Новые минералы

УДК 549.631+552.322.2(470.21)

Yb₂Si₂O₇ — новый иттербиевый силикат Кейвинт из амазонитовых пегматитов Кольского полуострова*

А. В. Волошин, Я. А. Пахомовский, Ф. Н. Тюшева

Кольский полуостров только начинает изучаться, но уже сей-час можно сказать, что здесь рождается новый промышлен-ный центр, который обогатит и союзную и мировую минералогию многочисленными и ценными научными новинками.

> А. Е. Ферсман. Достижения советской минералогии и геохимии. 1935, с. 75.

Минерал обнаружен в амазонитовых пегматитах Кольского полуострова в ассоциации с флюоритом, хинганитом и бастнезитом. В ней иногда отмечаются редкие корродированные кристаллы вульфенита. Назван минерал кейвнитом (keivyite) по названию местности Кейвы на Кольском полуострове.

Кейвиит образует вытянутые пластинчатые и призматические кристаллы в обособлениях мелкозернистого фиолетового флюорита. Часто отмечаются сростки кристаллов, в последних нередко проявляется по-лисинтетическое двойникование. Кристаллы минерала, как правило, развиваются по трещинам во флюорите, а иногда полностью выполняют их.

Выделяются две генерации минерала: ранняя (первая) представлена пластинчатыми и призматическими кристаллами, обычно имеющими и более крупные размеры, и поздняя (вторая), образующая одиночные тонкопластинчатые индивиды, а чаще - лучистые агрегаты подобных пластинок. Кристаллы и агрегаты второй генерации часто нарастают на индивиды первой, а также частично формируют краевую зону ее крупных индивидов, обусловливая их зональное строение (рис. 1). В мелких пустотах среди флюорита кейвиит второй генерации образует лучистые агрегаты пластинчатых индивидов (рис. 2), по морфологии близкие к лучистым сферолитам хинганита. Однако последний всегда представлен в лучистых сферолитах тонкопризматическими, даже игловидными, индивидами.

На кристаллы кейвнита нередко нарастает более поздний бастнезит (рис. 3, церий), который также развивается по трещинам во флюорите, образуя тонкопластинчатые красные кристаллы. Полное изучение рентгенометрических характеристик и физических

свойств выполнено для кейвиита первой генерации.

Минерал бесцветный, прозрачный. Блеск стеклянный. Спайность по призме (110) совершенная, по пинакоиду (001) несовершенная. Твердость 8632,8—9025,2 МПа при нагрузке 100 г. Плотность 5,95 (измеренная в микробюретке), 5,99 (рассчитанная на эмпирическую фор-мулу) и 5,90 г/см³ (рассчитанная по правилу Гладстейна—Дели). Опти-чески двуосный, отрицательный, 2V=58°. Дисперсия оптических осей

^{*} Минерал рассмотрен и утвержден Комиссией по новым минералам и названиям ми-пералов ВМО 10 июня 1982 г. и Комиссией по повым минералам и названиям мине-ралов Международной минералогической ассоциации 26 октября 1982 г.

новые минералы

сильная, r < v. Показатели преломления: $n_{\rho} = 1,723$; $n_m = 1,758$; $n_g = 1,768$; b = Ng, $a\hat{N_m} = 7 \div 8^{\circ}$, $c\hat{N_p} = 3 \div 5^{\circ}$. Оптическая ориентировка кристалла показана на рис. 3. В полисинтетических двойниках угол погасания по отношению к двойниковому шву равен около 33°. В ультрафиолетовом свете минерал не люминесцирует, а в катод-

В ультрафиолетовом свете минерал не люминесцирует, а в катодных лучах слабо светится зеленым светом. Минерал растворяется в холодной соляной кислоте.

