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Abstract: The crystal structure of paratooite-(La) has been solved using crystals from the type locality,
Paratoo copper mine, near Yunta, Olary Province, South Australia, Australia. The mineral is orthorhombic,
Pbam, a = 7.2250(3) Å, b = 12.7626(5) Å, c = 10.0559(4) Å, V = 927.25(6) Å3, and R1 = 0.063 for 1299 unique
observed reflections. The crystal structure contains eight symmetrically independent cation sites. The
La site, which accommodates rare earth elements (REEs), but also contains Sr and Ca, has a tenfold
coordination by seven carbonate groups. The Ca, Na1, and Na2 sites are coordinated by eight, eight, and
six O atoms, respectively, forming distorted CaO8 and Na1O8 cubes, and Na2O6 octahedra. The Cu site
is occupied solely by copper and possess a distorted octahedral coordination with four short (1.941 Å)
and two longer (2.676 Å) apical Cu–O bonds. There are three symmetrically independent carbonate
groups (CO3)2− with the average <C–O> bond lengths equal to 1.279, 1.280, and 1.279 Å for the C1, C2,
and C3 sites, respectively. The crystal structure of paratooite-(La) can be described as a strongly distorted
body-centered lattice formed by metal cations with (CO3)2− groups filling its interstices. According
to the chemical and crystal-structure data, the crystal-chemical formula of paratooite-(La) can be
described as (La0.74Ca0.11Sr0.07)4CuCa(Na0.75Ca0.15)(Na0.63)(CO3)8 or REE2.96Ca1.59Na1.38CuSr0.28(CO3)8.
The idealized formula can be written as (La,Sr,Ca)4CuCa(Na,Ca)2(CO3)8. The structure of paratooite is a
1 × 2 × 2 superstructure of carbocernaite, CaSr(CO3)2. The superstructure arises due to the ordering
of the chemically different Cu2+ cations, on one hand, and Na+ and Ca2+ cations, on the other hand.
The formation of a superstructure due to the cation ordering in paratooite-(La) compared to carbocernaite
results in the multiple increase of structural complexity per unit cell. Therefore, paratooite-(La) versus
carbocernaite represents a good example of structural complexity increasing due to the increasing
chemical complexity controlled by different electronic properties of mineral-forming chemical elements
(transitional versus alkali and alkaline earth metals).

Keywords: paratooite-(La); crystal structure; carbonate; carbocernaite; superstructure; rare earth
elements; copper; cation array; cation ordering; archetype
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1. Introduction

Rare earth elements (REE)-bearing carbonates belong to one of the most widespread group of
REE minerals and are the major form of the REE occurrence at the largest world mineral deposits such
as Bayan Obo, China [1,2]. REE carbonate minerals also show a large range of chemical and structural
variations, which is reflected in the recent discoveries and investigations [3–12]. In addition, inorganic
REE carbonates are important from the material science point of view, showing interesting physical
and chemical properties [13–17].

There are very few natural REE carbonates containing transitional metals such as
copper. Only four Cu-REE carbonate minerals are known to date: schuilingite-(Nd),
CuPbNd(CO3)3(OH)·1.5H2O [18–20], astrocyanite-(Ce), Cu2Ce2(UO2)(CO3)5(OH)2·1.5H2O [21],
decrespignyite-(Y), Y4Cu(CO3)4Cl(OH)5·2H2O [22], and paratooite-(La), (La,REE,Ca,Na,Sr)6Cu(CO3)8

or REE3(Ca,Sr)2NaCu(CO3)8 (according to the original description [23], see below). Both
decrespignyite-(Y) and paratooite-(La) have been found in the Paratoo copper deposit near Yunta,
South Australia, Australia. The assemblage of rare earth minerals at this locality is associated with
the weathered base metal and magnetite ores. The origin of paratooite-(La) is due to the secondary
hydrothermal reworking of primary ores, where REEs and copper were introduced by hydrothermal
fluids [24]. Paratooite-(La) forms tiny crystals, thin and flexible, which prevented the structural
characterization of the species up to date. Pring et al. [23] tried to solve the crystal structure from the
high-resolution synchrotron powder data, but their attempts were unsuccessful.

