UDK 549.37

## ON THE CHEMICAL COMPOSITION OF GERMANITE

Svetlana N. Nenasheva

Fersman Mineralogical Museum, Russian Academy of Sciences, Moscow, sn@fmm.ru

Germanite is a very rare mineral that commonly occurs as small segregations in association with bornite, renierite, fahlores, sphalerite, galena, and other sulfides and sulfosalts. Very fine structures of replacement of germanite for renierite are often observed. Such small segregations are difficult to study. Optical properties of germanite are slightly variable in different areas and in samples from different deposits. The chemical composition (concentrations of the principal elements) of germanite varies over a wide range. In addition, the mineral was revealed to contain a wide set of admixtures. Therefore, different researchers propose different formulas for germanite. Chemical and electron microprobe analyses of germanite, accessible in literature, were compiled by the author, and peculiarities of the chemical composition of germanite were studied. It has been revealed that 28 analyses from 37 ones are adequately recalculated to the formula with 66 atoms in the unit cell; 6 analyses, to the formula with 64 atoms; and 3 analyses, with 68 atoms. The Me/S ratio in the analyses varies from 32:32 to 34:32 and to 36:32; that is, this ratio in the real analyses is inconstant. This fact suggests that we deal either with solid solutions or with three different, but similar in the chemical composition and properties, minerals. The second assumption is more probable. It is concluded that there exist three mineral species close to germanite in the chemical composition.

8 tables, 3 figures and 22 references

Germanite has been known from the 1920s. It was discovered by G. Schneiderhuhn (1920) at the Tsumeb ore deposit, Namibia, and was described and named so by O. Pufahl (1920). Later, the mineral was found at the <u>B</u>ancairoun, France (Levy, 1966) and Radka, Bulgaria (Kovalenker, *et al.*, 1986) ore deposits. Finds of complex Ge sulfides were reported from some Russian ore deposits, including the Pai-Khoi, Urup, Gai, III International, and Kurumsak ones, and from the Chelopech ore deposit, Bulgaria. However, these minerals contained large concentrations of either As or V, or,



Fig. 1. Dependence between  $Cu^{2+} + Fe + Zn$  and W + Mo in analyses of germanite

sometimes, of As and V together. In this case, concentrations of these elements were comparable with that of Ge and sometimes exceeded it. We excluded these analyses from the consideration, because they were probably assigned to germanocolusite or colusite.

At all the ore deposits, germanite is associated with bornite, renierite, fahlores, and galena, being commonly intimately intergrown with these minerals. Very fine structures of replacement of germanite for renierite are often observed. Such small segregations are difficult to study. Optical properties of germanite are slightly variable in different areas and in samples from different deposits. Its color under reflected light is pink with violet tint, being very unequal. According to the optical features, L. Loginova (1960) distinguished three individual varieties of germanite.

The chemical composition (concentrations of the principal elements) of germanite varies over a wide range (in wt.%): Cu 40.9 - 51.0, Fe 0.0 - 10.7, Ge 3.0 - 11.0, Zn 0.0 - 5.5, and S 30.0 - 34.5. In addition, the mineral was revealed to contain a wide set of admixtures. including As, V, Ga, Sn, Sb, W, Mo, Pb, and Ag. Therefore, different researchers propose different formulas for germanite (Tables 1 and 2). These formulas are characterized by different cation/anion ratios equal to 1 : 1 (Sclar et al., 1957; Levy, 1966); 1 : 0.95 = 1.052(Springer, 1969); 34: 32 = 1.062 (Tettenhorst and Corbato, 1984; Spiridonov, 1987; Godovikov, 1997); and 36: 32 = 1.125 (Spiridonov et al., 1992).

|  | Table 1. | Germanite | formulae | proposed b | v different | researchers |
|--|----------|-----------|----------|------------|-------------|-------------|
|--|----------|-----------|----------|------------|-------------|-------------|

| Formula                                                                                                                                                    | Reference                  | Me/S  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-------|
| Cu <sub>3</sub> (Fe,Ge)S <sub>4</sub>                                                                                                                      | De Jong, 1930              | 1     |
| Cu <sub>3</sub> (Fe,Ge,Zn,Ga)(S,As) <sub>4</sub>                                                                                                           | Sclar <i>et al.</i> , 1957 | 1     |
| $Cu_{6}FeGeS_{8} \rightarrow Cu_{3}^{+}Cu_{3}^{+}Fe^{3+}Ge^{4+}S_{8}$                                                                                      | Levy, 1966                 | 1     |
| (Cu,Fe,Zn,W,Mo,V,Ge,As Ga)S <sub>0.95</sub>                                                                                                                | Springer, 1969             | 1.052 |
| $Cu_{26}Fe_4Ge_4S_{32} \rightarrow Cu_{16}^+Cu_{10}^{2+}Fe_{3+}^{3+}Ge_{4+}^{4+}S_{32}$                                                                    | Tettenhorst et al., 1984   | 1.062 |
| Cu+20(Cu2+,Fe2+,Zn)6Fe3+2Ge6S32                                                                                                                            | Spiridonov, 1987           | 1.062 |
| $Cu_{22}^{+}(Cu_{2}^{+},Fe_{2}^{+},Zn)_{6}Fe_{2}^{+}(Ge_{4}As)_{6}S_{32}Cu_{22}^{+}(Cu_{2}^{+}Fe_{2}^{+}Zn_{2})_{6}Fe_{2}^{+}(Ge_{4}As_{2})_{6}S_{32}^{-}$ | Spiridonov et al.,, 1992   | 1.125 |
| $Cu_{-8}^{+}Cu_{-5}^{2}Fe_{-2}^{3}Ge_{-2}^{4}Ge_{-2}^{4}S_{16}$                                                                                            | Godovikov, 1997            | 1.062 |

Table 2. Theoretical composition of germanite (in wt. %), based on formulae proposed by different researchers

| Authors                    | Cu    | Cu⁺   | C u <sup>2 +</sup> | Fe   | Zn   | Ge    | As   | S     |
|----------------------------|-------|-------|--------------------|------|------|-------|------|-------|
| Levy, 1966                 | 49.76 | 24.88 | 24.88              | 7.29 |      | 9.47  |      | 33.48 |
| Tettenhorst, Corbato, 1984 | 51.76 | 31.85 | 19.91              | 7.00 |      | 9.1   |      | 32.14 |
| Spiridonov, 1987           | 43.50 | 39.55 | 3.95               | 6.95 | 4.07 | 13.55 |      | 31.93 |
| Spiridonov, 1992           | 45.58 | 41.78 | 3.80               | 6.68 | 3.91 | 8.68  | 4.48 | 30.67 |
| Godovikov, 1997            | 51.76 | 31.85 | 19.91              | 7.00 |      | 9.1   |      | 32.14 |
|                            |       |       |                    |      |      |       |      |       |

The crystal structure of germanite is derivative from the crystal structure of sphalerite and is close to those of stannite and colusite. Based on this fact, R. Tettenhorst and C. Corbato (1984) proposed a formula of germanite, similar to that of colusite, namely Cu<sub>26</sub>Fe<sub>4</sub>Ge<sub>4</sub>S<sub>32</sub>. This formula is electrically neutral only on condition that it contains 10 atoms of divalent Cu and 4 atoms of trivalent Fe. The presence of 10 atoms of divalent Cu is also specified by a crystallochemical formula of germanite, proposed by A. Godovikov (1997), Cu+<sub>8</sub>Cu<sup>2+</sup><sub>5</sub>Fe<sup>3+</sup><sub>2</sub>Ge<sup>4+</sup><sub>2</sub>S<sub>16</sub>  $\rightarrow$  Cu<sup>+</sup><sub>16</sub>Cu<sup>2+</sup><sub>10</sub>Fe<sup>3+</sup><sub>4</sub>Ge<sup>4+</sup><sub>4</sub>S<sub>32</sub>. A crystallochemical formula of germanite, proposed by E. Spiridonov (1987), Cu+<sub>20</sub>(Cu<sup>2+</sup>,Fe<sup>2+</sup>, Zn)<sub>6</sub>Fe<sup>3+</sup><sub>2</sub>  $Ge_{6}^{4+}S_{32}$  is not electrically neutral. Later, in the work on germanocolusite, E. Spiridonov with co-authors (1992) proposed another crystallochamical formula for germanite,  $Cu_{22}^{+}(Cu_{2}^{+},Fe_{2}^{+},Zn)_{6}Fe_{3}^{+}(Ge_{2},As)_{6}S_{32}$ . In this case, the formula is electrically neutral, but the sum of atoms in the unit cell is 68 rather than 66 as in colusite whose formula was adopted by E. Spiridonov as the basis for examination of the germanite formula; therefore, the Me/S ratio is equal to 36/32 rather than 34/32.

