МИНЕРАЛОГИЯ

В. И. СИМОНОВ и академик Н. В. БЕЛОВ

КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА ЛОВЕНИТА

Ловенит в известных справочных изданиях $({}^{1},{}^{2})$ относится к группе «незо» (орто)-силикатов сложного состава с общей формулой вида $A_3B[SiO_4]_2$ (O, F, OH), где A = Ca, Na и B = Zr, Ti, Nb. Объекты нашего исследования — кристаллы ловенита из Ловозерского массива с повышенным содержанием Ti (титаноловенит) — получены от E. И. Семенова, который в соответствии с анализом M. E. Казаковой дает для них развернутую формулу:

$Na_{1,23}Ca_{0,94}Mn_{0,33}Fe_{0,20}^{2+}Fe_{0,11}^{3+}Ti_{0,26}Nb_{0,09}Zr_{0,73}[SiO_4]_2(F, OH)$ (3).

Лауэграммы и вейсенбергограммы слоевых линий по осям b н c (Моизлучение) подтвердили моноклинность ловенита с голоэдрической федоровской группой $C_{2h}^5 = P2_1/a$, однозначно определяемой по закономерно погасающим рефлексам. Параметры $a = 10,54^{\circ}$ Å, b = 9,90 Å, c = 7,14 Å, $\beta = 108^{\circ}12'$ согласуются с прежними данными (¹,²), если учесть существенное увеличение количества Ті в титаноловените. В ячейке содержится $n \approx 4$ формульных единицы указанного состава. Несмотря на ортосиликатный характер валовой формулы, нами еще ранее (⁴,⁵) была предположена структурная близость всех минералов группы ловенита — велерита к Са-диортосиликату куспидину Са₄ [Si₂O₇] F₂ (⁶).

Полная структурная расшифровка ловенита выполнена методом суперпозиции патерсоновских проекций. Анализ p(x, y) и p(x, z) исключил возможность размещения катионов в центрах симметрии поэтому с каждым базисным атомом в (x, y, z) симметрией связаны еще три атома; и эта четверка атомов определяет нетривиальные патерсоновские пики с координатами и весами: 1) $(2 x, 2y, 2z - Z^2, 2) (2x, 2\bar{y}, 2z) - Z^2, 3) (1/2, 1/2 + 2y, 0), 4) (1/2 + 2x, 1/2, 1/2)$ 2z) —2Z². Пики с весами Z² соответствуют векторам между атомами, связанными центром симметрии и наиболее перспективны в качестве исходных в суперпозиционном методе (7). Для разыскания таких пиков на патерсоновской карте полезно элементарное соотношение: сумма и разность векторов 3) и 4) (в -2 раза больших по весу) дают нужные векторы. Ключом к структуре ловенита послужила проекция вдоль кратчайшей осн с, т. е. р (х, у); на ней удалось отыскать два пика типа 1) и 2) и осуществить по ним минимализацию. Наличие элементов симметрии со скольжением позволило построить по результатам первых минимализаций две функции М₄ (x, y) и далее, совмещая последние, получить M₈ (x, y), из которой были извлечены атомные координаты для исходной плоской модели структуры. На проекции действительно выявилась диортогруппа Si₂O₇ с осью, параллельной направлению проектирования (c = 7, 14 A), и весьма точно перекрывающиеся катнонные октаэдры из бесконечной четверной ленты, которая простирается также вдоль с и похожа на ленту в куспидине. Уточнение осуществлялось обычным методом последовательных проекций электронной плотности. При известных х- и у-координатах всех атомов, разыскание на патерсоновской карте p (x, z) исходных для минимализации пиков не представляло труда. По M₄ (x, z)-функции были определены исходные для уточнения z-координаты. Заключительные проекции электронной плотности ловенита приведены на рис. 1.

