ИЗ●МОРФИЗМ В РЯДУ ФОРСТЕРИТ — ТЕФРОИТ

УРУСОВ В. С., ЛАПИНА И. В., КАБАЛОВ №. К., КРАВЧУК И. Ф.

Методом рептгеновской дифрактометрии изучена синтетическая серия твердого раствора форстерит — тефроит. Получены детальные сведения о характере изменения параметров и объема элементарной ячейки с составом раствора. Установлено положительное отклонение от линейности параметров b, c и $V_{a.n.}$, отрицательное — параметра a. Предложен экспрессный метод расчета параметров по межплоскостным расстояниям d_{130} , d_{131} и d_{140} . Рассчитан избыточный объем смешения компонситов, свидетельствующий о неидеальности твердого раствора Mg—Mn-оливинов. Мо-делируется распределение Mg и Mn по позициям MI и MII в структуре оливина, оценены значения коэффициентов внутрикристаллического распределения и энергии межпозиционного обмена.

Система форстерит $Mg_2SiO_4(Fo)$ — тефроит $Mn_2SiO_4(Te)$ представляет существенный интерес в геохимическом аспекте, ибо двухвалентный марганец является непременной изоморфной примесью в оливинах различного происхождения [1]. Его содержание является сложной функцией состава среды, температуры кристаллизации и кислотности магматического расплава. С увеличением последней коэффициент распределения Мп увеличивается от 0,4 в перидотитах и 1,0—2,2 в базальтах до 22 в дацитах [2]. В железо-марганцевых месторождениях, скарнах и в метаморфизованных осадочных породах, обогащенных марганцем, могут быть встречены пикротефроиты с 27—40 мол.% Fo [3].

Смесимости форстерита и тефроита посвящено сравнительно небольшое число исследований. При изучении диаграмм состояния в тройной системе MgO—MnO—SiO $_2$ оптическими рентгеновскими методами [4] было найдено, что при $T \approx 1000-1300^\circ$ С Fo и Te образуют непрерывный ряд твердых растворов. В работах [5, 6] были изучены показатели преломления и ИК-спектры поглощения для синтетических и природных образцов различного состава. Было найдено, что показатели преломления и межплоскостные расстояния d_{130} , так же как и положение полос в ИКспектрах изменяются практически линейно с изменением состава. Параметры элементарной ячейки в этих работах приводятся только для чистых компонентов. В работах последних лет, посвященных рентгенографическому изучению твердых растворов Fo-Te, приводятся уже значения параметров элементарной ячейки для промежуточных составов природных и синтетических образцах [7-9].

Цель настоящей работы — получение **б**олее д**е**тальных сведений о характере изменения параметров и объема элементарной ячейки в ряду форстерит — тефроит, а также об отклонении смесимости компонентов

от идеального поведения.

СИНТЕЗ И ТЕРМИЧЕСКАЯ ОБРАБОТКА ОБРАЗЦОВ

Известны [5, 6] различные методы синтеза оливинов в системах $MnO-MgO-ZnO-SiO_2$, $MgO-MnO-SiO_2$, $MgO-NiO-SiO_2$, $MnO-SiO_2$ NiO-SiO₂. Авторы [5] использовали широко распространенный метод синтеза, основанный на неоднократном отжиге смеси SiO2 и карбонатов металлов. Образцы дважды отжигали в токе азота при температурах 950 и 1250° С. В [6] был использован метод плавления образца в дуге спектрографа. В электрод загружали смесь окислов, которую плавили 20 с. Однако из-за различия во времени улетучивания разных элементов точный состав расплавленного образца был неизвестен.