These contradictions prompted us to make an additional analysis of the literature data on germanite.

37 chemical and electron microprobe analyses of germanite were found and recalculated into formulae with regard to necessity of their electrical neutrality (Table 3 and 4). A formula was considered to be electrical neutral if it had the valence balance ( $\pm \Delta$ , the absolute value of the deviation from zero) no higher than 3%. To calculate the valence balance, it was necessary to understand the positions of admixtures in the crystal structure. The p-elements, Ge, As, and Ga, are the neighbors in Mendeleev's Periodic Table and have similar electronic structures, therefore, they can be isomorphous. Other admixtures, V, Fe, Cu, Mo, and W are d-elements; so, it can be assumed that V, Mo, and W can substitute Fe and Cu, occupying the sites of divalent cations or trivalent Fe. The sum (W + Mo) depends inversely on the sum (Cu<sup>2+</sup> + Fe + Zn), which evidences in favor of the assumption that W and Mo occupy the sites of divalent cations or trivalent Fe (Fig. 1). The sum (Cu + As) inversely proportional to the sum (Zn + Ge), which is evidence for the isomorphism Zn<sup>2+</sup> + Ge<sup>4+</sup>  $\rightarrow$  Cu<sup>+</sup> + As<sup>5+</sup> (Fig. 2).