The aim of the present paper is to report on crystal structure of paratooite-(La) solved using single
crystal from the type locality, and to describe its structural correlations with related phases.

2. Materials and Methods

2.1. Materials

The specimen of paratooite-(La) studied herein originates from its type locality, Paratoo copper
mine, near Yunta, Olary Province, South Australia, Australia. It comes from the collection of one of
us (A.V.K.) and was obtained in 2007 from the senior author of the original description of the species
Dr. Allan Pring (South Australian Museum, Adelaide, Australia). Paratooite-(La) occurs as pale blue
radiating aggregates on matrix and associates with bastnäsite-(La), donnayite-(Y), kamphaugite-(Y),
malachite, and nontronite. Individual crystals are tabular and reach up to 60 × 40 × 10 µm3 in size.

2.2. Chemical Composition

The chemical composition of the mineral was studied by scanning electron microscopy and
electron-probe microanalysis using both ED and WD spectrometers. Preliminary semi-quantitative
chemical analysis was made in the laboratory of the Fersman Mineralogical Museum (Moscow, Russia)
using a CamScan 4D SEM equipped with an ED spectrometer and INCA Energy microanalyzer
(conditions of analysis: Accelerating voltage 20 kV, beam current 5 nA on metallic cobalt, and beam
diameter 5 µm).

Quantitative chemical composition of paratooite-(La) was conducted in the laboratory of electron
microscopy and microanalysis at the department of geological sciences, Masaryk University (Brno,
Czech Republic), using a Cameca SX 100 electron probe at WDS mode (conditions of analysis:
Accelerating voltage 15 kV, beam current 10 nA, beam diameter 5 µm, and impulses time acquisition at
peak—10 s for main elements and 20–120 s for minor elements). The following standards were used:
NaKα—albite A; CaKα—wollastonite; SrLα—SrSO4; BaLα—baryte; CuKα—lammerite; YLα—YAG;
LaLα—LaPO4; PrLβ—PrPO4; NdLβ—NdPO4; SmLβ—SmPO4; GdLβ—GdPO4; and SiKα—andalusite.

The average chemical composition was as follows (in wt. %): Na2O 4.33, CaO 8.35, SrO 2.51,
BaO 0.03, CuO 5.86, Y2O3 0.57, La2O3 24.85, Pr2O3 2.18, Nd2O3 7.65, Sm2O3 0.63, Gd2O3 0.50, SiO2

0.46, CO2 (calc.) 28.30, and total 86.22. Paratooite forms porous aggregates composed of very thin
crystals. Due to the sensitivity of the mineral to an electron beam, the mineral was analyzed under
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defocused conditions (10 µm in diameter) to reduce the electron-beam flux density, which resulted
in the low analytical total. The empirical chemical formula calculated on the basis of C + Si = 8
and O = 24 (as in the original study [23]) can be written as Na1.72Sr0.30Ca1.84Cu0.91La1.88Nd0.56Pr0.16

Y0.06Sm0.04Gd0.03C7.91Si0.09O24. This agrees generally well with the chemical formula defined in [23] as
Na1.16Sr0.33Ca1.47Cu0.79La1.77Nd0.53Pr0.57Y0.07Sm0.04Gd0.05C7.92N0.27- O23.87F0.12, taking into account
the difficulties associated with the rapid deterioration of crystals under the electron beam. Both
chemical formulae are also in general agreement with the results of crystal-structure study (see below).