В настоящей работе чистые компоненты, тефроит и форстерит, и твердые растворы составов 20, 40, 50, 60, 70, 80, 90, 95 мол. % Го были

получены методом твердофазной реакции при 1100—1300 С нз смесей окислов и карбонатов. В качестве исходных материалов использовали химические реактивы MgO (о. с. ч.), MnCO₃ (ч. д. а.) и кварцевое стекло (99,9% SiO₂), прокаленное при 1000° С в течение суток. Смеси рсагентов в соответствующих пропорциях тщательно перетирали в яшмовой ступке и запрессовывали в таблетки 0.8×3 см. Температуру отжига варынровали в зависнмости от состава отразца: для тефронта — 1100° С, для промежуточных составов температура первого отжига — 1200, повторного — 1100° С. Предварительные опыты по синтезу форстерита показали необходимость •тжига при более высоких температурах (1300° C), так как при 110€-1200° С образование форстерита идет крайне медленно. Полноты протекания реакции достигали неоднократным перетиранием в пр•цессе отжига, длительность которого составляла 2— 4 сут. С целью предотвращения окисления Мп синтез всех образцов (кроме форстерита) вели в восстановительных условиях, задаваемых смесью порошков графита с корундом. Восстановительная среда сохранялась благодаря использованию системы плотно закрытых алундовых тиглей, вставленных один в другой.

Продукты синтеза проверены химическим и рентгенофазовым анализами. В пределах точности химического анализа (±0,3 мол.%) составы продуктов синтеза не отличались от задаваемого шихтой состава.

РЕНТГЕНОМЕТРИЧЕСКИЕ ДАННЫЕ

Рентгенограммы снимали на дифрактометре ДРОН-1, излучение Fe K_α, 35 кВ, 10 мА. Анализ наших и эталонных рентгенограмм форстерита (ASTM 7-74, 21-1260), тефроита (ASTM 19-788), пикротефроита (ASTM 12-434) показал, что для измерения параметров элементарной ячейки наиболее оптимальными являются рефлексы 130, 131, 122, 140, 211, а для чистог тефронта можно дополнительно использовать рефлексы 022, 112, 200. Все эти рефлексы однозначн индицируются и являются достаточно интенсивными.

Углы отражения 20 для каждого рефлекса измеряли 3—5 раз при прямом и обратном движении счетчика, скорость сканирования которого составляла 0.5° /мин. В качестве внутреннего стандарта использовали металлический германий (α =5,6571 Å). Точность измерения углов 20 составила $\pm 0.01^{\circ}$.

Значения параметров элементарной ячейки для всего ряда *Fo—Te*, вычисленные по программе «Powder-2» (Институт неорганической химии CO AH CCCP) на ЭВМ БЭСМ-6, представлены в табл. 1, а их концентрационная зависимость изображена на графике (рис. 1).

В ряде работ [10, 11], посвященных изучению зависимости параметры элементарной ячейки — состав, для оливинов предлагается находить величину межплоскостного расстояния d_{1s0} и по соответствующей градуи-

Параметры элементарной ячейки и значения d_{130} синтетических оливинов серин Fe—Te, Å

Мольная доля <i>Го</i>	a	ь	σ	d ₁₃₀
0,00 0,20 0,40 •,50 0,60 0,70 0,80 0,90 0,95 1,00	4,894 (3) 4,862 (1) 4,813 (1) 4,797 (9) 4,798 (1) 4,781 (4) 4,773 (2) 4,761 (1) 4,753 (2) 4,751 (2)	10,610 (8) 10,553 (2) 10,506 (4) 10,480 (8) 10,416 (2) 10,356 (1) 10,317 (4) 10,258 (3) 10,231 (4) 10,203 (4)	6,259 (4) 6,208 (1) 6,160 (2) 6,135 (3) 6,102 (1) 6,067 (5) 6,043 (2) 6,013 (2) 5,999 (3) 5,983 (2)	2,867 2,849 2,839 2,823 2,812 2,798 2,776 2,776 2,765

ровочной кривой или регрессионному уравнению определять состав. Этот подход является наиболее простым и экспрессным, так как не требует измерений других рефлексов, а так же использования ЭВМ. Значения d_{180} для ряда Fo-Te представлены в табл. 1, а концентрационная зависимость изображена на рис. 1. Регрессионное уравнение, связывающее значения d_{130} и состав Mg-Mn-оливина, по нашим данным, имеет вид:

$$d_{130} = 2.867(1) - 0.078(1)x - 0.023(1)x^2$$

где x — мольная доля Fo.