Fig. 2. Dependence between Cu + As and Zn + Ge in analyses of aermanite

| Nº OS.   | Cu    | ге   | Zn    | Ge   | Ga   | As    | V             | W      | Mo   | S     | Σ.     |
|----------|-------|------|-------|------|------|-------|---------------|--------|------|-------|--------|
| 1        | 45.1  | 7.4  | 1.3   | 9.7  | 0.00 | 2.6   |               |        |      | 33.4  | 99.5   |
| ·        | 21.92 | 4.09 | 0.61  | 4 13 | 0.00 | 1.07  |               |        |      | 32.17 | 63.00  |
| 24       | 45.4  | 7.00 | 0.01  | 6.20 |      | 5.02  |               |        |      | 01.04 | 00.33  |
| Ζ.       | 45.4  | 1.22 | 2.01  | 6.20 |      | 5.03  |               |        |      | 31.34 | 99.246 |
|          | 23.38 | 4.23 | 1.31  | 2.79 |      | 2.20  |               |        |      | 31.98 | 66.00  |
| 3.       | 42.12 | 7.80 | 3.93  | 10.2 | 1.85 | 1.37  |               |        |      | 31.27 | 99.49  |
|          | 21.57 | 4.55 | 1.96  | 4.57 | 0.86 | 0.60  |               |        |      | 31 74 | 66.00  |
| 4.       | 45 30 | 4 56 | 2.50  | 8 70 | 0.00 | 4 1 2 |               |        |      | 20.65 | 00.55  |
| 4        | 40.00 | 4.50 | 2.50  | 0.70 |      | 4.13  |               |        |      | 30.05 | 99.00  |
|          | 23.98 | 2.74 | 1.32  | 4.02 |      | 1.85  |               |        |      | 32.09 | 66.00  |
| 5*       | 39,44 | 10.7 | 3.56  | 7.04 |      | 4.86  |               |        |      | 31.44 | 99.98  |
|          | 20.38 | 6 29 | 1 79  | 3.18 |      | 2.13  |               |        |      | 32.19 | 66.00  |
| 6        | 44.20 | 6.70 | 1.50  | 0.70 |      | 2.20  |               |        |      | 24.60 | 100.0  |
| 0        | 94.20 | 0.70 | 1.30  | 5.70 |      | 3.30  |               |        |      | 34.00 | 100.0  |
| _        | 21,25 | 3.66 | 0.70  | 4.08 |      | 1.35  |               |        |      | 32.96 | 64.00  |
| 7        | 46.5  | 8.5  |       | 9.4  |      | 4.2   |               |        |      | 31.6  | 100.26 |
|          | 23.50 | 4.89 |       | 4.16 |      | 1.80  |               |        |      | 31.65 | 66.00  |
| 8*       | 43.6  | 6.4  | 3.10  | 9.0  |      | 4 70  |               |        |      | 30.03 | 97.7   |
| 0        | 22.67 | 2.05 | 1.64  | 4.00 |      | 2.10  |               |        |      | 20.00 | 60.0   |
| ~        | 23.07 | 3.95 | 1.04  | 4.20 | o 1  | 2.10  |               |        |      | 32.30 | 00.0   |
| 9.       | 45.5  | 7.20 | 1.2   | 9.8  | 0.1  | 3.5   |               |        |      | 31.8  | 99.1   |
|          | 23.19 | 4.18 | 0.59  | 4.37 | 0.05 | 1.51  |               |        |      | 32.11 | 66.00  |
| 10       | 46.7  | 6.5  | 0.8   | 9.0  |      | 42    |               | 0.6    |      | 31.7  | 99.5   |
|          | 23.83 | 3 77 | 0.40  | 4.02 |      | 1.02  |               | 0.10   |      | 22.06 | 66.00  |
|          | 23.05 | 5.77 | 0.40  | 4.02 |      | 1.02  |               | 0.10   | 0.5  | 32.00 | 00.00  |
| 11       | 45.5  | 6.8  | 1.2   | 9.6  |      | 3.3   |               |        | 0.5  | 31.6  | 98.5   |
|          | 23.36 | 3.97 | 0.60  | 4.31 |      | 1.44  |               |        | 0.17 | 32.15 | 66.00  |
| 12       | 46.5  | 5.5  | 0.9   | 9.0  |      | 4.0   |               | 1.8    | 0.5  | 31.8  | 100.0  |
|          | 23.81 | 3 20 | 0.45  | 4.03 |      | 1 74  |               | 0.32   | 0.17 | 22.22 | 65.00  |
|          | 23.01 | 5.20 | 0.45  | 4.05 |      | 1.74  |               | 0.32   | 0.17 | 32.27 | 03.99  |
| 13       | 45.4  | 5.8  | 1.3   | 9.9  |      | 3.3   |               | 3.4    |      | 31.9  | 101.0  |
|          | 23.20 | 3.37 | 0.65  | 4.43 |      | 1.43  |               | 0.06   |      | 32.31 | 65.99  |
| 14       | 47.1  | 3.6  | 1.4   | 10.1 |      | 3.2   |               | 0.2    | 3.0  | 31.8  | 100.4  |
|          | 24.06 | 2.09 | 0.69  | 4.52 |      | 1 30  |               | 0.03   | 1.02 | 32.20 | 66.00  |
| 15       | 47.5  | 2.00 | 1.05  | 9.52 |      | 1.35  |               | 0.05   | 0.02 | 32.20 | 100.00 |
| 15       | 47.5  | 3.5  | 1.4   | 9.6  |      | 3.1   |               | 0.3    | 2.8  | 32.1  | 100.3  |
|          | 24.22 | 2.03 | 0.69  | 4.28 |      | 1.34  |               | 0.05   | 0.94 | 32.43 | 65.98  |
| 16.      | 45.6  | 1.0  | 1.7   | 9.7  | 0.6  | 3.5   |               | 9.1    |      | 30.2  | 101.4  |
| -        | 24 39 | 0.61 | 0.88  | 4 54 | 0.29 | 1.50  |               | 1.68   |      | 32.01 | 65.99  |
| 17       | 44.0  | 1.0  | 0.00  | 4.54 | 0.25 | 1.55  |               | 1.00   | 0.5  | 32.01 | 101.0  |
| 17       | 44.9  | 1.3  | 2.2   | 9.7  | 0.4  | 2.0   |               | 9.0    | 0.5  | 30.4  | 101.0  |
|          | 24.04 | 0.79 | 1.14  | 4.55 | 0.20 | 1.18  |               | 1.66   | 0.18 | 32.26 | 66.00  |
| 18       | 46.5  | 2.4  | 1.6   | 10.1 |      | 2.8   | 0.1           |        | 4.5  | 31.5  | 99.5   |
|          | 24.06 | 1 41 | 0.80  | 4 58 |      | 1.23  | 0.06          |        | 1.54 | 32 31 | 65.99  |
| 10       | 10.00 | 1.11 | 0.00  | 5.4  | 0.0  | 7 4   | 1.0           |        | 2.04 | 21.01 | 00.55  |
| 19       | 40.0  | 1.4  | 0.1   | 5.4  | 0.8  | 1.4   | 1.9           |        | 2.0  | 31.9  | 99.7   |
|          | 24.94 | 0.81 | 0.05  | 2.42 | 0.37 | 3.21  | 1.21          |        | 0.68 | 32.31 | 66.00  |
| 20       | 48.9  | 1.7  | 0.1   | 5.1  | 0.8  | 7.6   | 2.2           |        | 1.8  | 32.1  | 100.3  |
|          | 24.80 | 0.98 | 0.05  | 2.26 | 0.37 | 3 27  | 1 39          |        | 0.60 | 32.27 | 65.99  |
| 21       | 50.0  | 2.30 | 0.00  | 2.20 | 0.07 | 4.0   | 2.0           |        | 0.00 | 21.6  | 100.7  |
| 21       | 30.9  | 3.4  |       | 1.2  |      | 4.9   | 2.9           |        |      | 31.0  | 100.7  |
|          | 26.37 | 1.89 |       | 3.26 |      | 2.15  | 1.87          |        |      | 32.44 | 67.98  |
| 22       | 48.1  | 5.5  |       | 11.0 |      |       | 2.0           |        |      | 34.6  | 101.2  |
|          | 22.79 | 2.96 |       | 4.56 |      |       | 1.18          |        |      | 32.50 | 63.99  |
| 23       | 46.00 | 0.31 | 1 17  | 0.67 | 0.12 | 1.00  | 1.10          | 0.60   | 0.22 | 22.61 | 102.4  |
| 20       | 40.33 | 0.51 | 1.17  | 5.07 | 0.12 | 1.09  |               | 0.00   | 0.55 | 33.01 | 102.4  |
|          | 22.37 | 4.50 | 0.54  | 4.03 | 0.05 | 0.44  |               | 0.11   | 0.10 | 31.78 | 64.00  |
| 24       | 45.81 | 5.22 | 2.38  | 10.9 |      | 1.43  |               |        |      | 32.72 | 98.50  |
|          | 22.60 | 2.93 | 1 1 4 | 4.73 |      | 0.60  |               |        |      | 32.00 | 64.00  |
| 25       | 45.6  | 6.61 | 1.94  | 9.42 | 0.12 | 3 22  | 0.13          | 0.05   | 0.20 | 32.2  | 00.5   |
| 20       | 40.0  | 0.01 | 1,54  | 3.42 | 0.12 | 5.27  | 0.13          | 0.05   | 0.20 | 32.2  | 95.5   |
|          | 23.10 | 3.01 | 0.96  | 4.10 | 0.00 | 1.40  | 0.08          | 0.01   | 0.07 | 32.33 | 00.00  |
| 26       | 43.8  | 8.69 | 1.34  | 9.19 | 0.20 | 2.88  | 0.12          | 0.29   | 0.81 | 31.7  | 99.0   |
|          | 22.36 | 5.05 | 0.66  | 4.11 | 0.09 | 1.25  | 0.88          | 0.05   | 0.27 | 32.08 | 66.00  |
| 27       | 43.4  | 8 86 | 1.30  | 9.70 | 0.15 | 2 99  | 0.10          | 0.11   | 0.16 | 32.1  | 98.9   |
| <u> </u> | 22.07 | 5.12 | 0.64  | 4 22 | 0.07 | 1.00  | 0.10          | 0.02   | 0.10 | 22.1  | 66.00  |
| 00       | 22.07 | 0.10 | 0.04  | 4.32 | 0.07 | 1.29  | _0.00         | 0.02   | 0.05 | 34.35 | 00.00  |
| 28       | 45.55 | 6.35 | 1.88  | 8.81 | 0.63 | 3.55  | Iraces        | 1.28   | 0.03 | 31.65 | 99.73  |
|          | 23.29 | 3.69 | 0.93  | 3.94 | 0.29 | 1.54  |               | 0.23   | 0.01 | 32.07 | 65.99  |
| 29       | 44.8  | 9.11 | 0.61  | 10.2 | 0.22 | 2.80  | 0.10          | Traces | 0.17 | 32.4  | 100.4  |
| 20       | 22.45 | 5 10 | 0.30  | 4 47 | 0.10 | 1 10  | 0.06          | Tucco  | 0.06 | 22.10 | 66.00  |
| 20       | 46.4  | 7.15 | 1.01  | 0.01 | 0.10 | 1.15  | 0.00          | 0.01   | 0.00 | 54.10 | 100.00 |
| 30       | 40.1  | 7.15 | 1.81  | 9.61 | 0.25 | 3.19  | 0.10          | 0.01   | 0.25 | 31.8  | 100.3  |
|          | 23.29 | 4.11 | 0.89  | 4.25 | 0.11 | 1.37  | 0.06          |        | 0.08 | 31.84 | 66.00  |
| 31       | 46.9  | 6.65 | 0.87  | 9.55 | 0.13 | 3.58  | 0.13          | 0.16   | 1.10 | 32.3  | 101.4  |
| · ·      | 23.49 | 3 70 | 0.42  | 1 10 | 0.06 | 1.52  | 0.08          | 0.03   | 0.26 | 22.06 | 66.00  |
| 22       | 457   | 0.75 | 1.20  | 4.13 | 0.00 | 2.01  | 0.00<br>Tease | 0.03   | 0.30 | 34.00 | 101.00 |
| 32       | 43.7  | 8.59 | 1.29  | 9.57 | 0.11 | 3.91  | Traces        | 0.36   | 0.14 | 31.92 | 101.6  |
|          | 22.85 | 4.89 | 0.63  | 4.19 | 0.05 | 1.66  |               | 0.06   | 0.05 | 31.63 | 66.01  |
| 33       | 47.1  | 7.03 | 1.25  | 9.46 | 0.71 | 3.66  | 0.16          | 0.21   | 0.47 | 32.1  | 102.1  |
|          | 23 45 | 3.98 | 0.60  | 4 12 | 0.32 | 1.55  | 0.10          | 0.04   | 0.16 | 31.68 | 66.00  |
| 24       | 44.6  | 0.24 | 1.26  | 0.72 | 0.12 | 2.00  | 0.10          | 0.04   | 0.10 | 22.00 | 100.00 |
| 34       | 44.0  | 9.24 | 1.30  | 9.73 | 0.12 | 2.93  | 0.12          | 0.20   | 0.45 | 32.15 | 100.96 |
|          | 22.33 | 5.26 | 0.66  | 4.26 | 0.05 | 1.24  | 0.08          | 0.04   | 0.15 | 31.92 | 65.99  |
| 35       | 49.01 | 9.78 |       | 7.84 |      | 4.75  |               |        |      | 32.2  | 103.58 |
|          | 24.72 | 5.61 |       | 3 46 |      | 2.03  |               |        |      | 32.18 | 68.00  |
| 36       | 40.90 | 4 41 | 5 26  | 10.2 |      | 0.00  | 200           |        |      | 22.10 | 00.00  |
| 30       | 40.09 | 4.41 | 0.00  | 10.2 |      | 0.30  | 2.00          |        |      | 32.30 | 90.40  |
| - 3      | 20.44 | 2.51 | 2.60  | 4.46 |      | 0.16  | 1.75          |        |      | 32.08 | 64.00  |
| 37       | 44.07 | 5.19 | 5.46  | 10.2 |      | 1.26  | 2.90          |        |      | 32.66 | 99.82  |
|          | 21.76 | 2.92 | 2.62  | 4.42 |      | 0.53  | 1.79          |        |      | 31.96 | 66.00  |
|          |       |      |       |      |      |       |               |        |      | 51.00 | 30.00  |

 Table 3. Electron microprobe and chemical (\*) analyses of germanite in wt. % (upper row) and in f.u. (lower row). Analyses 1, 6, 22, 23, 24, and 36 are recalculated based on 64 atoms in the unit cell; analyses 8, 21, and 35, based on 68 atoms; the remainder, based on 66 atoms