2.3. Single-Crystal X-ray Diffraction Study

A single-crystal X-ray diffraction study of paratooite-(La) was performed at the Resource Center
“X-ray Diffraction Methods” of St. Petersburg State University using a Bruker Kappa APEX DUO
diffractometer operated at 45 kV and 0.6 mA and equipped with a CCD area detector. The study
was done by means of a monochromatic MoKα X-radiation (λ = 0.71073 Å), frame widths of 0.5◦

in ω, and 100 s counting time for each frame. The intensity data were reduced and corrected for
Lorentz, polarization, and background effects using the Bruker software APEX2 [25]. A semiempirical
absorption-correction based upon the intensities of equivalent reflections was applied (SADABS [26]).
The unit cell parameters obtained in this study (Table 1) are in agreement with those reported in the
original study [23] (a = 7.2360 Å, b = 12.8088 Å, and c = 10.0862 Å), taking into account the interchange
of crystallographic axes for a standard setting. The structure was solved and refined in the space
group Pbam to R1 = 0.063 (wR2 = 0.170) for 1299 unique observed reflections using the ShelX program
package [27]. During the refinement, 93 reflections were noticed that violated the absence conditions
for the space group Pbam. However, all attempts to refine the structure in the lower-symmetry groups
resulted in physically unrealistic displacement parameters for C and O atoms and instability of the
refinement. In our opinion, the appearance of the “forbidden” reflections may be due to the presence in
the crystal studied of ordered domains with lower symmetry, since the structure contains several sites
with mixed occupancies and defects (see below). The assignment of cations to the mixed-occupied
sites was done on the basis of crystal-chemical considerations and chemical data. Crystal data, data
collection, and structure refinement details are given in Table 1; atom coordinates and bond-valence
sums (calculated using bond-valence parameters taken from [28]) in Table 2; observed and theoretical
site-scattering factors for cation sites in Table 3; anisotropic displacement parameters in Table 4; and
selected interatomic distances in Table 5. Supplementary crystallographic data have been deposited as
the crystallographic information file (CIF) available at the journal website.

2.4. Raman Spectroscopy

The Raman spectrum of paratooite-(La) single plate crystal was measured using a Jobin–Yvon
LabRam HR 800 spectrometer (Horiba, Kyoto, Japan) with a 514 nm laser. The laser beam (2 µm in
diameter) was oriented along the c axis. The power at the sample surface was 5–6 mW.

3. Results

3.1. Raman Spectroscopy

The Raman spectrum of paratooite-(La) (Figure 1) agrees well with the previously reported
data [23], except for the presence of weak bands in the range from 3200 to 3700 cm−1. These
bands are assignable to O–H stretching vibrations, but it is highly unlikely that the crystal structure
of paratooite-(La) contains hydroxyl groups as structural elements. There are no sites that could
accommodate OH-groups, except for the O sites of the carbonate groups. However, the Raman
spectrum does not contain any other bands that could be explained by the presence of bicarbonate
groups, (HCO3)−. It seems most probable that the bands observed at 3460 and 3572 cm−1 are artefacts
appearing due to the admixture of other minerals or the presence of defects (probably, on the surface
of the mineral grain) associated with irregularly distributed protonated O sites.
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The most intense band at 1095 and two weak bands at 1369 and 1434 cm−1 (Table 6) can be assigned
to the C–O symmetric and asymmetric modes of stretching vibrations of the (CO3)2− groups. The weak
bands observed in the range of 900–600 cm−1 can be related to the asymmetric and symmetric bending
vibrations of the same bonds [29,30]. Only one peak was observed in the region of v1 vibrations in the
(CO3)2− groups instead of two observed previously (at 1095 and 1075 cm−1), most probably due to
the absence of polarization of carbonate groups along the c direction [23]. The bands at 386, 343, and
261 cm−1 correspond to the bending/stretching vibrations of the Cu–O bonds of the CuO6 distorted
polyhedra [31]. The bands below 150 cm−1 can be assigned to the lattice vibrations.

Table 1. Crystal data and structure refinement for paratooite-(La).