*

Структура ловенита является еще одной иллюстрацией идей «Второй главы кристаллохимии силикатов» (⁸), в которой определяющую роль играет соизмеримость ребер Na-, Ca-октаэдров с высотой диортогруппы Si₂O₇. Как и в куспидине (⁶), основным структурным принципом ловенита явля-

Рис. 1. Заключительные проекции электронной плотности ловенита. Изолинии проведены через 8 эл/ $Å^2$. $A - \sigma(x, y)$, $B - \sigma(x, z)$

ются четверные бесконечные ленты из катионных октаэдров. Их взаимное расположение в структуре показывает рис. 2, на котором для большей ясности кислородные октаэдры в колонках помещены точно один над другим, хотя координаты перекрывающихся атомов О несколько различны (табл. 1). В полые стволы между лентами вмонтированы по две диортогруп-

Таблица 1

Атомы	x	¥	z	Атомы	x	y	2
Zr (Fe, Mn) Ca Na Si _I Si _{II} O _I O _{II}	0,294 0,237 0,304 0,425 0,123 0,117 0,130 0,238	0,105 0,376 0,105 0,376 0,331 0,331 0,331 0,241	0,024 0,856 0,525 0,343 0,223 0,667 0,443 0,197	$\begin{array}{c} O_{III} \\ O_{IV} \\ O_{V} \\ O_{VI} \\ O_{VII} \\ O_{VIII} \\ (F, OH) \end{array}$	0,250 0,163 0,122 0,480 0,484 0,119 0,120	0,241 0,483 0,483 0,223 0,239 0,010 0,005	0,800 0,180 0,750 0,098 0,670 0,945 0,423

Координаты базисных атомов ловенита (в долях осей а, b, c)

пы, которые сдвигаются по высоте с таким образом, что они сцепляется с вертикальными ребрами трех октаэдров вокруг крупных катионов.

Структура определяется 45 параметрами при 60 атомах в ячейке. В число базисных атомов входят, кроме 2Si и 9 анионов, еще 4 катиона. В куспидине их позиции занимают 4 Са, взамен которых в ловените мы имеем:

 $Na_{1,23}Ca_{0,94}Mn_{0,33}Fe_{0,20}^{2+}Fe_{0,11}^{3+}Ti_{0,26}Nb_{0,09}Zr_{0,73}.$

Вопрос о размещении этих катнонов по 4 кристаллографически независимым позициям представляет самостоятельный интерес. Соотношение высот максимумов на $\sigma(x, y)$ и $\sigma(x, z)$ позволяет утверждать, что весь Zr (Z'= = 40) сосредоточен в одной позиции, две заняты Na и Ca, причем в одной из них, вероятно, имеется лишь Na, все остальные катионы скопляются в четвертой позиции. Zr в ловените занимает 4-кратное положение, но на ячейку имеется только ~ 3 атома Zr. Как показала расшифровка

Рис. 2. План структуры ловенита в полиэдрах

структуры сейдозерита, при наличии Мп имеет место изоморфное замещение Zr титаном (⁹). Если обратиться к химическому составу титаноловенита еще из одного месторождения (³):

 $Na_{1,34}Ca_{0,75}Mn_{0,57}Fe_{0,27}^{2+}Ti_{0,55}Nb_{0,09}Zr_{0,58}[SiO_4]_2$ (F, OH),

то сравнение, действительно, показывает согласное изменение количеств Ті и Zr с соответствующим возрастанием количества Мп. Если предположить, что в нашем случае (Zr_{0.73}, Ti_{0.26}) занимают одно место, то в (Mn_{0.33}, Fe_{0.31}, Nb_{0,09}) придется ввести 0,25 Na или Ca. В другом варианте размещения катионов, согласующемся с высотами пиков на проекциях, к катионам Zr добавляется Ca, тогда как Ті объединяется с Mn и Fe. Атомные номера Ti и Ca близки (22 и 20), а так как речь идет о добавках к Zr (Z = 40), то рентгеновский метод с визуальной оценкой интенсивностей не позволяет сделать однозначный выбор между двумя вариантами. Рассчитанный по всем (148) ненулевым структурным амплитудам $h \, 0 \, l$ фактор расходимости равен 20,5% для первого и 20,0% для второго вариантов. Проекция с (x, y) из-за почти точного попарного перекрытия катионов еще менее пригодна для разрешения дилеммы, хотя для нее фактор расходимости равен 12,1% (ненулевых hk 0 171). Таким образом, набор интенсивностей только с двух слоевых линий при визуальной их оценке не позволяет решить вопрос однозначно и поэтому на рис. 1-3 и в табл. 1 каждая занятая позиция обозначена символом того атома, кото-

1335

рый играет основную роль в создании $Z_{\phi\phi}$ соответствующего «усредненного атома».