 21.70
 2.92
 2.02
 4.42
 0.53
 1.79
 31.96
 66.00

 Notes:
 (An. 2)
 bb 0.69% (0.11 f.u.), insol. res. 0.75%; (An. 3)
 Pb 0.96% (0.15 f.u.); (An. 4)
 insol. res. 2.12%; (An. 5)
 Pb 0.26% (0.04 f.u.), insol. res. 168%; (An. 23) Ag 0.11% (0.03 f.u.), Sn 0.16% (0.04 f.u.); (An. 4)
 insol. res. 2.12%; (An. 5)
 Pb 0.26% (0.04 f.u.), insol. res. 168%; (An. 7)
 analysis is sample from the Bancairoun deposit (Lovy, 1966); (An. 24)
 analysis is sample from the Radka deposit (Kovalenker *et al.*, 1966); (An. 30 and 37) analyses are samples from the Rajpura-Dariba deposit, (Idia (Mozgova *et al.*, 1992); other analyses are samples from the Tsumeb deposit; (An. 1 and 8) after Francotti *et al.*, 1965; (An. 2) after Pufahl, 1922; (An. 3, 4, and 5) after Viaene *et al.*, 1968; (An. 6) after Levy, 1966; (An. 9—20) after Springer, 1969; (An. 21-22) after Geier *et al.*, 1970; (An. 23) after Sprindonov, 1987; (An. 25-34) after Sprindonov *et al.*, 1992; (An. 35) after Khoroshilova *et al.*, 1988.

| Table 4. | Formula | based o | n recalculate | ed germanite | analyses |
|----------|---------|---------|---------------|--------------|----------|
|          |         |         |               |              |          |

