,17 2,93 3,48 2,82 3,48	9(9) 5(10) 8(9) 0(10) 1(10) 0(10) 0(10) 4(10) 7(10) 5			$O_1 - O_2$ O_2 O_4 O_5 $O_2 - O_2'$ O_4 O_5 $O_2 - O_5$ $O_4 - O_5$ Среднее	3,528(10) 3,103(10) 2,957(10) 3,230(10) 2,592(9) 2,839(10) 3,606(10) 3,040(10) 3,049(10) 3,105
Р-тетраэдр						
P Cpe	О ₁ О'4 О ₃ О ₂ днее	1,523(6) 1,537(6) 1,537(6) 1,540(6) 1,534	$\begin{array}{c} O_1 - O_2 \\ O_3 \\ O_4' \end{array}$	2,490(9) 2,507(9) 2,514(9)	O ₂ -O ₃ 2 O' ₄ 2 O ₃ -O' ₄ 2 Среднее 2	519(9) 507(9) 498(9) 506

на их участие в водородной связи. На построенном нулевом синтезе $\Delta \rho(x, y, z)$ для массива структурных амплитуд F_{hkl} с $\sin \theta/\lambda \leq 0.5$ (515 отражений), рассчитанном по уточненным координатам "тяжелых" атомов Zn, P и O, был достаточно уверенно локапизован атом водорода, находящийся от атомов O₁ и O₅ на расстояниях 2,157 и 0,902 Å соответственно. Уточнение МНК по полному массиву структур-

Рис. 1. Проекция структуры Zn₂[PO₄](OH) на плоскость *ас.* Бипирамиды цинка заштрихованы, запиты Р-тетраэдры

Рис. 2. Проекция структуры Zn₂ [PO₄] (OH) на плоскость ab

ных амплитуд с участием H-атома привело к некоторому снижению R_{hkl} до 0,039 (анизотропное приближение, H — изотропное). Вычисленное значение плотности синтетического тарбутита $\rho_{\text{рент}} = 4,11 \text{ г/см}^3$ хорошо согласуется с экспериментальным значением ρ для природного образца – 4,21 г/см³ [1].

Уточненные координаты структуры синтетического тарбутита приведены в табл. 2. Расхождения между фиксированными нами и приведенными в [1] значениями находятся в пределах 0,003-0,085 Å. Основные межатомные расстояния собраны в табл. 3. Катионы двух кристаллографически независимых атомов Zn окружены пятью анионами О со средними значениями Zn-O = 2,060 и 2,054 Å. Величины ребер О-О заключены в пределах 2,592-3,685 А. Полиздры вокруг атомов Zn представляют собой тригональную биширамиду, экваториальным основанием которой является треугольник с вершинами O₅-O₃-O'₅ в Zn₁-полиздре и треугольник $O_1 - O'_2 - O_5$ в Zn₂-полиэдре (рис. 1). Надо отметить, что Zn, относясь к довольно крупным катионам, для которых характерна октаэдрическая координация, в большинстве случаев предпочитает менее "удобное" для себя тетраэдрическое окружение. Пятерная же координация цинка, реализуемая в тарбутите, наблюдается в очень редких случаях. Так, для фосфатов она встречена в синтетическом Zn-триплоидите ZnFePO4 (OH), где цинк также находится внутри тригональной бипирамиды со средними расстояниями Zn-O = 2,06 Å и O-O = 3,12 Å [5]. Пятью анионами окружает себя Zn и в соединении γ -(Zn_{0.7}Ni_{0.3})₃ [PO₄]₂ [6].

Длины связей Р-О в тетраздре структуры тарбутита не имеют отклонений от нормы. Среднее значение Р-О = 1,534 Å, О-О = 2,506 Å.