новые минералы

						· · · · · · · · · · · · · · · · · · ·	
1	d _{H3M}	d _{выч}	hki	1	d _{HSM}	d _{выч}	hkl
	0 500	0 5050	110	0	0 1925	0 1224	961
5	0,536	0,5350	001	1 In	0,1333	0,1004	201
ŏ	0,404	0,4039	020		0,1312	0,1303	203
3	0,440	0,4400	111	l î	0,1288	0,1288	351
2	0,384	0,3838	200	- 1	0,1200	0,1230	233
10	0,334	0,3344	111	2	0 1276	0,1273	700
10	0,320	0,3240	Ô21	-	0,12/0	0,1277	261
10	0,020	0,2010	201		0 1060	0,1274	201
9	0,203	0,2031	130	2	0,1268	0,1270	352
7	0,2720	0,2675	220	4	0,1251	{0,1253	442
2	0 2514	0,2507	221	0	0,1097	0,1251	170; 223
ວ ຊ	0,2014	0.2477	201	211	0,1237	0,1239	402; 001
0	0.2436	0,0436	131	1	0,1225	0,1227	423
3	0,2320	0,2400	$\hat{0}\hat{0}\hat{2}$	4p	0.1218	<i>(</i> 0,1220)	530; 171
7	0.2262	0,2261	131		0,1000	(0,1218	262
6	0,2165	0,2165	221		0,1208	(0, 1208)	171
-	,	0,2163	310	2	0,1193	10,1190	422
6ш	0,2127	0,2126	202	20	0 1179	(0,1193	530
2	0,2056	0,2058	022	op 1	0,1173	0,1176	601
5	0,1920	0.1919	222	âm	0 1129	0,1139	521, 250
3	0.1844	0.1843	132		0,1120	0,1130	170
0	0,1011	(0, 1797)	241	3	0 1120	0,1120	172
4	0,1785	0.1783	330	Ŭ	0,1120	0,1110	461
4	0 1765	0 1767	331	1.	0 1100	0,1115	401
3	0,1744	0.1742	202	19.	0,1109	0,1108	443
š	0,1723	0,1723	150	1p	0,1105	10,1106	370
R	0 1609	(0,1694	132		·	(0,1104	621
0	0,1092	l 0, 1690	401	1	0,1096	0,1099	602
4	0,1671	0,1672	400			$\{0, 1084 \\ 0, 1080 \}$	1/2
4	0.1644	0,1644	151	4	0,1082	10,1083	000 440 Fr.
2	0,1622	0,1623	222		0 1090	0,1082	442; 551
$\tilde{4}$	0,1589	0,1597	151	4	0,1080	0,1080	620 550
_		(0,1580	421		0,1070	0,1070	F
5	0,1578	{0,1578	331	1	0,1062	(0,1067	033; 022 469
2	0,1566	0,1565	420	1	0,1060	10,1058	512
5	0 1544	0,1546	003	10	0.1055	0 1057	280
Ū	0,1011	(0,1545	332		0,1050	J0,1051	371
2p	0,1528	0,1531	203	I	0,1000	0,1048	461
3	0,1513	0,1516	402	1	0 1036	∫0,1040	552
2	0,1488	0,1486	060	1 .	0,1000	10,1036	601
2	0,1478	0,1477	401	10	0.1034	0.1036	601
1	0,1460	0,1461	023	lp	0,1030	0,1032	403
9	0 1444	{0,1448	223	10	0 1014	(0,1016	281
	0,1111	$\{0, 1442\}$	312	qr	0,1014	0,1015	641
4	0,1420	1423	113	1n	0,1008	{0,1010	603
		(0,1420	421	1-	0 1005	0,1009	021
2	0,1404	10,1402	210	10	0,1005	0,1005	532
		(0,1400 (0,1000	100	op o	0,1002	0,1005	640. 602
4	0,1393	10,1396	133	2	0,0984	0,0980	190
	A 1000	(0,1393	300	q 1 p	0,0302	0,0300	1.00
2	0,1383	0,1385	351	1			
3	0,1349	0,1349	152; 511	11		_	

Таблица 1. Межплоскостные расстояния кейвиита, нм

Примечание. Условия съемки: камера РКУ, Д=114,6 мм, Fe-излучение без фильтра, внутренний стандарт—NaCl; ш-широкая линия; р-размытая.

Рентгенограмма порошка минерала (табл. 1) полностью идентична таковой синтетического соединения Yb₂Si₂O₇ [5, 6]. Синтетический диортосиликат иттербия достаточно хорошо изучен: расшифрована его структура [4, 6], на основании чего установлена моноклинная ячейка с пространственной группой C₂/m (тортвейтитовый тип структуры) и

96

параметрами a₀ = 0,6802 нм, b₀ = 0,8875, c₀ = 0,4703 нм, β = 102°07', z=2. По аналогии с этими данными проиндицирована рентгенограмма по-рошка кейвиита с параметрами a=0,6840(2) нм, b=0,8916(4), c==0,4745(1) нм, $\beta=102,11(3)^\circ$, z=2.

С помощью микрозондового метода изучен химический состав различных морфологических типов кейвиита первой и второй генераций (табл. 2).