| No         | Formula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Valence ba   | Me/S |       |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------|-------|
|            | i officiale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\pm \Delta$ | %    |       |
| 1          | $Cu_{20}^{+}(Cu_{1:92}^{+}Fe_{2:09}^{+}Zn_{0.61}^{-})_{4.62}^{+}Fe_{3}^{+}{}_{2}^{-}(Ge_{4}^{+}{}_{4.13}^{-}As_{5}^{+}{}_{1.07}^{-})_{5:2}^{-}S_{32}^{-}.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -7.13        | 11.  | 0.990 |
|            | $Cu_{16}^{+}(Cu_{5.92}^{2}Zn_{0.61})_{6.53}^{+}Fe_{4.09}^{3+}(Ge_{4+4.13}^{+}As_{5+1.07}^{5+})_{5.20}^{-}S_{32+17}^{-}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -1.14        | 1.7  |       |
| 2          | $Cu_{20}(Cu_{2+3,38}Fe_{2+2,23}Zn_{1,31}Pb_{2+_{0,11}})_{7,03}Fe_{3+_{2}}(Ge_{4+_{2,79}}As_{5+_{2,20}})_{4,99}S_{31+98}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -1.74        | 2.7  | 1.064 |
| 3          | $Cu_{^{+}20}(Cu_{^{2}+_{1.57}}Fe_{^{2}+_{2.55}}Zn_{1.96}Pb_{^{2}+_{0.15}})_{6.23}Fe_{^{3}+_{2}}(Ge_{^{4}+_{4.57}}Ga_{^{3}+_{0.86}}As_{^{5}+_{0.60}})_{6.03}S_{31\cdot74}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -1.16        | 1.8  | 1.079 |
| 4          | $Cu_{20}^{+}(Cu_{3,98}^{+}Fe_{0.74}^{+}Zn_{1.32}^{+})_{6.04}^{-}Fe_{3+2}^{-}(Ge_{4+4.02}^{+}As_{5+1.85}^{+})_{5.87}^{-}S_{32\cdot09}^{-}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -0.77        | 1.2  | 1.057 |
| 5          | $Cu_{20}^{+}(Cu_{-0.38}^{2}Fe_{-4.29}^{2}Zn_{1.79}^{-}Pb_{-0.04}^{2})_{6.5}Fe_{-2.13}^{3}Fe_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2.13}^{-}S_{-2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -2.01        | 3.1  | 1.049 |
| 6          | $Cu_{20}^{+}(Cu_{1.91}^{2}Fe_{1.78}^{2}Zn_{0.72}^{-})_{4.41}Fe_{1.78}^{3+}(Ge_{4.41}^{4}As_{1.39}^{5+})_{5.60}S_{33.99}^{-})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -9.37        | 14.  |       |
|            | $Cu_{16}^{+}(Cu_{591}^{2}Zn_{0.72})_{6.04}Fe_{3+3.78}^{3+}(Ge_{4+4.21}^{4}As_{5+1.39})_{5.60}S_{33\cdot99}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -3.59        | 5.3  | 0.941 |
| 7          | $Cu_{20}^{+}(Cu_{3,50}^{2}Fe_{2,89}^{2+})_{6,39}Fe_{3+2}^{3+}(Ge_{4+4,16}^{4}As_{5+1,80}^{5+})_{5,96}S_{31\cdot65}^{5+}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | +1.12        | 1.7  | 1.085 |
| 8          | $Cu_{20}^{+}(Cu_{367}^{2}Fe_{195}^{2+}Zn_{164})_{726}Fe_{3+2}^{3+}(Ge_{4+428}^{4}As_{5+216}^{5+})_{644}S_{32+30}^{3+}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | +3.84        | 5.6  |       |
|            | $Cu_{2}^{+}(Cu_{1,67}^{2}Fe_{1,95}^{+}Zn_{1,64}^{+})_{5,26}Fe_{3+2}^{+}(Ge_{4+4,28}^{+}As_{5+2,16}^{+})_{6,44}S_{32,30}^{+}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | +1.84        | 2.8  | 1.105 |
| 9          | $Cu_{20}^{+}(Cu_{23}^{+}) = Fe^{2+2} = \frac{1}{2} Ia_{0} = S_{0}^{+} = Se^{3+2} = \frac{1}{2} Ge^{4+4} = \frac{1}{2} Ga^{3+} = \frac{1}{2} Ga^{3+} = \frac{1}{2} Sa^{3+} = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -1.12        | 1.7  | 1.055 |
| 10         | $Cu_{20}^{+}(Cu_{2+2}^{+}) = Fe^{2+1} = Zn_{0,40}^{+} = 16 Fe^{3+1} = W^{4+0,10} = (Ge^{4+} + a^2As^{5+1} + a^2) = 0.5222$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.64        | 1.0  | 1.059 |
| 11         | $Cu^{-}_{20}(Cu^{2+}_{2,2}Ee^{2+}_{2,1},Zn_{0,5}) = _{10}(Ee^{3+}_{1,2}MO^{4+}_{0,1}) = (Ge^{4+}_{1,2}As^{5+}_{1,2}) = _{12}(Ge^{4+}_{1,2}As^{5+}_{1,2}) = _{12}(Ge^{4+}_{1,2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -1.66        | 2.6  | 1.054 |
| 12         | $Cu^{-}_{20}(Cu^{2+}_{2,3};Ee^{2+}_{1,5};Zn_{0,4}) = c_{5}(Ee^{3+}_{1,5};MO^{4+}_{0,4};W^{4+}_{0,2}) = (Ge^{4+}_{1,2};AS^{5+}_{1,2};J) = 2S_{22,22}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -1.5         | 2.3  | 1.045 |
| 13         | $C_{1}^{+} = (C_{1}^{+})^{2} + (C_{1}^{+})^{2} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -1.51        | 2.3  | 1.042 |
| 14         | $Cu_{20}^{+}(Cu_{3,20}^{+}, c_{5}^{+}Fe^{2+}, c_{7}^{+}Zn_{2,5}) = (Fe^{3+}c_{5}^{+}M0^{4+}, c_{7}^{+}W^{4+}c_{7}^{+}W^{4+}c_{7}^{+}M^{2+}c_{7}^{+}M^{2+}c_{7}^{+}M^{2+}c_{7}^{+}M^{2+}c_{7}^{+}M^{2+}c_{7}^{+}M^{2+}c_{7}^{+}M^{2+}c_{7}^{+}M^{2+}c_{7}^{+}M^{2+}c_{7}^{+}M^{2+}c_{7}^{+}M^{2+}c_{7}^{+}M^{2+}c_{7}^{+}M^{2+}c_{7}^{+}M^{2+}c_{7}^{+}M^{2+}c_{7}^{+}M^{2+}c_{7}^{+}M^{2+}c_{7}^{+}M^{2+}c_{7}^{+}M^{2+}c_{7}^{+}M^{2+}c_{7}^{+}M^{2+}c_{7}^{+}M^{2+}c_{7}^{+}M^{2+}c_{7}^{+}M^{2+}c_{7}^{+}M^{2+}c_{7}^{+}M^{2+}c_{7}^{+}M^{2+}c_{7}^{+}M^{2+}c_{7}^{+}M^{2+}c_{7}^{+}M^{2+}c_{7}^{+}M^{2+}c_{7}^{+}M^{2+}c_{7}^{+}M^{2+}c_{7}^{+}M^{2+}c_{7}^{+}M^{2+}c_{7}^{+}M^{2+}c_{7}^{+}M^{2+}c_{7}^{+}M^{2+}c_{7}^{+}M^{2+}c_{7}^{+}M^{2+}c_{7}^{+}M^{2+}c_{7}^{+}M^{2+}c_{7}^{+}M^{2+}c_{7}^{+}M^{2+}c_{7}^{+}M^{2+}c_{7}^{+}M^{2+}c_{7}^{+}M^{2+}c_{7}^{+}M^{2+}c_{7}^{+}M^{2+}c_{7}^{+}M^{2+}c_{7}^{+}M^{2+}c_{7}^{+}M^{2+}c_{7}^{+}M^{2+}c_{7}^{+}M^{2+}c_{7}^{+}M^{2+}c_{7}^{+}M^{2+}c_{7}^{+}M^{2+}c_{7}^{+}M^{2+}c_{7}^{+}M^{2+}c_{7}^{+}M^{2+}c_{7}^{+}M^{2+}c_{7}^{+}M^{2+}c_{7}^{+}M^{2+}c_{7}^{+}M^{2+}c_{7}^{+}M^{2+}c_{7}^{+}M^{2+}c_{7}^{+}M^{2+}c_{7}^{+}M^{2+}c_{7}^{+}M^{2+}c_{7}^{+}M^{2+}c_{7}^{+}M^{2+}c_{7}^{+}M^{2+}c_{7}^{+}M^{2+}c_{7}^{+}M^{2+}c_{7}^{+}M^{2+}c_{7}^{+}M^{2+}c_{7}^{+}M^{2+}c_{7}^{+}M^{2+}c_{7}^{+}M^{2+}c_{7}^{+}M^{2+}c_{7}^{+}M^{2+}c_{7}^{+}M^{2+}c_{7}^{+}M^{2+}c_{7}^{+}M^{2+}c_{7}^{+}M^{2+}c_{7}^{+}M^{2+}c_{7}^{+}M^{2+}c_{7}^{+}M^{2+}c_{7}^{+}M^{2+}c_{7}^{+}M^{2+}c_{7}^{+}M^{2+}c_{7}^{+}M^{2+}c_{7}^{+}M^{2+}c_{7}^{+}M^{2+}c_{7}^{+}M^{2+}c_{7}^{+}M^{2+}c_{7}^{+}M^{2+}c_{7}^{+}M^{2+}c_{7}^{+}M^{2+}c_{7}^{+}M^{2+}c_{7}^{+}M^{2+}c_{7}^{+}M^{2+}c_{7}^{+}M^{2+}c_{7}^{+}M^{2+}c_{7}^{+}M^{2+}c_{7}^{+}M^{2+}c_{7}^{+}M^{2+}c_{7}^{+}M^{2+}c_{7}^{+}M^{2+}c_{7}^{+}M^{2+}c_{7}^{+}M^{2+}c_{7}^{+}M^{2+}c_{7}^{+}M^{2+}c_{7}^{+}M^{2+}c_{7}^{+}M^{2+}c_{7}^{+}M^{2+}c_{7}^{+}M^{2+}c_{7}^{+}M^{2+}c_{7}^{+}M^{2+}c_{7}^{+}M^{2+}c_{7}^{+}M^{2+}c_{7}^{+}M^{2+}c_{7}^{+}M^{2+}c_{7}^{+}M^{2+}c_{7}^{+}M^{2+}c_{7}^{+}M^{2+}c_{7}^{+}M^{2+}c_{7}^{+}M^{2+}c_$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -1.56        | 2.0  | 1.050 |
| 15         | $Cu_{20}^+ (Cu_{2^+}^{2+} + c_{2}^{2} - Cn_{2^+}) = c_{1,4}^{2-1} (Fe^{3+} + c_{2}^{2} - Mo^{4+} + c_{2}^{2} + c_{2}^{2} - Cu^{-} + Cu^{-} + c_{2}^{2} - Cu$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -3.13        | 4.8  | 1.036 |
| 16         | $Cut_{-1}(Cu2t_{-1}G2t_{-1}G2t_{-1}G3t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2t_{-1}G2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | +1.76        | 27   | 1.000 |
| 17         | $Cu_{-4,54}Cu_{-4,54}Cu_{-4,54}Cu_{-6,52}Cu_{-6,55}Cu_{-6,55}Cu_{-6,52}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{-6,54}Cu_{$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0.54        | 0.8  | 1.000 |
| 18         | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -2 41        | 37   | 1.040 |
| 10         | $Cu = \frac{1}{20}(Cu^2 + \frac{1}{4.06}(Cu^2 + \frac{1}{1.01})(2m_{0.60})(5.87)(1 + Cu^2 + \frac{1}{0.40})(2m_{0.66})(1 + \frac{1}{1.54})(2m_{0.66})(1 + \frac{1}{1.54})(2m_{0.66}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.56         | 0.0  | 1.043 |