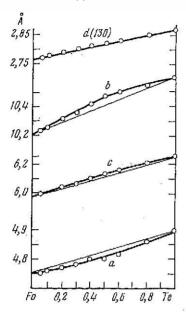


Рис. 1. Параметры элементарной ячейки и d_{130} в зависимости от состава Mg—Mn-оливинов, A

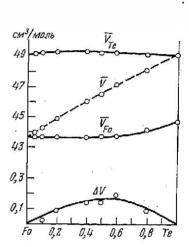


Рис. 2. Концентрационная аависимость мольного (V), парциальных $(\overline{V_{Fo}}$ и $\overline{V_{Te}})$, избыточного (ΔV_{cm}) объемов для синтетических Mg—Мп-оливинов, cm^3/mon ь

Отсюда для определения состава по положению d_{180} можно рекомендовать следующее равенство:

$$x = \frac{(0,326 - 0.116d_{180})^{\frac{1}{18}}}{0.058} - 1,344.$$

Точность определения состава этим методом $\pm 1,5$ мол. %.

Если дополнительно к d_{130} измерить d_{131} и d_{140} , то легко определить и значения a, b и c из следующих выражений:

$$a^{2} = \frac{7d_{130}^{2} \cdot d_{140}^{2}}{16d_{140}^{2} - 9d_{130}^{2}}; b^{2} = \frac{7d_{130}^{2} \cdot d_{140}^{2}}{d_{130}^{2} - d_{140}^{2}};$$

$$c^{2} = \frac{d_{130}^{2} \cdot d_{131}^{2}}{d_{130}^{2} - d_{131}^{2}}.$$

В табл. 2 приведены измеренные d_{180} , d_{131} и d_{140} и вычисленные по указанным выражениям величины a, b и c, незначительно отличающиеся от величин, приведенных в табл. 1.

Как видно из рис. 1 и 2, зависимость параметров b, c и объема элементарной ячейки от состава твердого раствора обнаруживает положительное отклонение от линейности, параметр a характеризуется отрица-

Параметры элементарной ячейки синтетической серии $\mathrm{Mg-Mn}$ -оливинов, рассиитанные с использованием значений $d_{131},\ d_{131},\ d_{140},\ \mathrm{\AA}$

Мольная доня F o	d 120	dini	ď140	æ	b	С
0,0	2,867	2,606	2,332	4,900	10,606	6,251
•,2	2,850	2,590	2,319	4,861	10,555	6,207
0,4	2,832	2,573	2,366	4,811	10,510	6,159
0,5	2,823	2,565	2,299	4,792	10,481	6,142
0,6	2,813	2,554	2,289	4,796	10,419	6,094
0,8	2,787	2,531	2,267	4,762	10,311	6,046
1,0	2,766	2,510	2,248	4,750	10,205	5,979

тельным отклонением. Для всех параметров найдены регрессионные уравнения связи с составом:

$$a(A) = 4,897(6) -0,193(9)x +0,045(11)x^2,$$
 $b(A) = 10,607(8) -0,195(13)x -0,210(15)x^2,$
 $c(A) = 6,259(2) -0,245(4)x -0,031(4)x^2,$
 $V(A^3) = 324,9(2) -28,3(4)x -12,6(4)x^2 +59,3(5)x^3,$
 $V(CM^3/MOJID) = 48,94 -4,277x -1,846x^2 +0,861x^3,$

тде x — мольная доля Fo.

Парциальные мольные объемы компонентов раствора разны соответственно:

$$\overline{V}_{Fo}$$
 (см³/моль) = 44,663—3,692 x + 4,429 x ²—1,722 x ³, \overline{V}_{T*} (см³/моль) = 48,94 + 1,846 x ²—1,722 x ³,

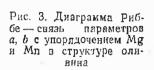
где х — мольная доля форстернта.

 ΔV_{cm} — объем смешения, •пределяемый отклонением от правила аддитивности Ретгерса:

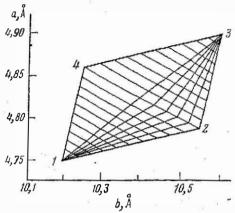
$$\Delta V_{c_M} = V - x_1 V_1^0 - x_2 V_2^0 = x_1 x_2 [0.57 + 0.15 (1 + 2x_1)^2],$$

где V_1^0 и V_2^0 — мольные объемы чистых компонентов, x_1 и x_2 — их мольные доли.