Анализы выполнены на электронном микроанализаторе MS=46 «Камека». Ускоряющее напряжение 25 кВ (15 кВ для Si), ток зонда 20-40 нА, аналитические линии для ит-

трия, кремния, кальция, железа — Ка, для иттербия, эрбия, диспрозия, люте-ция, тулия, гадолиния, тербия — L_{α} , для гольмия — L_{β} ; эталоны для иттрия — $Y_3Al_5O_{12}$: иттербия, эрбия, лютеция, тулия, гадолиния, тербия — LiRe (MoO₄)₂; диспрозия, гольмия — LiRe (WO₄)₂. Минерал проанализирован в нескольких образцах не менее, чем в десяти точках на каждом образце (время измерения 10 с). Точность определения для иттербия, лютеция и кремния 1 отн. %, для остальных

Рис. 3. Оптическая ориентировка кристалла кейвиита.

Таблица 2. Химический состав кейвнита, вес. %

элементов — 2—3 отн. %. Пересчет относительных интенсивностей на концентрацию выполнен на ЭВМ «Наири-2» по оригинальной программе [1]. Другие элементы, кроме указанных в табл. 2, с атомным номером >11 в минерале не обнаружены. Сумма редких земель це-риевой подгруппы не превышает 0,1 вес. %. Отмечаемое в некоторых анализах железо, по-видимому, не входит в состав минерала, а обус-ловлено тончайшими пленками оксидов, развитых по трещинам спайности и покрывающих поверхность некоторых кристаллов кейвнита.

ā

	1							
Оксиды	вес. %	АҚ _к	Ақ _о	К _к	2	З	4	5
Yb ₂ O ₃ Lu ₂ O ₃ Er ₂ O ₃ Tm ₂ O ₃ Dy ₂ O ₃ Ho ₂ O ₃ Gd ₂ O ₃ Gd ₂ O ₃ CaO FeO SiO ₂ C у м м а	55,06 8,97 6,24 3,10 1,23 0,65 0,04 0,06 1,02 0,03 0,00 23,47 99,87	0,2794 0,0450 0,0326 0,0160 0,0065 0,0034 0,0002 0,0003 0,0090 0,0090 0,0095 0,3905	0,4191 0,0675 0,0489 0,0240 0,0098 0,0051 0,0003 0,0004 0,0135 0,0005 0,7810 1,3701	1,43 0,23 0,17 0,08 0,03 0,02 	52,18 9,33 6,51 2,99 2,05 0,80 0,04 0,09 1,70 0,03 0,00 23,58 99,30	43,42 6,55 11,44 2,31 1,47 0,77 0,04 0,07 9,32 0,03 0,00 24,20 99,62	40,25 6,00 9,38 3,14 4,28 1,16 0,04 0,29 8,87 0,10 0,09 26,03 99,63	$\begin{array}{r} 34,57\\ 5,22\\ 9,85\\ 3,19\\ 3,86\\ 1,23\\ 0,04\\ 0,15\\ 15,42\\ 0,07\\ 0,09\\ 26,71\\ 100,40\\ \end{array}$

Примечание. Первая генерация: 1— отдельные пластинчатые кристаллы; 2— центральные участки зональных кристаллов; вторая генерация: 3— краевая оторочка зональных кристаллов; 4 — мелкие сфероляты, нарастающие на зональные кристаллы; 5 — лучистые сростки пластинчатых кристаллов. АК_к — атомное количество катионов; АК_о — атомное количество кислорода. К_к — коэффициент катиона, рассчитанный на семь атомов кислорода.

7 — Минералогический журнал, № 5, 1983

новые минералы

Тонкие включения гематита изредка отмечаются в кристаллах кейвиита. Несмотря на тесную ассоциацию с селективно-иттербиевым кейвиитом, поздний бастнезит практически не содержит редких земель иттриевой подгруппы и иттрия.

Сравнение химического состава кейвиита первой и второй генераций показывает обогащение последней иттрием. Для поздней генерации кейвиита характерно также повышенное количество эрбия.

Рис. 4. ИК-спектр кейвнита.

Состав кейвиита рассчитан, исходя из семи атомов кислорода, и его формула имеет вид

$(Yb_{1,43}Lu_{0,23}Er_{0,17}Tm_{0,08}Y_{0,05}Dy_{0,03}Ho_{0,02}) \Sigma_{2,01}Si_{1,99}O_{7}.$

Идеальная формула минерала: Yb₂Si₂O₇.

Расчеты формул наиболее богатых иттрием индивидов кейвиита показывают, что формульные значения иттрия не превышают 0,5-0,6 и селективность иттербия в минерале очевидна. Повышение концентрации иттрия в поздней генерации кейвиита допускает возможность существования наряду с кейвиитом существенно иттриевого диортосиликата с тортвейтитовой структурой.