| 20         | $Cu + (Cu^{2} + Ga^{2} + Ga^{2} + 7a) + (Ea^{3} + V^{3} + Ma^{4} + )(Ca^{4} + Ga^{3} + Ac^{5} + )S$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -0.30        | 0.9  | 1.042 |
| 20         | $Cu^{+}_{20}(Cu^{2}_{4.80}) \stackrel{e^{-}_{0.97}}{\longrightarrow} \frac{0.97}{4.80} \stackrel{e^{-}_{0.97}}{\longrightarrow} \frac{1}{3.27} \stackrel{e^{-}_{1.39}}{\longrightarrow} \frac{1}{3.27} e^$ | -0.4         | 0.0  | 1.045 |
| 21         | $Cu^{+}_{22}(Cu^{2}+_{4,37}L^{2n}+_{1.76})_{6,13}(L^{20}+_{0,13}V^{3}+_{1.87})_{2}(Ce^{n}+_{3.26}H^{3n}+_{2.15})_{5,41}S_{32}^{*}_{44}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0.05        | 1.5  | 1.090 |
| 22         | $Cu + \frac{16}{16} (Cu^{2+} - \frac{6}{6.79} + \frac{2}{2.14} + \frac{3}{8.93} (1 + \frac{6}{0.32} + \frac{3}{1.18} + \frac{3}{2} + \frac{3}{2.14} + \frac{3}{8.93} + \frac{3}{2.14} + \frac{3}{8.93} + \frac{3}{2.14} + \frac{3}{8.93} + 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.9         | 11.  | 0.060 |
| <b>1</b> 2 | $(\Delta_{r+16} C_{12})^{+} C_{2.96} (G^{2+} + _{4.56} V^{3+} + _{1.18})_{5.74} J_{32\cdot 50}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -2.4         | 5.0  | 0.909 |
| 23         | $\left[ AG_{0.03}^{+}Cu_{-16}^{+}\right]_{16.03}^{+}\left[ Cu_{-16}^{+}\right]_{0.02}^{+}Li_{0.03}^{+}Li_{0.03}^{+}\left[ Cu_{-16}^{+}\right]_{0.03}^{+}Li_{0.03}^{+}\left[ Cu_{-16}^{+}\right]_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.03}^{+}Li_{0.0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.71         | 1 1  | 0.004 |
| 24         | $W^{+}_{0.11} D J^{5}_{003} J_{4.74} (Ge^{+}_{4.03} S II^{+}_{0.04} G d^{5}_{-}_{0.05} A S^{5}_{-0.44} J_{4.56} S_{31.78}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.71        | 1.1  | 1.00  |
| 24         | $Cu^{+}_{16}(Cu^{2+}_{6.60}\Delta\Pi_{0.14})_{7.74}\Gamma^{e_3+}_{2.93}(Ge^{a_{+}}_{4.73}AS^{3+}_{0.60})_{5.33}S_{32\cdot00}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -1.81        | 2.8  | 1.00  |
| 20         | $Cu^{+}_{20}[Cu^{2+}_{3,1}Fe^{2+}_{1,97}Ln_{0.96}]_{603}[Fe^{3+}_{1,84}V^{3+}_{0,08}W^{3+}_{0,01}]VO^{3+}_{0,07}]_{2}(Ge^{4+}_{4,18}Ga^{3+}_{0,06}AS^{3+}_{1,40}]_{5,64}S_{32\cdot33}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -2.69        | 4.Z  | 1.040 |
|            | $Cu^{2}_{20}(Cu^{2+3}_{3,10}Fe^{2+1}_{1,81}Zn_{0.96})_{5,87}Fe^{3+2}_{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -2.376       | 3.1  |       |
|            | $(Ge^{4+}_{4.18}Ga^{3+}_{0.06}AS^{5+}_{1.40}V^{5+}_{0.08}W^{4+}_{0.01}MO^{5+}_{0.07})_{5.86}S_{32\cdot33}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.04         |      | 4.057 |
| 26         | $Cu^{-}_{20}[Cu^{2+}_{2,36}Fe^{2+}_{3,45}Zn_{0.66}]_{6,47}[Fe^{3+}_{1.6}V^{3+}_{0.06}W^{4+}_{0.05}MO^{3+}_{0.27}]_{2}[Ge^{4+}_{4,11}Ga^{3+}_{0.09}As^{5+}_{1.25}]_{5,45}S_{32\cdot08}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -2.21        | 3.4  | 1.057 |
| 27         | $Cu^{+}_{20}(Cu^{2+}_{2.07}Fe^{2+}_{3.26}Zn_{0.64})_{5.97}(Fe^{3+}_{1.87}V^{3+}_{0.06}W^{4+}_{0.02})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -2.8         | 4.3  | 1.040 |
|            | $MO^{3+}_{0.05})_2(Ge^{4+}_{4.32}Ga^{3+}_{0.07}As^{5+}_{1.29})_{5.68}S_{32\cdot35}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.45         |      |       |
|            | $Cu_{20}^{+}(Cu_{24}^{+})_{207}^{-}Fe_{3,13}^{+}Zn_{0.64}^{-})_{584}^{+}Fe_{3+2}^{-}(Ge_{4+4,32}^{+}Ga_{3+0.07}^{-}As_{5+1,29}^{+}V_{5+0.06}^{+}W_{4+0.02}^{+}Mo_{3+0.05}^{+})_{581}^{-}S_{32\cdot35}^{-}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -2.45        | 3.8  |       |
| 28         | $Cu^{+}{}_{20}(Cu^{2+}{}_{3.29}Fe^{2+}{}_{1.93}Zn_{0.93})_{6.15}(Fe^{3-}{}_{1.76}W^{4+}{}_{0.23}MO^{3+}{}_{0.01})_{2}(Ge^{4+}{}_{3.94}Ga^{3+}{}_{0.29}As^{3+}{}_{1.54})_{5.77}S_{32\cdot07}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -1.28        | 2.0  | 1.057 |
| 29         | $Cu_{20}^{+}(Cu_{2+2,45}^{+}Fe_{3,31}^{+}Zn_{0,3})_{6.06}^{-}(Fe_{3+1,88}^{+}V_{3+0.06}^{+}Mo_{3+0.06}^{+})_{2}^{-}(Ge_{4+4,47}^{+}Ga_{3+0.10}^{+}As_{5+1.19}^{+})_{5.76}^{-}S_{32\cdot18}^{-}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -2.11        | 3.3  | 1.051 |
|            | $Cu_{20}^{+}(Cu_{245}^{+}Fe_{319}^{+}Zn_{03})_{5.94}Fe_{3+2}^{+}(Ge_{4+4.47}^{+}Ga_{3-0.10}^{+}As_{3+1.19}^{+}V_{3+0.06}^{+}Mo_{3+0.06}^{+})_{5.88}S_{32+18}^{-}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -1.87        | 2.9  |       |
| 30         | $Cu_{20}^{+}(Cu_{3,29}^{+}Fe^{2}+{}_{2,25}Zn_{0,89})_{6,43}(Fe^{3}-{}_{1.86}V^{3}+{}_{0.06}Mo^{3}+{}_{0.08})_{2}(Ge^{4}+{}_{4,25}Ga^{3}+{}_{0.11}As^{5}+{}_{1.37})_{5,73}S_{31\cdot 84}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -0.64        | 1.0  | 1.071 |
| 31         | $Cu_{20}^{+}(Cu_{3.49}^{+}Fe^{2}+{}_{2.26}^{-}Zn_{0.42})_{6.17}^{-}(Fe^{3}+{}_{1.53}^{-}V^{3}+{}_{0.08}^{-}W^{4}+{}_{0.03}^{-}Mo^{3}+{}_{0.36}^{-})_{2}^{-}(Ge^{4}+{}_{4.19}^{-}Ga^{3}+{}_{0.06}^{-}As^{5}+{}_{1.52}^{-})_{5.77}^{-}S_{32\cdot06}^{-}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -1.21        | 1.9  | 1.057 |
| 32         | $Cu_{20}^{+}(Cu_{2+265}^{2}Fe_{3,00}^{2}Zn_{0.63})_{6,48}^{-}(Fe_{1,89}^{3}W_{4+0.06}^{4}Mo_{3+0.05})_{2}^{-}(Ge_{4+4,19}^{4}Ga_{3+0.05}^{3}As_{5+1.66})_{5.9}^{-}S_{31\cdot63}^{-}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | +0.97        | 1.5  | 1.085 |
| 33         | $Cu_{20}^{+}(Cu_{3,45}^{+}Fe_{2,28}^{+}Zn_{0.60})_{6,33}^{-}(Fe_{-1.70}^{+}V_{-0.10}^{+}W_{-0.04}^{+}Mo_{3+}^{-}0.16)_{2}^{-}(Ge_{-1.12}^{+}Ga_{3+}^{-}0.32As_{-1.55}^{+})_{5.99}^{-}S_{31+68}^{-}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -0.64        | 1.0  | 1.083 |
| 34         | $Cu_{20}^{+}(Cu_{233}^{+}Fe_{3,53}^{-}Zn_{0.66})_{6,52}^{-}(Fe_{3+1,73}^{+}V_{3+0.08}^{+}W_{4+0.04}^{+}Mo_{3+0.15}^{-})_{2}^{-}(Ge_{4+4.26}^{+}Ga_{3+0.05}^{+}As_{5+1.24}^{+})_{5,55}^{-}S_{31+92}^{-})_{2}^{-}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -1.37        | 2.1  | 1.069 |
| 35         | $Cu_{^+22}(Cu_{^{2+}2.72}Fe_{^{2}.61})_{6.33}Fe_{^{3+}2}(Ge_{^{4+}3.46}As_{^{5+}2.03})_{5.49}S_{32\cdot 18}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | +0.29        | 0.4  | 1.113 |
| 36         | $Cu_{16}^{+}(Cu_{4.44}^{2}Zn_{2.60})_{7.04}Fe_{12.51}^{+}(Ge_{4-4.46}^{-}As_{-0.16}^{5+}V_{-1.75})_{6.37}S_{32\cdot08}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | +0.84        | 1.3  | 0.995 |
|            | $Cu_{16}^{+}(Cu_{4.44}^{2}Zn_{2.60})_{7.04}^{-}(Fe_{3}^{+})_{0.25}^{-}V_{5}^{+})_{1.75}^{-})_{2}^{-}(Fe_{3}^{+})_{2.26}^{-}Ge_{4}^{+}+_{4.46}^{-}As_{5}^{+})_{0.16}^{-})_{6.88}^{-}S_{32\cdot08}^{-}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -2.66        | 4.1  |       |
| 37         | $Cu_{20}^{+}(Cu_{1.76}^{2}Fe_{2.71}^{2}Zn_{2.62})_{7.09}^{-}(Fe_{3}^{+})_{0.21}^{-}V_{1.79}^{3})_{2}^{-}(Ge_{4}^{+})_{4.42}^{-}As_{5}^{+})_{0.53}^{-})_{4.95}^{-}S_{31.96}^{-}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -3.41        | 5.3  | 1.065 |
|            | $Cu_{20}^{+}(Cu_{1.76}^{2}Fe_{1.62}^{2}Zn_{2.62})_{6.00}^{-}(Fe_{1.30}^{3+}V_{0.70})_{2}^{-}(Ge_{1.42}^{4}As_{1.50}^{5+}V_{1.09})_{6.04}^{-}S_{31.96}^{-}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.14        | 0.2  |       |