РАСПРЕДЕЛЕНИЕ КАТИОНОВ МЕЖДУ ПОЗИЦИЯМИ


Известно, что в структуре оливина имеются две неэквивалентные позиции MI и MII, различающиеся локальной симметрией $MI-D_{sh}$, $MII-C_{sv}$ и средними межатомными расстояними: в Fo(MI-O)=2,104 А, $\langle MII-O\rangle=2,126$ А; в Te $\langle MI-O\rangle=2,200$ А, $\langle MII-O\rangle=2,223$ А [7]. В ряде недавних работ проведены монокристальные рентгеноструктурные уточнения для Mg—Mn-оливинов. Так, в работах [7, 8] выяснение характера распределения катионов Mg и Mn по позициям MI и MII было сделано для природных оливинов $Fo_{v}Te_{st}$, $Fo_{ts}Te_{st}Fa_{2}$, $Fo_{5t}Te_{4s}$. Авторы приводят заселенности октаэдрических позиций, отмечают преимущественную концентрацию Mn в больших по размеру октаэдрах MII, определяют коэффициенты распределения катионов по позициям

$$K_D = \frac{x_{\text{MgII}} x_{\text{MnII}}}{x_{\text{MgI}} x_{\text{MnII}}},$$


равные $K_D(Fo_0) = 0{,}000$, $K_D(Fo_{18}) = 0{,}0616$, $K_D(Fo_{51}) = 0{,}011$. После отжига при 1000^{\bullet} С степень упорядочения в Fo_{18} падает ($K_D = 0{,}279$), увеличение температуры ведет к разупорядочению.

Исследуемые природные образцы не отвечают составам чистых бинарных серий Fo-Te, они содержат изоморфные примеси — Fe, Ca, поэтому при расчетах K_D было использовано условие Mn=Mn+Fe. Это допущение должно несколько искажать значение K_D при сравнении их с величинами для синтстических серий. Как известно, Fe распределяется почти статистически между MI и MII, а Ca заселяет преимущественно MII. Поэтому возможны несколько меньшие значения K_D по сравнению с синтстическими составами при прочих равных условиях.

В работе Риббе и др. [12] приведена диаграмма (рис. 3), связывающая изменения параметров элементарной ячейки (a, b) со степенью

1 — Mg₂SiO₄, 2 — упорядоченный Mg₁Mп₁₁SiO₄,
 3 — Мп₂SiO₄, 4 — антиупорядоченный Mп₁Mg₁₁SiO₄

упорядочения структуры во всей области составов серии $F \bullet - Te$. Полностью упорядоченные составы лежат на сторонах параллелограмма $K_{\bullet} = 0$, r = 1 (r— степень порядка), разупорядоченные — на диагонали $\mathrm{Mg_2SiO_4} - \mathrm{Mn_2SiO_4}$ ($K_{\bullet} = 1$, r = 0). Ломаные линии в поле треугольника составов $\mathrm{Mg_2SiO_4} - \mathrm{Mg_1Mn_1SiO_4} - \mathrm{Mn_2SiO_4}$ отвечают разным степеням порядка. Использование уточненных в настоящей работе параметров элементарной ячейки серии $F \circ - Te$ и диаграммы Риббе позволяет оценить распределение Mg и Mn по позициям. В табл. 3 приведены оцененные по диаграмме содержания катионов в MI и MII для синтетических образцов, а также значення K_D и $\Delta G^0 = -RT \ln K_D$. Значения K_D выше, чем для соответствующих природных образцов, что отвечает более высокой температуре и свидетельствует о довольно высоком упорядочении — степень порядка 0.4 - 0.6.

