УДК 549.5+552.322(925.2)

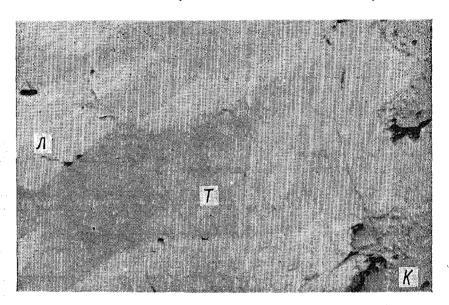
Литиотантит $Li(Ta, Nb)_{s}O_{s}$ — новый минерал из гранитных пегматитов Восточного Казахстана *

А. В. Волошин, Я. А. Пахомовский, В. И. Степанов, Ф. Н. Тюшева

Обнаружен в гранитных пегматитах Восточного Казахстана в краевой зоне изменения торолита в ассоциации с касситеритом и ранкамаитом. Размеры выделений достигают 0,4 мм. Бесцветный, серый, прозрачный. Блеск алмазный. Спайность отсутствует. Измеренная плотность 7,0, рассчитанная — 7,08 г/см³. В отраженном свете слабо анизотропен, серовато-белый, без плеохроизма. В ультрафиолетовом свете люминесценцией не обладает, в катодных лучах проявляет слабое свечение желто-зеленого цвета. Изоструктурен с синтетическими LiTa₃O₈ и LiNb₃O₈. Моноклинный, пространственная группа $P2_1/c$, a_0 =0,7444, b_0 =0,5044, c_0 =1,5255 нм, b_0 =107,18°. Химический состав (вес.%): a_0 =0,7444, a_0 =0,5044, a_0 =0,57, Li₂O=2,33, сумма 99,41. Идеальная формула минерала Li(Ta, Nb)₃O₈. Назван по химическому составу.

Новый танталат лития обнаружен в образцах с торолитом из гранитных пегматитов Восточного Казахстана и назван по химическому составу литиотантитом (Lithiotantite).

Образцы с литиотантитом представляют собой агрегаты пластинчатого голубоватобелого альбита, контактирующего с серым массивным кварцем, из микроклин-альбитового пегматита. В альбите встречаются субпараллельные пластинки и сростки яркожелтого торолита, замещенные в различной степени касситеритом, литиотантитом и ранкамантом (рис. 1). На пластинки торолита, как правило, нарастают отдельные дипирамидальные кристаллы касситерита буро-черного цвета, образуя темную корочку. Иногда последний образует неполные гомоосевые псевдоморфозы по торолиту. Литнотантит отмечается в краевой зоне выделений торолита в виде изометричных и неправильной формы зерен размером до 0,4 мм. Наиболее поздний продукт замещения торолита ранкамаит, представленный в виде белых шелковистых параллельно-волокнистых агрегатов, -- вторая находка этого минерала в мире. Диагностика ранкамаита подтверждена рентгенограммой порошка и микрозондовым анализом [2]. Идентификация минерала облегчается благодаря его характерному белому свечению в ультрафиолетовом свете. Прожилки ранкамаита пересекают неизмененные участки торолита, литиотантит, касситерит, а также альбит. Внутри агрегатов ранкамаита часто отмечается обильная вкрапленность кристаллов касситерита. Кроме указанных минералов, в образцах с литиотантитом и торолитом отмечаются по трещинам редкие чешуйки лепидолита и желтоватые кристаллы апатита в пустотках альбита.


Литиотантит бесцветный, прозрачный, обычно окрашен в кремовый, розоватый или буровато-розовый цвет микроскопическими включениями касситерита. Как правило, более интенсивная окраска наблюдается на контакте с замещаемым торолитом. Блеск алмазный. Излом раковистый до неровного. Умеренно хрупкий. Спайность отсутствует. Твердость 6—6,5 по Моосу. Твердость, измеренная на микроскопе «Neophot-2» с помощью приспособления *mhp*-100 при нагрузке 40 г, 1200 кГ/мм². Плотность, измеренная в микробюретке, 7,0 г/см³. В ультрафнолетовом свете минерал люминесценцией не обладает, а в катодных лучах слабо светится желто-зеленым цветом, подобным таковому для натротантита [1].

В проходящем свете для литиотантита характерно сильное двупреломление, значение угла 2V очень велико. Оптический знак определить не удалось из-за сильной горизонтальной дисперсии. Показатель преломления >1,9. В отраженном свете литиотантит серовато-белый, без плеохроизма, слабо анизотропный. Коэффициенты отражения для разных длин воли (R_1, R_2) : 486 нм — 18,6, 18,5 %; 553 нм — 18,5, 18,3; 589 нм — 18,6,

^{*} Минерал рассмотрен и утвержден Комиссией по новым минералам и названиям минералов ВМО АН СССР 4 октября 1981 г. и Комиссией по новым минералам и названиям минералов Международной минералогической ассоциации 31 мая 1982 г.