Fig. 3. Ratio Me/S in analyses of germanite. Groups of the analyses: (I) analyses with the relationship Me/S close to 1; (II) analyses with the relationship Me/S close to 1:062; and (III) analyses with the relationship Me/S close to 1:125.

This isomorphism was earlier revealed in another complex Ge sulfide, renierite (Bernstein, 1986). In renierite, this dependence is more clearly pronounced than in germanite, possibly due to a more complex character of isomorphism in the latter (because germanite contains admixtures of V, Mo, W, and Ga, which are absent in renierite). According to data of E. Spiridonov (1987), in germanite Fe<sup>3+</sup> occupies the same site that is occupied by V<sup>3+</sup> in colusite; therefore, V<sup>3+</sup> can substitute Fe<sup>3+</sup> in germanite as well.

A recalculation of the analyses has demonstrated that only 28 analyses from among 37 ones are adequately recalculated to the formula with 66 atoms in the unit cell (in 6 of them, the valence balance slightly exceeds 3%). Six analyses can only be recalculated to the formula with 64 atoms in the unit cell (in 2 of the 6 analyses, the valence balance slightly exceeds 3%), and 3 analyses are well recalculated only on condition that the unit cell contains 68 atoms (Table 4). The Me/S ratio in the analyses varies from 0.904 to 1.113, grouping about the values 1.00, 1.062, and 1.125, corresponding to the Me/S ratios equal to 32:32, 34:32, and 36:32 (Fig. 3). Thus, the cation/anion ratio in real analyses is not constant. This suggests that we deal either with solid solutions or with three different, but similar in the chemical composition and properties, minerals. The second assumption is more probable. Were there an area of solid solutions, the Me/S ratio would be continuous from 1 to 1.125.

So, the 37 analyses are subdivided into three groups calculated based on 64, 66, and 68 atoms in the unit cell. For each group, variations of the principal components (Table 5), their average values (Table 6), as well as the average values of the components occupying different sites in the crystal structure of the mineral (Table 7) are specified. The Cu content generally increases with increasing the number of atoms in the unite cell; the content of Ge and divalent cations decreases in this same direction, which once more illustrates the existing obvious, although relatively slight, differences in the three groups of chemical analyses of germanite, as well as the presence of the isomorphism  $Zn^{2+} + Ge^{4+} \rightarrow Cu^+ + As^{5+}$ . Empirical formulae of the average analyses calculated based on different numbers (64, 66, and 68) of atoms in the unit cell will be as follows:

 $Cu_{^+16}(Cu_{^+6.0}Fe_{^+0.8}Fe_{^3+_{3.5}}(Ge_{^{4+}4.4}As_{^{5+}1.1})_{5.5}S_{32.2}$   $\Delta$  =  $-1.2;\,1.9\%$ 

 $\begin{array}{l} Cu_{+_{20}}(Cu_{+_{33}}Fe_{+_{20}}Zn_{0.8})_{6.1}Fe_{+_{20}}(Ge_{+_{42}}As_{+_{1.6}})_{5.8}S_{32.1}\\ \Delta = -1.2; \ 1.9\% \end{array}$ 

 $\begin{array}{l} Cu_{+_{22}}(Cu_{+_{24}}^{2}Fe_{+_{24}}^{2}Zn_{_{0.6}})_{59}Fe_{+_{20}}^{3}(Ge_{+_{40}}^{4}As_{+_{21}})_{5.1}S_{_{322}}\\ \Delta = -1.9;\ 2.9\% \end{array}$ 

The conclusion on the existence of the three different mineral species can also be derived through drawing an analogy between germanite, on the one hand, and chalcopyrite, talnakhite, mooihoekite, and haycockite, on the other. Until the 1970s, the four last-mentioned minerals were mistaken as a single mineral, chalcopyrite, because of the closeness of their chemical composition and physical properties. In 1967, the work by L. Cabri (1967) was published on cubic chalcopyrite that was found to be an individual mineral species, talnakhite; within 5 years, 2 more mineral species, mooihoekite and haycockite, were discovered (Cabri et al., 1972). Their crystal structures, as well as that of germanite, represent superstructures from the sphalerite structure. As is seen from Table 8, their Me/S ratios are the same as those, around which these ratios are grouped in the real analyses of germanite. This suggests an existence of three independent minerals. Based on the above-presented formulae of chalcopyrite, talnakhite, and mooihoekite, it is easy to obtain germanite formulae with the Me/S ratio equal to 1, 1.062, and 1.125.

In case of substitution  $Fe^{3+}_{13} \rightarrow Me^{2+}_7 + (Ge^{4+}_5As^{5+})_6$  in chalcopyrite  $-Cu^+Fe^{3+}S_2 \rightarrow$ 

| An.calc., |      | Cu   | 1    | Fe   | Zn   |      | (    | Ge   | Ā    | As   | Ge+A | s+Ga |
|-----------|------|------|------|------|------|------|------|------|------|------|------|------|
| based on: | from | to   |
| 64 atoms  | 40.9 | 48.1 | 5.2  | 8.3  | 0    | 5.4  | 9.7  | 10.9 | 0    | 2.6  | 11.0 | 13.4 |
|           | 20.4 | 22.8 | 2.9  | 4.5  | 0    | 2.6  | 4.1  | 4.7  | 0    | 1.07 | 4.6  | 6.4  |
| 66 atoms  | 39.4 | 48.8 | 1.3  | 10.7 | 0    | 5.5  | 5.1  | 10.1 | 1.3  | 7.6  | 11.2 | 13.8 |
|           | 20.4 | 24.9 | 0.8  | 6.3  | 0    | 2.6  | 2.3  | 4.6  | 0.5  | 3.27 | 4.9  | 6.0  |
| 68 atoms  | 43.6 | 50.9 | 3.2  | 9.8  | 0    | 3.10 | 7.2  | 9.0  | 4.7  | 4.9  | 12.1 | 13.7 |
|           | 23.7 | 26.4 | 1.9  | 5.6  | 0    | 1.6  | 3.3  | 4.3  | 2.0  | 2.2  | 5.4  | 6.4  |

Table 5. Variations in concentrations of the principal components in the chemical composition of germanite, in wt. % (upper row) and in f.u. (lower row)

 Table 6. Average concentrations of the principal components in the chemical composition of germanite, in wt. % (upper row) and in f.u. (lower row)

| An.calc.,<br>based on: | Cu   | Fe  | Zn F | e + Zn | Ge   | As Ge+ | -As+Ga S |      |  |
|------------------------|------|-----|------|--------|------|--------|----------|------|--|
| 64 atoms               | 45.2 | 6.3 | 1.95 | 8.2    | 10.2 | 1.5    | 12.6     | 33.6 |  |
|                        | 23.3 | 3.4 | 0.9  | 4.3    | 4.3  | 0.6    | 5.4      | 32.2 |  |
| 66 atoms               | 45.5 | 6.0 | 1.6  | 7.6    | 9.1  | 3.5    | 13.0     | 31.7 |  |
|                        | 23.3 | 3.5 | 0.8  | 4.3    | 4.1  | 1.6    | 5.7      | 32.1 |  |
| 68 atoms               | 47.8 | 6.5 | 1.0  | 7.5    | 8.0  | 4.8    | 12.8     | 31.1 |  |
|                        | 24.9 | 3.8 | 0.5  | 4.3    | 3.7  | 2.1    | 5.8      | 32.2 |  |

Table 7. Average concentrations of the principal components in the chemical composition of germanite, in f.u.

| An.calc.  |     |           |                  |           |                   | $Fe^{3+} + V^{3+}$ | +                | Ge+As+           |          |  |
|-----------|-----|-----------|------------------|-----------|-------------------|--------------------|------------------|------------------|----------|--|
| based on: | Cu+ | $Cu^{2+}$ | Fe <sup>2+</sup> | $Zn^{2+}$ | $\Sigma Me^{2+2}$ | Mo + W             | Ge <sup>4+</sup> | As <sup>5+</sup> | Ga + V5- |  |
| 64 atoms  | 16  | 6.0       | 0.8              | 0.0       | 6.8               | 3.5                | 4.4              | 1.1              | 5.5      |  |
| 66 atoms  | 20  | 3.3       | 2.0              | 0.8       | 6.1               | 2.0                | 4.2              | 1.6              | 5.8      |  |
| 68 atoms  | 22  | 2.9       | 2.4              | 0.6       | 5.9               | 2.0                | 4.0              | 2.1              | 6.1      |  |

Table 8. Structural characteristics of germanite and minerals of the chalcopyrite group

| Mineral      | Formula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Sp. gr | Z  | Unit cell par<br>a | rameters, i<br>c | n Å Reference              | Me/S      |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----|--------------------|------------------|----------------------------|-----------|
| Chalcopyrite | $Cu^{+}Fe^{3+}S_{2} \rightarrow Cu^{+}{}_{16}Fe^{3+}{}_{16}S_{32}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 142d   | 4  | 5.281              | 10.401           | Hall <i>et al.</i> ,1973   | 1         |
| Talnakhite   | $Cu_{9}^{+}Fe_{8}S_{16}^{-} \rightarrow Cu_{18}^{+}Fe_{2}^{+}Fe_{3}^{+}Fe_{3}^{+}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{3}^{-}Fe_{$ | I43m   | 16 | 10.59              |                  | Cabri, 1967                | 1.062     |
| Mooihoekite  | $Cu^{+}_{9}Fe_{9}S_{16} \rightarrow Cu^{-}_{18}Fe^{2+}_{8}Fe^{3+}_{10}S_{32}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | P42m   | 8  | 10.58              | 5.37             | Cabri <i>et al.</i> , 1972 | 1.125     |
| Germanite    | $Cu_{26}Fe_4Ge_4S_{32} \rightarrow Cu_{16}^+Cu_{16}^2Cu_{10}^2Fe_{3}^{3+}Ge_4S_{32}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | P43n   | 1  | 10.58              | 62(5)            | Tettenhorst et al., 1      | 984 1.062 |

 $Cu_{16}^{+}Fe_{3}^{+}{}_{16}^{-}S_{32\prime}$  germanite  $-Cu_{16}^{+}Me_{77}^{-}Fe_{3}^{+}{}_{3}^{-}(Ge_{4}^{+}{}_{5}^{-}As_{5}^{5+})_{6}^{-}S_{32\prime}$  with the ratio Me/S=1 is formed.