Интересно соотнести характер катионного упорядочения с особенностями концентрационной зависимости объема твердого раствора Fo-Te и парциальных мольных объемов компонентов (рис. 2), проанализировав $\Delta V_{\rm cx} = V - x_1 V_1^0 - x_2 V_2^0$ и $\Delta \overline{V}_i(x) = \overline{V}_i(x) - V_i$, i = Fo, Te. Из табл. 3 видно, что Мп в структуре оливина действительно прежде всего заполняет позицию МІІ. Содержание Мп в МІ незначительно (0,01—0,2) в области составов твердого раствора $0.6 \le Fo \le 1$ $\Delta \overline{V}_{Fo} \ge 0$. При составах

Таблица Васеленность позиций МІ и МІІ в ряду Fo—Te, коэффициенты распределения и свободные эпергии реакции обмена позициями

Мольная доля Ро	MI		IIM			W tra T
	Mg	Мп	Mg	Mn	K _D	ΔG°, KKaJI
0,20 0,40 0,50 0,60 0,80 0,80 0,95	0,32 0,65 0,83 0,80 0,92 0,96 0,99	0,68 0,35 0,17 0,20 0,08 0,04 0,01	0,08 0,15 0,17 0,40 0,68 0,84 0,91	0,92 0,85 •,83 0,60 0,32 0,16 •,09	0,142 0,095 0,100 0,167 0,185 0,218 0,102	5,32 6,41 6,27 4,88 4,58 4,15 6,22

Fo < 0,4 содержание Mn в позиции MI значительно увеличивается (от 0,2 до 0,7) и $\Delta \overline{V}_{Fo}$ становится положительным. По всей видимости, этот факт можно объяснить почти предельным заполнением марганцем позиции MII. Вынужденное последующее перераспределение Mn в позицию MI приводит к значительному росту парциального мольного объема Fo. Меньший по размеру Mg преимущественно заполняет позицию MI, вплоть до эквимолярного состава твердого раствора. Дальнейшее увеличение содержания Fo-доли в растворе (Fo_{0,6}) приводит к быстрому росту концентрации Mg в MII от 0,17 до 0,4 при постепенном увеличении содержания в MI от 0,8 до 0,9. Заполнение магшием крупной позиции MII приводит к положительным значениям парциального мольного объема смещения тефроита $\Delta \overline{V}_{Te}$ > 0.

Внутрикристаллическое распределение Мg и Мп было использовано для определения объема элементарной ячейки по уравнению, предложенному в [12]:

$$V=142.7 r(MI)+197.7 r(MII)+147.9 r(T)+4,703,$$

где $r(MI) = x_{Mg(MI)} r_{Mg^{2+}} + x_{Mn(MI)} r_{Mn^{2+}};$ $r(MII) = x_{Mg(MII)} r_{Mg^{2+}} + x_{Mn(MII)} r_{Mn^{2+}};$ $r(T) = r_{g1^{4+}}.$ Рассчитанные и экспериментальные значения V согласуются между собой в пределах ошибок опыта.

ТЕРМОДИНАМИКА ВНУТРИКРИСТАЛЛИЧЕСКОГО РАСПРЕДЕЛЕНИЯ

Распределение Mg и Mn по позициям можно представить в виде обменной реакции:

$$Mg^{2+}(MI) + Mn^{2+}(MII) \rightleftharpoons Mg^{2+}(MII) + Mn^{2+}(MI)$$
 (1)

константа равновесия которой

$$K_{\rm p} = K_D \frac{\gamma_{\rm MgH} \gamma_{\rm MnH}}{\gamma_{\rm MgH} \gamma_{\rm MnH}} , \qquad (2)$$

где у — коэффициент активности ионов в соответствующих позициях. Понятия активностей (коэффициентов активности), относящихся к отдельным позициям, широко используется Саксеной [13] для описания свойств твердых растворов с несколькими структурными позициями, в том числе при рассмотрении внутрикристаллического распределения в ортопироксенах и оливинах. В случае идеальных растворов связь активность — состав описывается соотношением

$$a_i = (x_{ij}) (x_{ij+1}) \dots,$$

где j — номер позиции, x_0 — мольная доля i-го компонента в j-позиции. Для неидеального двухлозиционного раствора

$$a_i = (a_{ii}) (a_{iii}),$$

где a_{tt} — парциальные активности, относящиеся к позициям. Оценить парциальные коэффициенты активности можно из экспериментальных данных по внутрикристаллическому распределению, выбирая модель смещения компонентов в подрешетках, например регулярную:

$$RT \ln \gamma_{ij} = (1 - x_{1j})^2 W_j$$

где W_j — энергия взаимодействия в подрешетках.

