В. И. СИМОНОВ и академик Н. В. БЕЛОВ

КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА ЛОВЕНИТА

Ловенит в известных справочных изданиях $(^1,^2)$ относится к группе «незо» (орто)-силикатов сложного состава с общей формулой вида A_3B [SiO $_4$] $_2$ (O, F, OH), где A = Ca, Na и B = Zr, Ti, Nb. Объекты нашего исследования — кристаллы ловенита из Ловозерского массива с повышенным содержанием Ti (титаноловенит) — получены от E. И. Семенова, который в соответствии с анализом M. E. Казаковой дает для них развернутую формулу:

 $Na_{1,23}Ca_{0,94}Mn_{0,33}Fe_{0,20}^{2+}Fe_{0,11}^{3+}Ti_{0,26}Nb_{0,09}Zr_{0,73}[SiO_4]_2$ (F, OH) (3).

Лауэграммы и вейсенбергограммы слоевых линий по осям b и c (Монзлучение) подтвердили моноклинность ловенита с голоэдрической федоровской группой $C_{2h}^5 = P2_1/a$, однозначно определяемой по закономерно погасающим рефлексам. Параметры $a=10,54^\circ$ Å, b=9,90 Å, c=7,14 Å, $\beta=108^\circ12'$ согласуются с прежними данными $(^1,^2)$, если учесть существенное увеличение количества Ті в титаноловените. В ячейке содержится $n\approx 4$ формульных единицы указанного состава. Несмотря на ортосиликатный характер валовой формулы, нами еще ранее $(^4,^5)$ была предположена структурная близость всех минералов группы ловенита — велерита к Са-диортосиликату куспидину $Ca_4[Si_2O_7]F_2$ (6).

Полная структурная расшифровка ловенита выполнена методом суперпозиции патерсоновских проекций. Анализ p(x, y) и p(x, z) исключил возможность размещения катионов в центрах симметрии поэтому с каждым базисным атомом в (x, y, z) симметрией связаны еще три атома; и эта четверка атомов определяет нетривиальные патерсоновские пики с координатами и весами: 1) $(2 x, 2y, 2z - Z^2, 2)$ $(2x, 2\bar{y}, 2z) - Z^2, 3)$ $(\frac{1}{2}, \frac{1}{2} + 2y, 0), 4)$ $(\frac{1}{2} + 2x, \frac{1}{2}, \frac{1}{2})$ 2z) — $2Z^2$. Пики с весами Z^2 соответствуют векторам между атомами, связанными центром симметрии и наиболее перспективны в качестве исходных в суперпозиционном методе (7). Для разыскания таких пиков на патерсоновской карте полезно элементарное соотношение: сумма и разность векторов 3) и 4) (в ~2 раза больших по весу) дают нужные векторы. Ключом к структуре ловенита послужила проекция вдоль кратчайшей оси c, т. е. p(x, y); на ней удалось отыскать два пика типа 1) и 2) и осуществить по ним минимализацию. Наличие элементов симметрии со скольжением позволило построить по результатам первых минимализаций две функции $M_4\left(x,\;y\right)$ и далее, совмещая последние, получить $M_{8}\left(x,\;y\right) ,$ из которой были извлечены атомные координаты для исходной плоской модели структуры. На проекции действительно выявилась диортогруппа Si₂O₇ с осью, параллельной направлению проектирования (c = 7,14 A), и весьма точно перекрывающиеся катионные октаэдры из бесконечной четверной ленты, которая простирается также вдоль с и похожа на ленту в куспидине. Уточнение осуществлялось обычным методом последовательных проекций электронной плотности. При известных х- и у-координатах всех атомов, разыскание на патерсоновской карте p(x, z) исходных для минимализации пиков не представляло труда. По M_4 (x, z)-функции были определены исходные для уточнения г-координаты. Заключительные проекции электронной плотности ловенита приведены на рис. 1.