Crystal System Orthorhombic

Space group Pbam
a, Å 7.2250(3)
b, Å 12.7626(5)
c, Å 10.0559(4)

V, Å3 927.25(6)
Z 1

ρcalc, g/cm3 3.690
µ, mm−1 7.837

Crystal dimensions, mm 0.06 × 0.04 × 0.01
λ, Å 0.71073

2θ range, deg. 4.05–57.92
Index ranges −9 ≤ h ≤ 7, −17 ≤ k ≤ 16, −13 ≤ l ≤ 13

Reflections collected 9442
Independent reflections 1299 [Rint = 0.061]

Data/restraints/parameters 1299/0/111
GOF (goodness-of-fit) 1.103

Final R indexes [I ≥ 2σ(I)] R1 = 0.063, wR2 = 0.170
Final R indexes (all data) R1 = 0.076, wR2 = 0.195
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3.2. Cation Coordination

The crystal structure of paratooite-(La) contains eight symmetrically independent cation sites
(Figure 2). The La site, which accommodates REEs, but also contains Sr and Ca, has a tenfold
coordination from seven carbonate groups. The Ca, Na1, and Na2 sites are coordinated by eight, eight,
and six O atoms, respectively, forming distorted CaO8 and Na1O8 cubes, and Na2O6 octahedra. The
Cu site is occupied solely by copper and possesses a distorted octahedral coordination with four short
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(1.941 Å) and two longer (2.676 Å) apical Cu–O bonds. This type of distortion is typical for octahedrally
coordinated Cu2+ ions, according to the well-known Jahn–Teller theorem [32,33]. The crystal structure
contains three symmetrically independent C sites that form carbonate groups (CO3)2− with the average
<C–O> bond lengths equal to 1.279, 1.280, and 1.279 Å for the C1, C2, and C3 sites, respectively.

Table 2. Atomic coordinates, isotropic displacement parameters (Å2), and bond-valence sums (BVS,
in valence units (v.u.)) for paratooite-(La).

Atom x Y z Ueq. BVS

La 0.71419(8) 0.69022(5) 0.74855(4) 0.0161(3) 3.31
Cu 1

2
1
2

1
2 0.0222(6) 2.08

Ca 1
2 0 0 0.0237(8) 2.07

Na1 0 1
2

1
2 0.025(2) 1.09

Na2 1
2

1
2 0 0.017(4) 0.98

C1 0.3107(12) 0.5452(7) 0.7449(6) 0.0159(16) 4.05
C2 0.5435(15) 0.7731(9) 0 0.016(2) 4.04
C3 Vladimir N. Bocharov 0.0438(16) 0.7177(9) 1

2 0.017(2) 4.05
O1 0.3047(9) 0.4929(5) 0.6323(6) 0.0233(13) 2.14
O2 0.6306(16) 0.6864(7) 0 0.028(2) 2.11
O3 0.0059(9) 0.6741(5) 0.6122(6) 0.0208(12) 2.11
O4 0.5057(10) 0.8179(4) 0.8891(6) 0.0215(13) 2.18
O5 0.3789(9) 0.6359(5) 0.7497(5) 0.0210(13) 2.19
O6 0.1304(15) 0.8036(7) 1

2 0.026(2) 2.14
O7 0.2460(10) 0.4974(6) 0.8447(6) 0.0282(14) 2.22

Table 3. Observed (exp.) and theoretical (theor.) site-scattering factors (SSF, e−) and assigned
occupancies for selected atom sites in the crystal structure of paratooite-(La).

Atom SSFexp. SSFtheor Occupancy

La 46.64 46.07 La0.71Sr0.10�0.10Ca0.09
Cu 29.00 29.00 Cu
Ca 20.00 20.00 Ca

Na1 11.00 10.62 Na0.82�0.10Ca0.08
Na2 6.38 6.38 Na0.58�0.42

Table 4. Anisotropic displacement atom parameters for paratooite-(La) (Å2).

Atom U11 U22 U33 U23 U13 U12

La 0.0247(5) 0.0146(4) 0.0090(4) −0.00037(18) −0.00006(19) −0.00050(19)
Cu 0.0247(5) 0.0146(4) 0.0090(4) −0.00037(18) −0.00006(19) −0.00050(19)
Ca 0.0318(11) 0.0265(12) 0.0083(9) 0 0 0.0026(10)