Равновесное распределение при данных T и P отвечает равенству активностей или парциальных молярных свободных энергий компонентов в отдельных подрешетках:

$$\overline{G}_{MKI} = \overline{G}_{MKII}
\overline{G}_{MnI} = \overline{G}_{MnII}$$
(3)

где $\overline{G}_{ij} = \overline{G}_{ij}^0 + RT \ln x_{ij} + \overline{G}_{ij}^E$, \overline{G}_{ij}^E избыточная свободная энергия i-го компонента в подрешетке j.

Коэффициент внутрикристаллического распределения определяется следующим выражением:

$$RT \ln K_{\rm p} = \Delta G^{\rm o} + \Delta G^{\rm E}. \tag{4}$$

 ΔG^{0} представляет алгебраическую сумму парциальных молярных свободных энергий компонентов, когда каждая из подрешеток занята полностью компонентами одногullet типа

$$\Delta G^0 = \overline{G}_1^{01} - \overline{G}_2^{01} + \overline{G}_1^{011} - \overline{G}_2^{011}. \tag{5}$$

 $\Delta G^{\scriptscriptstyle E}$ — алгебраическая сумма избыточных парциальных свободных энергий, результат отклонения твердого раствора внутри каждой из подрешеток от идеальности:

$$\Delta G^E = \overline{G}_2^{EI} - \overline{G}_1^{EI} - \overline{G}_1^{EII} + \overline{G}_2^{EII}$$
 (6)

Пренебрегая небольшими изменениями колебательной энтропии при обмене катионов позициями, можно считать, что приблизитсльно $\Delta G^{\circ} \simeq \Delta H^{\circ}$ [14]. Было показано, что распределение катионов по позициям определяется размерным и химическим факторами, а энергию упорядения ΔH° можно представить как сумму нескольких энергетических эффектов [14]:

$$\Delta H^0 = \Delta E (\Delta \varepsilon) + \Delta E (\Delta R) + \Delta E (\Delta \eta), \tag{7}$$

где $\Delta E(\Delta\epsilon)$ — электростатический маделунговский вклад, возникающий из-за разности степени ионности одного и того же атома в разных позициях, обладающих различными потенциалами в кристаллической структуре; $\Delta E(\Delta R)$ — размерный фактор, возникающий из-за разницы размеров позиций и размеров изоморфных атомов; $\Delta E(\Delta\eta)$ — эффект, связанный с различием энергий стабилизации в кристаллическом поле. В [1, 7] отмечено, что для марганца с электронной конфигурацией d^5 вклад $\Delta E(\Delta\eta)$ мал, и основными факторами упорядочения становятся первые два. Оценить вклад $\Delta E(\Delta\epsilon)$ довольно сложно, необходимо знать парциальные константы Маделунга $K_{\rm M}$ в позициях и степени ифиности связи атомов в отдельных позициях. Для Te таких данных нет, хотя известны парциальные $K_{\rm M}$ для структуры Fo [14]. Оценку ΔG^0 реакции ($\Delta G^0 \simeq \Delta H^0 = -RT \ln K_p$) можно провести, ис-

Оценку ΔG^0 реакции ($\Delta G^0 \simeq \Delta H^0 = -RT \ln K_p$) можно провести, используя экспериментальные данные по распределению катионов между позициями и задаваясь одной из термодинамических моделей твердых растворов. В частности, Саксена [13] при анализе внутрикристаллического распределения Fe-Mg-Opx использовал модель простой смеси, в

которой

$$\ln K_{\rm p} = \ln K_D + \frac{W_1}{RT} (1 - 2x_{\rm MI}) - \frac{W_{\rm s}}{RT} (1 - 2x_{\rm MII}), \tag{8}$$