18,3; 656 нм — 19,1, 19,0 %. Коэффициент отражения измерен на микроскопе «Neophot-2». Источник света — ксеноновая лампа XBO-101. Для выделения участков спектра использован набор интерференционных фильтров (ГДР, Карл Цейс, Гіена). Сигнал принимался от фотоэлемента через преобразователь BK2-21 на потенциометр «Hewlett-Packard 7100 BM». Эталон — монокристалл кремния, плоскость (111). Объектив 50*. Диаметр фотометрируемого участка 30—150 мкм.

ИК-спектр литиотантита (рис. 2) обнаруживает широкую полосу 600—700 см⁻¹, где слабо выделяются два максимума с частотами 640 и 675 см⁻¹. Кроме того, в ИК-

 $Puc.\ 1.\$ Выделение литиотантита (Л) в краевой части торолита (Т) (К — касситерит). Отраженный, поляризованный свет, ув. 240.

слектре видны полосы поглощения с частотами 447 см⁻¹, 505, 570, 770, 920, 1100 и 1175 см⁻¹. Сравнение ИК-спектров литиотантита, синтетического LiNbO₃ (рис. 2, 6) и торолита (рис. 2, в) показывает большое сходство первых двух. Некоторые полосы поглощения в литиотантите, по-видимому, связаны с примесыю в пробе замещаемого торолита. Приведенные ИК-спектры минералов получены в одинаковых условиях на спектрометре UR-20 (ГДР, Карл Цейс, Йена) О. А. Залкиндом (ИХТРЭМС, КФ АН СССР).

Химический состав литиотантита и торолита приведен в табл. 1. Содержание элементов в минералах определено на электронном микроанализаторе MS-46 «Камека», ускоряющее напряжение 15 кВ (для Pb-25 кВ), ток зонда 30 нА. Аналитические линии — L_{α} , эталоны на Ta, Nb и Sn — металлы, на Pb — синтетический PbSe. Минералы

Takama 1	X นพบบอกหนนั้	COCTAD	TOBOTUTA	1.8	литиотантита
- acoming a.	A COUNTRY OF CHANGE	COCIUD	TOPOMITA		or in a second second second

n that is the same				6			
Окислы	1	2	3	Bec. %	AK _K	^{AK} O	KK
Ta_2O_5 Nb_2O_5 SnO_2	48,23 22,15 28,09	54,12 17,20 28,14	66,13 30,25 1,42	71,55 24,96 0,57	0,3238 0,1877 0,0037	0,8095 0,4692 0,0074	1,90 1,10 0,02
PbO Li ₂ O	1,78		2,32	2,33	0,1560	0,0780	0,92
Сумма	100,25	99,46	100,12	99,41		1,3641	

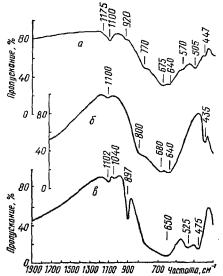

Примечание. 1—2 — торолит; 3—4 — литиотантит. А K_{κ} — атомное количество катионов; А K_0 — атомное количество кислорода; K_{κ} — количество катионов, рассчитанное на восемь атомов кислорода.