Структура ловенита является еще одной иллюстрацией идей «Второй главы кристаллохимии силикатов» (8), в которой определяющую роль играет соизмеримость ребер Na-, Ca-октаэдров с высотой диортогруппы $\mathrm{Si}_2\mathrm{O}_7$. Как и в куспидине (6), основным структурным принципом ловенита явля-

Рис. 1. Заключительные проекции электронной плотности ловенита. Изолинии проведены через 8 эл/Ų. $A - \sigma(x, y), \ B - \sigma(x, z)$

ются четверные бесконечные ленты из катионных октаэдров. Их взаимное расположение в структуре показывает рис. 2, на котором для большей ясности кислородные октаэдры в колонках помещены точно один над другим, хотя координаты перекрывающихся атомов О несколько различны (табл. 1). В полые стволы между лентами вмонтированы по две диортогруп-

Таблица 1 Координаты базисных атомов ловенита (в долях осей $a,\ b,\ c$)

Атомы	x	y	z	Атомы	x	v	2
Zr (Fe, Mn) Ca Na Si _I Si _{II} O _I	0,294 0,237 0,304 0,425 0,123 0,117 0,130 0,238	0,105 0,376 0,105 0,376 0,331 0,331 0,331	0,024 0,856 0,525 0,343 0,223 0,667 0,443 0,197	O _{III} O _{IV} O _V O _{VI} O _{VIII} O _{VIII} (F, OH)	0,250 0,163 0,122 0,480 0,484 0,119 0,120	0,241 0,483 0,483 0,223 0,239 0,010 0,005	0,800 0,180 0,750 0,098 0,670 0,945 0,423

пы, которые сдвигаются по высоте c таким образом, что они сцепляется c вертикальными ребрами трех октаэдров вокруг крупных катионов.

Структура определяется 45 параметрами при 60 атомах в ячейке. В число базисных атомов входят, кроме 2Si и 9 анионов, еще 4 катиона. В куспидине их позиции занимают 4 Са, взамен которых в ловените мы имеем:

$$Na_{1,23}Ca_{0,94}Mn_{0,33}Fe_{0,20}^{2+}Fe_{0,11}^{3+}Ti_{0,26}Nb_{0,09}Zr_{0,73}.$$

Вопрос о размещении этих катионов по 4 кристаллографически независимым позициям представляет самостоятельный интерес. Соотношение высот

максимумов на $\sigma(x, y)$ и $\sigma(x, z)$ позволяет утверждать, что весь Zr(Z'=40) сосредоточен в одной позиции, две заняты Na и Ca, причем в одной из них, вероятно, имеется лишь Na, все остальные катионы скопляются в четвертой позиции. Zr в ловените занимает 4-кратное положение, но на ячейку имеется только ~ 3 атома Zr. Как показала расшифровка

Рис. 2. План структуры ловенита в полиэдрах

структуры сейдозерита, при наличии Мп имеет место изоморфное замещение Zr титаном (9). Если обратиться к химическому составу титаноловения еще из одного месторождения (3):

$$Na_{1,34}Ca_{0,75}Mn_{0,57}Fe_{0,27}^{2+}Ti_{0,55}Nb_{0,09}Zr_{0,58}[SiO_4]_2$$
 (F, OH),

то сравнение, действительно, показывает согласное изменение количеств Ті и Zr с соответствующим возрастанием количества Mn. Если предположить, что в нашем случае ($Zr_{0.73}$, $Ti_{0.26}$) занимают одно место, то в ($Mn_{0.33}$, $Fe_{0.31}$, Nb_{0,09}) придется ввести 0,25 Na или Ca. В другом варианте размещения катионов, согласующемся с высотами пиков на проекциях, к катионам Zr добавляется Са, тогда как Ті объединяется с Мп и Fe. Атомные номера Ti и Ca близки (22 и 20), а так как речь идет о добавках к Zr (Z=40), то рентгеновский метод с визуальной оценкой интенсивностей не позволяет сделать однозначный выбор между двумя вариантами. Рассчитанный по всем (148) ненулевым структурным амплитудам $h \, 0 \, l$ фактор расходимости равен 20,5% для первого и 20,0% для второго вариантов. Проекция σ (x, y) из-за почти точного попарного перекрытия катионов еще менее пригодна для разрешения дилеммы, хотя для нее расходимости равен 12,1% (ненулевых hk 0 171). Таким образом, набор интенсивностей только с двух слоевых линий при визуальной их оценке не позволяет решить вопрос однозначно и поэтому на рис. 1-3 и в табл. 1 каждая занятая позиция обозначена символом того атома, который играет основную роль в создании $Z_{\ni \phi}$ соответствующего «усредненного атома».