Na1 0.0347(18) 0.0234(17) 0.0131(14) 0 0 0.0008(16)
Na2 0.038(4) 0.020(4) 0.015(3) 0 0 −0.005(3)
C1 0.016(5) 0.021(6) 0.014(6) 0 0 0.002(5)
C2 0.026(4) 0.014(4) 0.008(4) −0.003(2) 0.004(3) 0.002(3)
C3 0.024(6) 0.016(5) 0.008(4) 0 0 0.000(4)
O1 0.026(6) 0.018(5) 0.006(4) 0 0 0.001(4)
O2 0.040(3) 0.019(3) 0.011(3) −0.003(2) −0.002(2) 0.001(3)
O3 0.045(6) 0.025(5) 0.014(4) 0 0 0.013(4)
O4 0.026(3) 0.020(3) 0.016(3) 0.006(2) 0.003(3) 0.001(3)
O5 0.028(3) 0.019(3) 0.017(3) 0.007(2) 0.000(3) 0.000(2)
O6 0.026(3) 0.017(3) 0.019(3) 0.001(2) −0.002(2) −0.005(2)
O7 0.040(5) 0.022(5) 0.015(4) 0 0 −0.010(4)

3.3. Structure Description

The crystal structure of paratooite-(La) is shown in Figure 3a. It can conveniently be described
in terms of packing of cations with (CO3)2− groups filling its interstices. The Ca, Cu, Na1, and Na2
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sites locate exactly in the corners of a primitive orthorhombic cell with all unit-cell parameters twice as
small as the original cell. The La sites are located in each of the eight subcells that constitute the unit
cell, shifting from the centers of the subcells in the ab plane along the b axis. Therefore, the whole cation
array in paratooite-(La) may be considered as a strongly distorted cation-ordered body-centered lattice.

Figure 3 compares the crystal structure of paratooite-(La) (Figure 3a) with that of carbocernaite,
ideally CaSr(CO3)2 [34–38]. It is obvious that the two crystal structures are very similar, with that of
paratooite being the superstructure of carbocernaite. The relations between the two structures can be
described using the following equations (crb = carbocernaite; prt = paratooite-(La)):

aprt = ccrb (1)

bprt = 2bcrb, (2)

cprt = 2acrb (3)

Thus, the structure of paratooite-(La) is a 1 × 2 × 2 superstructure of that of carbocernaite. Figure 4
shows the cation packing in paratooite-(La) (a) and its sections at the z = 1

2 (b) and z = 0 (c) levels.
This clearly shows that the superstructure arises due to the ordering of the chemically different Cu2+

cations, on one hand, and Na+ and Ca2+ cations, on the other hand. The chemical difference arises due
to the Jahn–Teller distortion of the Cu2+ coordination geometry in contrast to the relatively uniform (in
terms of bond lengths) Na+ and Ca2+ coordinations. Thus, one may speculate that the superstructure
formation is governed by different electronic properties of cations constituting the crystal structure of
paratooite-(La).Minerals 2019, 9, x FOR PEER REVIEW  7 of 11 
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3.4. Crystal-Chemical Formula

According to the chemical and crystal-structure data, the crystal-chemical formula
of paratooite-(La) can be described as (La0.74Ca0.11Sr0.07)4CuCa(Na0.75Ca0.15)(Na0.63)(CO3)8

or REE2.96Ca1.59Na1.38CuSr0.28(CO3)8. The idealized formula can be written as
(La,Sr,Ca)4CuCa(Na,Ca)2(CO3)8. This formula is in general agreement with the results of
chemical analyses reported in the original study [23] and in our work, taking into account the
difficulties related with the instability of the mineral under the electron beam.

Table 5. Selected bond lengths (Å) in the crystal structure of paratooite-(La).