Таблица 2. Межплоскостные расстояния литиотантита, нм

I	$d_{\mathtt{HSM}}$	d _{pacy}	hkl	· 1	d _{H3M}	d _{расч}	hkl
2	0,720	{ 0,7112	001	2p	0,1299	{ 0,1299	12, 10
		0,7273	002	20	0,1233	0,1298	428
1	0,603	0,6057 (0,4145	102 012	1p	0,1263	{ 0,1262	<u>5</u> 21
5	0,413	0,4114	110			0,1263	525
1	0,385	0,3876	112	1p	0,1258	0,1258	$\frac{10, 12}{604, 526}$
3	0,363	0,3636	004	1p	0,1240	0,1240 0,1234	318
2	0,356	0,3556	$\frac{200}{105}$	lp	0,1233	$\{0,1232\}$	605_
3	0,306	{ 0,3029 0,3024	$\frac{100}{204}$	lm	0,1218	0,1218	$\frac{435}{613}$
10	0,296	{ 0,2956	212	1p	0,1202	$\begin{cases} 0,1203 \\ 0,1202 \end{cases}$	31,12
i	0,288	\ 0,2950 0,2877	014 202	2	0,1194	0,1194	$\overline{612}$, $1\overline{44}$
		0,2597	$\frac{202}{115}$	2		(0,1191	139
1p	0,263	ે 0,2593	214	~	0,1190	(0,1190	_425_
3 5	0,2522	0,2522	020	1p	0,1181	(0,1182	$\overline{616}, \overline{243}$
1p	0,2490 0,2425	0,2485 0,2424	021 006	1 .		0,1180 0,1177	42, 10 138, 229
3p	0,2353	0,2352	206	1 p	0,1177	0,1177	40, 12
2p	0,2225	0,2226	$\frac{-}{312}$	1		0,1166	335
~ P	0,2220	0,2223	123	1	0,1165	0,1165	039
1	0,2193	0,2196	122	1		0,1164 (0,1155	$\overline{2}44, \overline{1}45$ 610, 242
		0,2191	313	1	0,1155	0,1154	601
4	0,2076	$\left\{ egin{array}{l} 0,2074 \ 0,2072 \end{array} \right.$	$\overline{222}$ 024	1p	0,1146	5 0,1147	339
1	0,2043	0,2043	214	1P	0,1140	0,1145	41, 12
5	0,1900	0,1896	222	lm	0,1134	(0,1135 (0,1134	$\frac{20,11}{529}$
2	0,1847	0,1845	215	1	,		
1	0,1830	0,1831	401	2ш	0,1126	0,1126	13, 10
i ip	0,1816 0,1791	0,1818 0,1793	008 313	1	•	0,1125	438, 611 515, 341
6p	0,1772	0,1774	206	1	0,1121	0,1121	145
2	0,1745	0,1744	$\overline{3}17, \overline{4}12$	1	0,1117	0,1117	408
8 5	0,1722	0,1720	226	0	. 0.1110	0,1113	340, 139 623
1	0,1715 0,1692	0,1710	$\frac{018}{406}$	2ш	0,1112	0,1111	$\overline{532}, \overline{246}$
2	0,1676	0,1692 0,1677	410		0.1000	∫ 0,1099	341
1	0,1570	0,1568	309	I	0,1098	(0,1098 ∫ 0,1094	244 506
5	0,1526	$ \left\{ \begin{array}{l} 0,1527 \\ 0,1526 \end{array} \right. $	323 034	2	0,1094	(0,1093	434
1 -	0,1477	0,1478	424	3	0,1090	{ 0,1091 { 0,1090	418, 147 524
8	0,1451	(0,1452	232			0,1073	620
0	0,1448	$ \left\{ \begin{array}{l} 0,1451 \\ 0,1448 \end{array} \right. $	226 21, 10	1p	0,1072	0,1071	51, 12
1	0,1420	0,1421	512, 514	2	0,1069	0,1069 0,1066	516 537
3	0,1382	∫ 0,1383	333, 414	1 1p	0,1066 0,1039	0,1039	$\overline{441}, \overline{7}15$
	0,1002	0,1382	036 236	3	0,1039	0,1029	440
1p	0,1367	{ 0,1369 { 0,1368	510	2	0,1028	0,1028	712,246 622
1p	0,1343	∫ 0,1344	331 234	lp lp	0,1023 0,1020	0,1023 0,1020	$\frac{622}{51, 13}$
- (-	2, 10	0,1343 0,1328	511	lp	0,1020	0,1004	_526
1p	0,1328	0,1327	<u>11,</u> 11	1p	0,1000	0,1001	$\overline{62}$, 10
		0,1326	508	2	0,0993	0,0993 0,0992	$\frac{701}{632}$
lp	0,1314	0,1315	136	2	0,0992	0,0002	002

Примсчание. Условия съемки: камера РКУ, D=114,6 мм, Fe-излучение, внутренний стандарт — NaCl. Размытая линия — p, широкая — ш.

проанализированы в нескольких образцах не менее, чем в десяти точках на каждом образце (время одного измерения 10 с). Пересчет относительных интенсивностей на концентрации выполнен на Θ BM «Наири-2» по оригинальной программе [3]. Ошибка измерения главных компонентов \sim 1 отн.%, второстепенных \sim 2—3 отн.%. Другие элементы с атомным номером больше 11, кроме указанных в табл. 1, не обнаружены. Кон-

центрация Li_2O определена атомно-абсорбционным методом (аналитики Тарасова М. П., Ганнибал Л. А., ГИ КФ АН СССР).