где W_1 и W_2 — энергии взаимодействия в позициях МІ и МІІ, а

$$\ln \gamma_{\rm MI,II} = \frac{W_{\rm I,II}}{RT} (1 - x_{\rm MI,II})^2.$$

Допуская равенство параметров взаимодействия катионов в позициях $W_1 = W_2$, можно упростить (8) и рассмотреть симметричную модель:

$$RT \ln K_{p} = RT \ln K_{D} + 2W(x_{MnII} - x_{MnI}). \tag{9}$$

Решая уравнение (9) относительно $RT\ln K_D$ для каждого образца при целом ряде задаваемых значений W (1, 2, 3, 5 ккал/моль) и $\Delta G^0 = -RT\ln K_p$ (± 2 , 4, 6, 8, 10 ккал/моль), можно выделить область ΔG_p^0 и W, при которых вычисленное значение $RT\ln K_D$ отвечает экспериментальному. На рис. 4 приведены графики зависимости $-RT\ln K_D$ от ΔG_p^0 и W для трех составов: Fo_{20} , Fo_{50} , Fo_{50} . Видно, что совпадение экспериментальных и рассчитанных величин K_D соблюдается при $\Delta G^0 = -2-5$ ккал/моль и W=1-5 ккал/моль. Оцененная таким образом энергия предпочтения качественно правильно описывает направление реак-

ции внутрикристаллического •бмена — предпочтение марганцем более крупной позиции M11.

Избыточная свободная энергия смешения, определяемая по уравне-

нию

$$G_{\text{cM}}^{E} = [(1 - x_{\text{MEI}})^{2} + (1 - x_{\text{MEII}})^{2}] \cdot W x_{Fo} + [(1 - x_{\text{MnI}})^{2} + (1 - x_{\text{MnII}})^{2}] \cdot W x_{Te} + x_{Fo} RT \ln \frac{x_{\text{MgI}} x_{\text{MgII}}}{x_{Fo}} + x_{Te} RT \ln \frac{x_{\text{MnI}} x_{\text{MnII}}}{x_{To}}, \quad (10)$$

имеет следующие значения: при W=1-3 ккал/моль $G_{\rm cm}{}^2$ — отрицательная величина $\sim -1\div -1.5$ ккал/моль для составов Fo_{20} и Fo_{50} ; при W=5 ккал/моль $\Delta G_{\rm cm}^E=70$ кал/моль для Fo_{20} и 140 кал/моль для Fo_{50} .

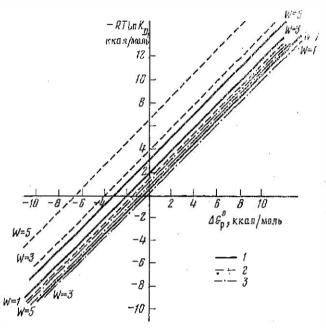


Рис. 4. Зависимость RT in $K_{\mathbf{D}}$ для Fo_{20} , Fo_{50} и Fo_{90} от энергии реакции межлозиционного объема ($\Delta G_{\mathbf{p}}{}^{\mathbf{0}}$) и нарамстра взанмодействия W

$$1 - Fo_{20}, 2 - Fo_{50}, 3 - Fo_{90}$$

Аналогичные оценки сделаны для образцов Fo_{13} и Fo_{57} , изученных в работах [7, 8]. Для них равенство $K_{D(\text{расч})}$ и $K_{D(\text{онсн})}$ соблюдается в области значений $\Delta G^0 = 2 - 4$ ккал/моль и W = 3 - 5 ккал/моль. При W = 3 ккал/моль $\Delta G_{\text{см}}^{B}$ отрицательная величина: $\Delta G_{\text{см}}^{E}$ (Fo_{13}) = -0.4 ккал/моль, $\Delta G_{\text{см}}^{E}$ (Fo_{53}) = -0.44 ккал/моль. При W = 5 ккал/моль $\Delta G_{\text{см}}^{E}$ принимает положительные значения 70 и 700 кал/моль для Fo_{13} и Fo_{53} соответственно. Малые значения избыточной энергии смешения при $1000 - 1100^{\circ}$ С свидетельствуют о стабильности твердого раствора Fo - Te в данных условиях.

В работе [15] изучали смесимость в Mg—Мп-оливинах при 700— 1100° С и $P_{\rm H_{20}}$ 2 кбар. На основе микрозондовых анализов продуктов перекристаллизации исходных гелей очерчена область распада твердого раствора — между Fo_{40} и Fo_{70} . По мнению авторов, сначала образуются метастабильные смещанные кристаллы оливина, которые затем медленно распадаются. Авторы отмечают, что времени эксперимента было недестаточно для достижения равновесия. Критическая температура распада по приведенным в [15] результатам должна быть выше 1100° С. Это противоречит результатам неоднократных синтезов однофазных образцов среднего состава в интервале 1100—1300° С.