На рис. З показан мотив заселения октаэдров в лентах различными катионами. В каждой из четырех бесконечных колонок ленты октаэдры сцепляются общими (горизонтальными) ребрами. В наружных колонках лен-

.Рис. 3. Заселение октаэдров ленты различными катионами

ты чередуются Zr- и Ca-октаэдры, во внутренних — (Fe, Mn)- и Na-октаэдры, причем (Fe, Mn)-октаэдры из соседних колонок соединены в пары с обшим ребром. Подобные колонки из октаэдров характерны для ряда расшифрованных в последние годы структур. Вдоль колонки обычно чередуются крупный октаэдр со средним, и соответствующий двум октаэдрам период повторяемости составляет в ловените 7,14 Å, в сидозерите 7,10 Å, в куспидине, где оба октаэдра заселены крупными Ca, 7,53 Å.

Расстояния Si — О в диортогруппе не выходят из пределов 1,55 — 1,67 Å; в Zr-октаэдре 5 расстояний Zr — О 1,99 — 2,05 Å, шестое 2,19 Å; в (Fe, Mn)-октаэдре: 2,07 — 2,31 Å; все 12 Грасстояний катион — анион в Na- и Ca- октаэдрах в пределах 2,10 — 2,62 Å.

Исходя из кристаллической структуры ловенита и склоняясь к первому из двух разобранных выше вариантов размещения катионов, мы предла-

таем развернутую химическую формулу его писать в виде: Na_{0.97} (Ca_{0.70} Na_{0.26}) (Fe_{0.31}Nb_{0.09}Mn_{0.33}Ca_{0.54}) (Zr_{0.73}Ti_{0.26}) O (F, OH) [Si₂O₇] с островами (незосиликат) Si₂O₇. Восьмой О не входит в кремнекислородный радикал, т. е. играет роль, аналогичную девятому аниону (F, OH). При пересчете химического анализа в (³) исходными были два атома Si, и незначительный дефицит катионов может быть объяснен неучетом избыточного SiO₂. Скопление в одной позиции наряду с Fe, Nb, Mn также ~ 24% крупных катионов Са искажает структуру, и это, вероятно, находит отражение в константах температурного фактора, которые были получены на заключительном этапе при сравнении экспериментальных и вычисленных интенснвностей. Для проекции $\sigma(x, y)$ вдоль осей как диортогрупп, так и колонок из октаэдров B равно 0,87 Å², тогда как для $\sigma(x, z)$ B = 1,35 Å². Легко себе представить, что весьма значительное увеличение константы во втором случае создается добавочными к тепловым колебаниям статическими беспорядочными смещениями атомов (с существенно различными радиусами) вдоль колонок из октаэдров.

Институт кристаллографии Академии наук СССР

Поступило 7 XII 1959

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ А. Г. Бетехтин, Минералогия, М., 1950, стр. 719. ² Н. Strunz, Mineralogische Tabellen, 1957, S. 273. ³ Е. И. Семенов, М. Е. Казакова, В. И. Симонов, Монов, Зап. Всессюзн. мин. общ., 87, № 5, 590 (1958). ⁴ В. И. Симонов, Н. В. Белов, Кристаллография, 4, в. 2, 163 (1959). ⁵ Х. С. Мамедов, В. И. Симонов, Н. В. Белов, ДАН, 126, № 2, 379 (1959). ⁶ Р. Ф. Смирнова, И. М. Руманова, Н. В. Белов, Зап. Всессюзн. мин. сбщ., 84, № 2, 159 (1955). ⁷ В. И. Симонов, Кристаллография, 4, в. 3, 302 (1959). ⁸ Н. В. Белов, Мин. сбърн. Львовск. геол. сбщ., № 13, 23 (1959). ⁹ Н. В. Белов, В. И. Симонов, К. Симонов, Мин. сбърн. Львовск. геол. сбщ., № 13, 23 (1959). ⁹ Н. В. Белов, В. И. Симонов, М. Симонов, М. Симонов, М. Симонов, Ман. сбърн. Львовск. геол. сбщ., № 13, 23 (1959). ⁹ Н. В. Белов, В. И. Симонов, М. Симонов, ДАН, 125, № 4, 888 (1959).

1336