Расчет состава литиотантита на восемь атомов кислорода приводит к формуле $\text{Li}_{0,92}\text{Ta}_{1,90}\text{Nb}_{1,10}\text{Sn}_{0,02}\text{O}_8$. Идеальная формула минерала — $\text{Li}(\text{Ta}, \text{Nb})_3\text{O}_8$.

Рентгенограмма порошка литнотантита (табл. 2) показывает, что минерал изоструктурен с синтетическими соединениями LiNb₃O₈ [5] и LiTa₃O₈ [6]. Последнее, как отмечают авторы работы [8], относится к триклинной сингонии. Приведенные параметры элементарной ячейки незначительно отличаются от моноклинного соединения LiNb₃O₈, структура которого изучена [7]. Рентгенограммы обоих соединений [5, 6],

Рис. 2. ИК-спектры литиотантита (α), синтетического LiNbO₃ (δ) и торолита (s).

полученные в камере Гинье, идентичны. Поэтому соединения LiNb₃O₈ и LiTa₃O₈, по-видимому, следует рассматривать как моноклинные. Аналогично с последними в моноклинной сингонии проиндицирована рентгенограмма литиотантита. Параметры элементарной ячейки: a_0 =0,7444, b_0 =0,5044, c_0 =1,5255 нм, β =107,18°, z=4. Пространственная группа $P2_1/c$. Вычисленная плотность на основе эмпирической формулы (7,08 г/см³) близка по значению к измеренной 7,0 г/см³.

Пегматитовые жилы с литиотантитом относятся к микроклин-альбитовому типу с полихромным турмалином в жильной зоне комплексного редкометального типа в экзоконтакте выступа массива гранитоидов в пределах структурного узла пегматитовых полей Восточного Казахстана [4]. Образование литиотантита в пегматитах связано с гидротермальной переработкой, обусловившей последовательное замещение торолита литиотантитом, касситеритом и ранкамаитом.

Эталонный образец с литиотантитом находится в Минералогическом музее им. А. Е. Ферсмана АН СССР.

В заключение авторы выражают благодарность Л. В. Булгаку, В. В. Гордиенко и В. А. Павловой за предоставленные образцы.

SUMMARY

Lithiotantite is found in granitic pegmatites of Eastern Kazakhstan in a marginal zone of thoreaulite alteration in association with cassiterite and rankamaite. Size of segregations reaches 0.4 mm. The mineral is colourless, grey, transparent with adamantine lustre, without cleavage. Measured density is 7.0, calculated one — 7.08 g/cm³. It is weakly anisotropic in reflected light, greyish-white without pleochroism; in ultraviolet light it has no luminescence, in cathodic rays shows slight yellow-green luminescence; isostructural with synthetic LiTa₃O₈ and LiNb₃O₈. Monoclinic, space group $P2_1/c$, a_0 =0.7444, b_0 =0,5044, c=1.5255 nm, β =107.18°. Chemical composition (wt.%): Ta₂O₅—71.55, Nb₂O₅—24.96, SnO₂—0.57, Li₂O—2.33, in total 99.41. An ideal formula of the mineral is Li(Ta, Nb)₃O₈. Its name corresponds to the chemical composition.

^{1.} Волошин А. В., Меньшиков Ю. П., Пахомовский Я. А. Алюмотантит и натротантит — новые минералы тантала в гранитных пегматитах.— Зап. Всесоюз. минерал. о-ва, 1981, ч. 110, вып. 3, с. 338—345.

2. Волошин А. В., Пахомовский Я. А. Минеральные фазы системы алюминий—тантал в редкоземельных пегматитах. — Зап. Всесоюз. минерал. о-ва, 1983, ч. 112, вып. 1, c. 67—76.

3. Кравченко-Бережной Р. А., Медведева Э. М., Пахомовский Я. А. и др. Использование ЭВМ в количественном рентгеновском микроанализе. Вавод. лаб., 1976, № 9, c. 1081-1082.

4. Поля редкометальных пегматитов / Под ред. М. В. Кузьменко.— М.: Наука, 1976.— 332 с.

5. Joint Committee on the Powder Diffraction Standarts .-- In: Set 26 of the Powder Diffraction File. Philadelphia, 1976, card. N 26—1189.
6. Lundberg M. The crystal structure of LiNb₃O₈.— Acta chem. scand., 1971, 25, N 26,

p. 3337—3346.

Pouchard M., Chaminade J. F. Sur quelques tantalates et oxyfluorotantalates de li-thium.— C. r. Acad: sc. C, 1972, 274, N 21, p. 1739—1742.

Геологический институт Кольского филиала АН СССР, Апатиты Институт минералогии, геохимии и кристаллохимии редких элементов АН СССР, Москва Поступила в редакцию 23.IX 1982 r.