Как видно из рис. 2, в пространственной структуре тарбутита можно выделить бесконечные зигзагообразные цепочки, образованные Zn_1 -бипирамидами, которые связаны друг с другом по общим, укороченным согласно правилу Полинга, ребрам $O_5 - O'_5$ и $O_3 - O'_3$. Цепочки простираются вдоль оси *у* с периодом повторяемости 2 полиэдра, 1 цепочка на элементарную ячейку. Минимальные расстояния $Zn_1 - Zn'_1$ в цепочке равны 3,169 Å и 3,049 Å. Zn_2 -бипирамиды также имеют общее ребро $O_2 - O'_2$ и образуют дискретные бинарные группы состава [Zn_2O_8]. Расстояние $Zn_2 - Zn'_2$ в такой группе имеет величину 3,215 Å. Между собой полиэдры Zn_1 и Zn_2 связываются через мостиковые анионы O_4 и O_5 и образуют единый цинковый трехмерный каркас. При этом каждая Zn_1 -бипирамида окружена тремя различными бинарными группами [Zn_2O_8], а каждая бинарная группа, в свою оче-

редь, стягивает 4 трансляционно-идентичные Zn1-цепочки, имея с каждой лишь по одной общей вершине. Одиночные фосфорные тетраздры придают прочность цинковому каркасу, контактируя по общим вершинам сразу с семью бипирамидами (через анионы O₃ и O₄ с тремя Zn₁-полиздрами и через O_{1,2,4}-анионы с четырьмя Zn2-полиэдрами). При этом в структуре образуются каналы, тянущиеся вдоль оси у (рис. 1). Ось таких каналов проходит через центры симметрии. Именно в этих каналах и располагается атом водорода. Расстояние от Н-атома до аниона-акцептора центросимметрично расположенной связи (рис. 1) равно 2,350 Å, и, как следует из геометрических характеристик водородной связи, она может рассматриваться как бифуркированная (или биакцепторная). Расстояния и углы связи близки к определяемым методами PCA: O₅-H = 0,957 Å, H...O₁ = 2,050 Å, H...O'_1 = 2,350 Å, O_5-O_1 = 2,823 Å, O_5-O'_1 = 3,028 Å. Поскольку сила связи О_Д-Н...О_А определяется более слабым звеном Н...О_А, т.е. эта длина является одним из критериев "качества" Н-связи, то мы имеем в тарбутите слабую бифуркированную связь. Если в ординарных Н-связях отклонение от угла 180°, как правило, невелико и лежит в пределах 160-180°, то в случаях бифуркированных Н-связей угол Од--Н...О_А заостряется до 110--140°. Такое значительное отклонение от линейности, типичное для бифуркированной связи, происходит и в нашем случае: угол $O_5 - H \dots O_1 = 136,6^\circ$, угол $O_5 - H \dots O_1' = 127,2^\circ$. Поскольку полости структуры пронизаны слабыми Н-связями, то можно предположить наличие в структуре тарбутита протонной проводимости.

В целом структура Zn_2 [PO₄] (OH) достаточно плотно упакована; ее удельный анионный объем V_0 , равный отношению объема ячейки к числу анионов в ней, составляет 19,48 Å³. При этом каждый кислородный атом окружен тремя катионами (в том числе H-атомом), лишь O₅ имеет связь с четырьмя катионными атомами.

Институт кристаллографии им. А.В. Шубникова Академии наук СССР, Москва

Поступило 1 VIII 1984

ЛИТЕРАТУРА

1. Соссо G., Fanfani L., Zanazzi P.F. – Z. Kristallogr., 1966, Bd. 123, № 5, S. 321–329. 2. Андрианов В.И., Сафина З.Ш., Тарнопольский Б.Л. – ЖСХ, 1974, т. 15, № 5, с. 911. 3. International Tables. Birmingham: Kynoch Press, England, 1974, vol. 4, р. 72. 4. Пятенко Ю.А. – Кристалпография, 1972, т. 17, вып. 4, с. 773–779. 5. Сандомирский П.А., Симонов М.А., Белов Н.В. – ДАН, 1975, т. 220, № 1, с. 89–92. 6. Anders G. Nord, Teodor Stefanidis – Acta cryst., 1981, vol. B37, № 8, р. 1509–1511.