На рис. З показан мотив заселения октаэдров в лентах различными катнонами. В каждой из четырех бесконечных колонок ленты октаэдры сцепляются общими (горизонтальными) ребрами. В наружных колонках лен-

.Рис. 3. Заселение октаэдров ленты различными катионами

ты чередуются Zr- и Ca-октаэдры, во внутренних — (Fe, Mn)- и Na-октаэдры, причем (Fe, Mn)-октаэдры из соседних колонок соединены в пары с обшим ребром. Подобные колонки из октаэдров характерны для ряда расшифрованных в последние годы структур. Вдоль колонки обычно чередуются крупный октаэдр со средним, и соответствующий двум октаэдрам период повторяемости составляет в ловените 7,14 Å, в сидозерите 7,10 Å, в куспидине, где оба октаэдра заселены крупными Ca, 7,53 Å.

Расстояния Si - O в диортогруппе не выходят из пределов 1,55 - 1,67 Å; в Zr-октаэдре 5 расстояний Zr - O 1,99 - 2,05 Å, шестое 2,19 Å; в (Fe, Mn)-октаэдре: 2,07 - 2,31 Å; все 12 Грасстояний катион — анион в Na- и Ca- октаэдрах в пределах 2,10 - 2,62 Å.

Исходя из кристаллической структуры ловенита и склоняясь к первому из двух разобранных выше вариантов размещения катионов, мы предла-

таем развернутую химическую формулу его писать в виде: Na_{0.97} (Ca_{0.70} Na_{0.26}) $(Fe_{0.31}Nb_{0.09}Mn_{0.33}Ca_{0.54})$ $(Zr_{0.73}Ti_{0.26})$ O (F, OH) $[Si_2O_7]$ с островами (незосиликат) Si₂O₇. Восьмой О не входит в кремнекислородный радикал, т. е. играет роль, аналогичную девятому аниону (F, OH). При пересчете химического анализа в (3) исходными были два атома Si, и незначительный дефицит катионов может быть объяснен неучетом избыточного SiO₂. Скопление в одной позиции наряду с Fe, Nb, Mn также $\sim 24^{\circ}/_{\circ}$ крупных катионов Са искажает структуру, и это, вероятно, находит отражение в константах температурного фактора, которые были получены на заключительном этапе при сравнении экспериментальных и вычисленных интенсивностей. Для проекции $\sigma(x, y)$ вдоль осей как диортогрупп, так и колонок из октаэдров B равно 0,87 Å², тогда как для $\sigma(x, z)$ B = 1,35 Å². Легко себе представить, что весьма значительное увеличение константы во втором случае создается добавочными к тепловым колебаниям статическими беспорядочными смещениями атомов (с существенно различными раднусами) вдоль колонок из октаэдров.

Институт кристаллографии Академии наук СССР Поступило 7 XII 1959

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

1 А. Г. Бетехтин, Минералогия, М., 1950, стр. 719. ² Н. Strunz, Mineralogische Tabellen, 1957, S. 273. ³ Е. И. Семенов, М. Е. Казакова, В. И. Симонов, Зап. Всесоюзн. мин. общ., 87, № 5, 590 (1958). ⁴ В. И. Симонов, Н. В. Белов, Кристаллография, 4, в. 2, 163 (1959). ⁵ Х. С. Мамедов, В. И. Симонов, Н. В. Белов, ДАН, 126, № 2, 379 (1959). ⁶ Р. Ф. Смирнова, И. М. Руманова, Н. В. Белов, Зап. Всесоюзн. мин. сбщ., 84, № 2, 159 (1955). ⁷ В. И. Симонов, Кристаллография, 4, в. 3, 302 (1959). ⁸ Н. В. Белов, Мин. сборн. Львовск. геол. сбщ., № 13, 23 (1959). ⁹ Н. В. Белов, В. И. Симонов, ДАН, 125, № 4, 888 (1959).