In case of substitution  $Fe^{3+}_{12} \rightarrow Cu^+_2 + Me^{2+}_4 + (Ge^{4+}_4As^{5+}_2)_6$  in talnakhite - $Cu^+_9Fe^{2+}Fe^{3+}_7S_{16} \rightarrow Cu^+_{18}Fe^{2+}_2Fe^{3+}_{14}S_{32}$ , germanite  $Cu^+_{20}Me^{2+}_6Fe^{3+}_2(Ge^{4+}_4As^{5+}_2)_6S_{32}$  with the ratio Me/S = 1.062 is formed.

In case of substitution  $Fe^{2+}{}_2Fe^{3+}{}_8 \rightarrow Cu^+{}_4 + Ge^{4+}{}_6$  in mooihoekite  $Cu^+{}_9Fe^{2+}{}_4Fe^{3+}{}_5S_{16} \rightarrow Cu^+{}_{18}Fe^{2+}{}_8Fe^{3+}{}_{10}S_{32}$ , germanite  $Cu^+{}_{22}Me^{2+}{}_6$   $Fe^{3+}{}_2Ge^{4+}{}_6S_{32}$  with the ratio Me/S = 1.125 is formed. Taking into account the isomorphism  $Zn^{2+} + Ge^{4+} \rightarrow Cu^+ + As^{5+}$ , the formula appears as  $Cu^+{}_{22}Me^{2+}{}_6Fe^{3+}{}_2(Ge_{4}As)_6S_{32}$ , which corresponds to the formula by E. Spiridonov with co-authors (1992). In all the formulae,  $Me^{2+}$  is  $Cu^{2+}$ ,  $Fe^{2+}$ ,  $Zn^{2+}$ .

The similarity between these formulae to those obtained through recalculation of the average analyses for each group is obvious. That once more confirms the logic of the conclusion on the existence of three mineral species chemically close to germanite.

## References

- Bernstein L.R. Renierite, Cu<sub>10</sub>ZnGe<sub>2</sub>Fe<sub>4</sub>S<sub>16</sub> Cu<sub>11</sub>GeAsFe<sub>4</sub>S<sub>16</sub> a coupled solid solution series. // Amer. Mineral., **1986**, vol. 71, pp.210-221.
- *Cabri L.J.* A new copper iron sulfide. // Econ. Geol., **1967**, vol. 62, № 7, pp. 910-925.
- Cabri L.J. and Hall S.R. Mooihockite and Haycockite, two new new copper-iron sulfides, and their relationship to chalcopyrite and talnakhite. // Amer. Mineral., **1972**, vol. 57, pp.689-708.
- De Jong W.G. Die Kristallstruktur von Germanit. // Zeitschrift fur Kristallographie, 1930, vol.73, s.176-180.

- Francotti J., Moreau J., Ottenburgs R., Levy C. La briartite, Cu<sub>2</sub>(Fe,Zn)GeS<sub>4</sub>, une nouvelle espece minerale. // Bull. Soc. Franc. Miner. Crist. **1965**, vol. LXXXVIII, 432-437.
- Geier B.H., Ottemann J. New Primary Vanadium-, Germanium-, Gallium-, and Tin- Minerals from the Pb-Zn-Cu- Deposit Tsumeb, South West Africa. // Mineral. Deposita, **1970**, vol. 5, № 1, pp. 29-40.
- Godovikov A.A. Strukturno khemicheskaya sistematika mineralov (Structural-chemical mineral systematics.) // Mineralogical Museum, **1997**, 247 p. (Rus.)
- Hall S.R. and Stewart J.M. The crystal structure refinement of chalcopyrite, CuFeS<sub>2</sub>. // Acta Cryst., **1973**, B 29, pp.579-585.
- Khoroshilova L.A. and Yanulov K.P. Rentgenograficheskaya diagnostika mineralov grypp syl'vanita i kolysita (X-ray diffraction diagnostics of minerals of the sulvanite and colusite groups). // Tr. Inst. Geol. Komi Nauch. Ts., **1988**, no. 66, pp. 70–79. (Rus.)
- Kovalenker V.A., Tsonev D., Breskovska V.V., Malov V.S., Troneva N.V. Novye dannye po mineralogiimednokolchedannykh mestorozhdeniy Tzentral'nogo Srednegor'ya Bolgarii (New data on mineralogy of copper VMSD of the central Sredna Gora Range, Bulgaria). // Metamorphism, mineralogy, and problems of genesis of gold and silver ore deposits. Moscow: Nauka, **1986**, pp. 91–110. (Rus.)
- *Levy C.* Contribution a la mineralogie des sulfures de cuivre du type Cu<sub>3</sub>XS<sub>4</sub>. // Mem. Bur. Rech. Mineral. **1966**, vol. 54, pp.3-178.
- Loginova L.A. Opyt izmereniya opticheskikh postoyannykh germanita I ren'erita (Experience of measuring the optical constants of germanite and renierite). // Tr. IMGRE, **1960**, no. 4, pp. 224 – 234. (Rus.)

- Mozgova N.N., Borodaev Yu.S., Nenasheva S.N., Efimov A.V., Gandhi S.M., and Mookherjee A. Rare Minerals from Rajpura — Dariba, Rajasthan, India. VII: Renierite. // Mineralogy and Petrology. **1992**, vol. 46, pp.55 — 65.
- Pufahl O. «Germanit» ein Germanium- Mineral und Erz von Tsumeb, Sud-West-Africa. // Metall u. Erz., **1922**, Bd. 19, s. 324-325.
- *Rowland J.F. and Hall S.R.* Haycockite, Cu<sub>4</sub>Fe<sub>5</sub>S8 : a superstructure in the chalcopyrite series. // Acta Cryst., **1975**, B 31, pp.2105-2112.
- Schneiderhuhn H. Die Erzlagerstatten des Otaviberglandes, Deutsch-Sud-West-Afrika. // Metall u. Erz. **1920**, **1921**, Bd. 17 u. 18, 48.
- Sclar C.B., Geier B.H. The paragenetic relationships of germfnite and renierite from Tsumeb, South-West-Africa. // Econ. Geol., **1957**, vol. 52, № 6, pp.612-631.
- Spiridonov E.M. O sostave germanita (On the composition of germanite). // Dokl. Akad. Nauk SSSR, 1987, vol. 295, no. 2, pp. 477– 481. (Rus.)
- Spiridonov E.M., Kachalovskaya V.M., Kovachev V.V., Krapiva L.Ya. Germanokolysit Cu<sub>26</sub>V<sub>2</sub>(Ge,As)<sub>6</sub>S<sub>32</sub> — novyi mineral (Germanocolusite, Cu<sub>26</sub>V<sub>2</sub>(Ge,As)<sub>6</sub>S<sub>32</sub>, a new mineral). // Vestn. Mosk. Univ., **1992**, Ser. Geol, no.6, pp. 50-54. (Rus.)
- Springer G. Microanalytical investigation into germanite, renierite, briartite and gallite. // N. Jb. Miner. Mh., **1969**, pp. 435-440.
- Tettenhorst R.T., Corbato C.E. Crystal structure of germanite, Cu<sub>26</sub>Ge<sub>4</sub>Fe<sub>4</sub>S<sub>32</sub>, determined by X-ray powder diffraction. // Amer. Mineral., **1984**, vol. 69, pp. 943-947.
- Viaene W., Moreau J. Contribution a l'etude de la germanite, de la renierite et de la briartite.
  // Ann. De la Societe Geologique de Belgique. 1968, n. 91, pp. 127 143.