La–O5 2.518(7) Cu–O1 1.941(6) 4× C1–O5 1.259(11)
La–O5 2.520(7) Cu–O6 2.676(6) 2× C1–O7 1.264(9)
La–O3 2.523(6) <Cu–O> 2.186 C1–O1 1.315(9)
La–O4 2.539(7) <C1–O> 1.279
La–O6 2.573(3) Ca–O7 2.367(7) 4x
La–O7 2.598(7) Ca–O4 2.578(6) 4x C2–O2 1.273(14)
La–O2 2.600(3) <Ca–O> 2.473 C2–O4 1.283(8)
La–O1 2.617(7) C2–O4 1.283(8)
La–O4 2.631(6) Na1–O3 2.492(6) 4x <C2–O> 1.280
La–O3 2.673(6) Na1–O1 2.573(6) 4x

<La–O> 2.579 <Na1–O> 2.533 C3–O6 1.262(14)
C3–O3 1.287(8)

Na2–O7 2.410(7) 4x C3–O3 1.287(8)
Na2–O2 2.560(10) 2x <C3–O> 1.279

<Na2–O> 2.460

Table 6. Raman bands in the paratooite-(La) spectrum and their interpretation.

Raman Shift, cm−1 Assignment Type

1369 w, 1434 w CO3 v3
1095 s, 988 w *, 922 w * CO3 v1

870 w CO3 v2
733, 686 w, 665 w CO3 v4

386 sh, 343 CuO6 v1, v2
261 s CuO6 v3, v4

166, 119 lattice vibrations

sh = shoulder; s = strong intensity; w = weak; * these can also be assigned to a small admixture of silicate anions.
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4. Discussion

Carbocernaite, ideally CaSr(CO3)2, was discovered by Bulakh et al. [34] at the Vuoriyarvi complex,
Northern Karelia, Russia. Recently, Chakhmouradian et al. [38] investigated carbocernaite from Bear
Lodge, Wyoming, USA, and demonstrated that the mineral can be described as a solid solution
between CaSr(CO3)2 and NaREE(CO3)2. The crystal structure of carbocernaite was originally solved
by Voronkov and Pyatenko [36] in the space group Pb21m, which was confirmed in [37]. However, the
recent study of carbocernaite from Wyoming [38] revealed the presence of reflections that violated the
above-mentioned space group, very similar to our observations concerning paratooite-(La) (see above).
Therefore, the alternative space group was chosen as P11m (Table 6). Our attempts to refine the
crystal structure of paratooite-(La) in this space group were unsuccessful, due to the high number of
correlations between the displacement parameters of symmetry-related sites. The additional reflections
may appear due to the presence of domains with different symmetries or incommensurate modulations
induced by complex substitution mechanisms.

The information-based structural complexity parameters have been calculated by means of the
TOPOS software [39] using techniques proposed in [40,41] and are listed in Table 7. The formation
of a superstructure due to the cation ordering in paratooite-(La) compared to carbocernaite results
in the essential increase of structural complexity per unit cell. Therefore, paratooite-(La) versus
carbocernaite represents a good example of structural complexity increasing due to the increasing
chemical complexity controlled by different electronic properties of mineral-forming chemical elements
(transitional versus alkali and alkaline earth metals).

Our study may also have interesting implications with regard to the propensity of the carbocernaite
structure type to incorporate chemical elements with drastically different electronic properties. For
instance, paratooite-(La) incorporates REE and copper simultaneously, which may be of interest from
the viewpoint of its physical properties and, in particular, of its magnetism. However, the experimental
study of magnetic and other properties of paratooite-(La) is currently impossible due to the tiny amount
of available material. Therefore, it is of interest to reproduce the mineral under laboratory conditions,
which would allow to investigate its structure and properties in more details.
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Table 7. Unit-cell parameters, space groups, and structural complexity parameters for paratooite-(La)
and carbocernaite.

Mineral Space
Group a (Å) b (Å) c (Å)/γ

(deg.)
IG

(bits/atom)
IG,total

(bits/cell)

paratooite-(La) Pbam 7.225 12.763 10.056 3.722 297.754 this work
carbocernaite P21am * 7.30 6.41 5.23 2.922 58.439 [36]
carbocernaite P21am * 7.301 6.430 5.214 2.922 58.439 [37]
carbocernaite P11m * 7.266 6.434 5.220/89.98 3.922 78.439 [38]

* Crystallographic axes interchanged for the ease of comparison.

Supplementary Materials: The following are available online at http://www.mdpi.com/2075-163X/9/6/370/s1,
Crystallographic Information File (CIF).
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