Неравновесность системы, большой разброс в составах твердых фазиспользуемых при построении сольвуса, существование только одной

точки однофазного оливина, лежащей непосредственно на предполагаемой кривой сольнуса, заставили нас проверить возможность распада твердого раствора Fo-Te в гидротермальных условиях. Образец состава $Te_{50}Fo_{50}$ подвергался перекристаллизации в течение 10 дней в присутствии Ті-буфера при 600 и 800° С, Р_{Н20} 10 бар. Измеренные параметры элементарной ячейки этих образцов для 800° C: a=4.811(2), b=10.461(9), c=6,134(2) Å; для 600° С a=4,809(5), b=10,472(18), c=6,135(11) Å не изменяются по сравнению с параметрами исходного Fo_{50} в пределах ошибки измерений и свидетельствуют о гомогенности конечных продуктов перекристаллизации. Эти результаты ставят под сомнение данные [15] о распаде твердого раствора Fo-Te в указанной области температур.

ЛИТЕРАТУРА

- Щербина В. В., Урусов В. С., Герасимовский В. И.— Геохимия, 1971, № 12, с. 1403 Бармина Г. А., Ярошевский А. А., Шевалеевский И. Д.— Геохимия, 1974, № 5.
- 3. Минералы/Справочник, ред. Чухров Ф. В. М.: Наука, 1972, т. 3, вып. 1, с. 206. 4. Glasser F. P., Osborn E. F.— J. Amer. Ceramic. Soc., 1960, v. 43, № 3, р. 133. 5. Hurlbul C. S., Jr. Amer. Miner., 1961, v. 46, p. 549.

- Hurtoti C. S., Jr. Amer. Miner., 1961, v. 46, p. 549.
 Duke D. A., Stephens J. D.— Amer. Miner., 1964, v. 49, № 9/10, p. 1388.
 Francis C. A., Ribbe P. H.— Amer. Miner., 1980, v. 65, p. 1263.
 Kiyoshi F.— J. Miner. Soc. Jap., 1980, v. 14, № 3, p. 135.
 Nishizawa O., Matsui Y.— Phys. Earth. Planet. Inter., 1972, v. 6, № 5, p. 377.
 Mossman D. I., Pawson D. I.— Can. Miner., 1976, v. 14, № 4, p. 479.
 Joder H. S. Jr., Sahama Th. V.— Amer. Miner., 1957, v. 42, № 7/8, p. 475.
 Ribbe P. H., Lumpkin G. R. In: Abstracts of papers. International Mineralogical Association, 13th General Meeting, Varna, 1982. Sofia: Publishing House of the Bulgarian academy of sciens p. 139
- rian academy of sciens, р. 139. 13. Саксена С. Термодинамика твердых растворов породообразующих минералов. М.:

Мир, 1975, с. 106. 14. Урусов В. С. Теория изоморфной смесимости. М.: Наука, 1977, с. 155. 15. Maresch W. V., Mirwald P. W., Abraham K.— Fortschr. Miner., 1978, v. 56, № 1, p. 89.

Институт геохимии и аналитической химии им. В. И. Вернадского АН СССР, Москва Московский государственный университет

Поступила в редакцию 11.V.1983

ISOMORPHISM IN THE FORSTERITE-TEPHROITE SERIES

URUSOV V. S., LAPINA I. V., KABALOV Yu. K., KRAVCHUK I. P.

Using X-ray diffractometry a synthetic series of forsterite — tephroite solid solution was studied. Detailed information on character of variation of elementary cell parameters and volume on the solution composition has been studied. Positive deviation from linearity of b and c parameters and V but negative of a parameter were determined. A proximate method of calculation of the parameters from the d_{180} -, d_{181} -, and d_{140} -spacing has been suggested. An excess volume of mixing evidencing on nonideality of solid solution of Mg — Mn-olivines has ben calculated. A partition of Mg and Mn between positions MI and MII in the olivine structure has been estimated and coefficients of the intracrystalline distribution and exchange energy have been calculated.