ИК-спектр минерала (рис. 4) аналогичен в деталях таковому синтетического соединения Yb₂Si₂O₇ [2, 3, 7]. Частоты максимумов кейвиита и синтетического Yb₂Si₂O₇ с интерпретацией валентных и деформационных колебаний, по А. Н. Лазареву и Т. Ф. Тенишевой [2], приведены ниже.

Кейвнит	Yb ₂ Si ₂ O, [3]	Интерпретация
1110	1100	vas Si—O—Si
975	955	
925	915	V as 51-0
860	852	v's Si-O
570	566	
555	546	0,31-0
505	498	ĴM O
477	476	M-O
410		δ'as Si—O

Образование кейвиита связано с общим процессом кристаллизации иттриевых и редкоземельных минералов в поздние стадии минералообразования амазонитовых пегматитов. Характерно, что общее повыщение роли иттрия по сравнению с элементами иттриевой подгруппы редких земель (прежде всего иттербия) от ранних к поздним генерациям кейвиита, по-видимому, присуще всему процессу. Это подтверждается составом вюнцпахкита — иттрий-редкоземельного алюминиевого силиката, ранние генерации которого также обогащены иттербием. В ассоциации с кейвиитом также находится существенно иттербиевый хинганит, поздняя генерация которого селективно иттриевая. Возможно, это связано с накоплением иттрия и некоторых редких земель в растворах при кристаллизации первой генерации кейвиита вследствие невозможности реализации полного изоморфизма редкоземельных элементов одним типом кристаллической структуры. Действительно, диотросиликаты ред-

98

ких земель и иттрия относятся к разным группам симметрии и их ячейки даже в одной группе характеризуются разными параметрами [4]. Эталонные образцы с кейвиитом хранятся в Минералогическом музее им. А. Е. Ферсмана АН СССР.

SUMMARY

The mineral is discovered in amazonitic pegmatites of the Kola Peninsula as single crystals and intergrowths scattered among violet fluorile inclusions. It occurs in association with hinganit, bastnaesite and wulfenite, sized 0.1=0.8 mm. Colourless, transparent, with a vitreous tustre. Cleavage for (110) is perfect, for (001) - imperfect. Hardness: 8632.8= =9025.2 MPa, Density: 5.95 g/cm3. Optically biaxial, negative, 2 V=58°. Refractive indices: $n_p = 1,723$, $n_m = 1,758$ $n_g = 1.768$. Monoclinal, C 2/m, $a_0 = 0,6840$ (2) nm, $b_0 = 0,8916$ (4), $c_0 = 0,4745(1)$ nm, $\beta = 102,11(3)^\circ$, Z = 2. Chemical composition, wt. %: Yb₂O₃-55.06; Zu₂O₃-8.97; Er₂O₃-6.24; Tm₂O₃-3.10; Dy₂O₃-1.23; Ho₂O₃-0.65; Tb₂O₃-0.04; $Gd_2O_3 - 0.06; Y_2O_3 - 1.02; CaO - 0.03; SiO_2 - 23.47; total - 99.87.$ Ideal formula: Yb2Si2O7. The mineral is of the same name with the place Keiva in the Kola Peninsula.

- 1. Кравченко-Бережной Р. А., Медведева Э. М., Пахомовский Я. А. и др. Использование ЭВМ в количественном рентгеновском микроанализе.— Завод. лаб., 1976, № 9, с. 1081—1082.
- 1081—1082.
 Лазарев А. Н., Тенишева Т. Ф. Колебательные спектры и строение некоторых силикатов редкоземельных элементов.—Изв. АН СССР. Сер. хим., 1961, № 6, с. 964—973.
 Лазарев А. Н., Миргородский А. П., Иенатьев И. С. Колебательные спектры сложных окислов. Силикаты и их аналоги.— Л.: Наука, 1975.—170 с.
 Торолов Н. А., Бондарь И. А., Лазарев А. Н., Смолин Ю. И. Силикаты редкоземельных элементов их их аналоги.— Л.: Наука, 1971.—230 с.
 JCPDS. Twenty fifth set inorganic of the Powder Diffraction File.— Philadelphia, 1975, card. 25—1345.

- card. 25-1545.
 6. Smolin Yu. I., Shepelev Yu. F. The crystal structure of the Rare Earth pyrosilicates. Acta crystallogr., 1970, B26, pat. 5, p. 484-492.
 7. Ohashi H., Osawa T. Infrared spectra of M₂³⁺Si₂O₇ compounds with thortveitite structure. J. Jap. Assoc. Miner. Petr. Econ. Geol., 1981, 76, N 11, p. 368-371.

Геологический институт Кольского филиала АН СССР, Апатиты

Поступила 07.12.83

x Ai