Armalcolite: A new mineral from the Apollo 11 samples*

A. T. ANDERSON

Department of Geophysical Sciences, University of Chicago, Chicago, Illinois 60637

T. E. BUNCH

Space Science Division, NASA, Ames Research Center, California 94035

E. N. CAMERON

Department of Geology and Geophysics, University of Wisconsin, Madison, Wisconsin 53706

S. E. HAGGERTY, F. R. BOYD and L. W. FINGER

Geophysical Laboratory, Carnegie Institution of Washington, Washington, D.C. 20008

O. B. JAMES

U.S. Geological Survey, Washington, D.C. 20242

K. Keil and M. Prinz

Department of Geology, Institute of Meteoritics, University of New Mexico, Albuquerque, New Mexico 87106

and

P. RAMDOHR and A. EL GORESY Max-Planck Institut für Kernphysik, Heidelberg, Germany

(Received 16 February 1970; accepted in revised form 24 February 1970)

Abstract—Armalcolite, $(Fe_0^{2+}, Mg_{\bullet, 5})Ti_2O_5$, is a new mineral from Tranquillity base with the pseudobrookite structure (a=9.743 Å, b=10.024 Å, c=3.738 Å, V=365.077 ų). Theoretical density is 4.64 g/cm³. The mineral is opaque, blue-gray in reflected light, and distinctly anisotropic. Reflectivity values in air at 450 nm are $R_1=14.1$ per cent, $R_2=15.2$ per cent, and at 640 mm are $R_1=13.0$ per cent, $R_2=14.1$ per cent. Synthesis of the end members $Fe^{2+}Ti_2O_5$ and $MgTi_2O_5$ and armalcolite has been accomplished at $1300^{\circ}C$.

INTRODUCTION

ARMALCOLITE (Fe_{0.5}Mg_{0.5}Ti₂O₅), a new magnesium-rich opaque oxide related to the pseudobrookite series, was discovered independently by six research groups in their examination of different samples of the lunar material collected from Mare Tranquillitatis.

Compositionally the mineral is intermediate between two end members, $Fe^{2+}Ti_2O_5$ and $MgTi_2O_5$. Neither of these end members is known to occur naturally. Armalcolite is proposed for the composition $FeMgTi_2O_5$; new mineral names for the end members are not proposed. Ferro-armalcolite is rich in $Fe^{2+}TiO_5$, and magnesian

^{*} This report by S. E. HAGGERTY is a compilation of analytical data on a armalcolite reported by six groups of investigators at the Apollo 11 conference and published in *Science*, January 30, 1970. Discussion of the paragenesis and origin of this mineral has been omitted, thus allowing free expression and interpretation by the various authors in their individual papers.

armalcolite is rich in MgTi₂O₅. Analyses of lunar armalcolite show that in addition to Fe²⁺, Ti and Mg, minor concentrations of Cr, Al, Mn, V, Ca and Zr are present. The phase is sufficiently different from related minerals in terrestrial occurrences to warrant a new mineral name.

The name armalcolite is derived from the initial letters of the three astronauts, Neil A. Armstrong, Edwin E. Aldrin and Michael Collins, who were responsible for collection and return of the Apollo 11 material. Type material is deposited at the Lunar Science Institute, Houston, Texas.

OCCURRENCE

Isolated grains of armalcolite have been identified in the crystalline rocks (10022-37; 10071-28) and in rock fragments within the microbreccias (10059-27; 10067-8; 10068-25; 10084-64). In polished thin sections, grains were observed to be generally

Table 1. Reflectivity values of armalcolite for selected wavelengths between 450 and 640 nm* in air

	Armalcolite			
Wavelength (nm)	R_1	R_2		
450	14.1	15.2		
470	14.0	15.0		
50 0	13.8	14.7		
520	13.7	14.5		
546	13-4	14.4		
589	13-3	14.3		
620	13-2	14.2		
640	13-0	14.1		

^{*} All values in per cent. Accuracy ± 0.2 per cent Measurements carried out by E. N. Cameron, University of Wisconsin.

rectangular in outline, with the longest dimensions in the range $100-300 \,\mu\text{m}$. In all but one case (an inclusion in a feldspar-rich fragment, 10084-12) the mineral is mantled by a well defined overgrowth of ilmenite. In all cases armalcolite is optically homogeneous and free of exsolution or alteration products.

OPTICAL PROPERTIES

Armalcolite is opaque, gray and distinctly pleochroic. Its reflection anisotropy in oil varies from pale gray (minimum) to dark blue-gray (maximum) on rotation of the stage. It is free of internal reflections, with estimated white light reflectivity values in oil in the range 15–18 per cent. Quantitative reflectivity data for selected wavelengths between 450 and 640 nm in air are given in Table 1. The reflectivity and microhardness of armalcolite are less than that of ilmenite (Plate 8).

CHEMISTRY

Electron microprobe analyses (Table 2) indicate that the new mineral has the generalized formula $Fe_{0.5}^{2+}Mg_{0.5}Ti_2O_5$. The range in major element concentrations reported by the various investigating groups is as follows: 71·1–75·6 per cent TiO₂,

Table 2. Electron microprobe analyses for armalcolite

nvestigating group*: Sample No.:	1 10022-37 Grain #1	1 10022-37 Grain a_2	1 10022-37 Grain <i>b</i> ₁	1 10022-37 Grain b ₂	2 1007128	3 100 Grain <i>a</i>	3 100 Grain <i>b</i>	4 10059-27	5 10068	6 10084-12
TiO ₂	70.9	71.6	71.2	71.0	73.4	72.36	71-63	75.6	72.0	71.9
Al_2O_3	1.8	1.8	2.0	1.8	1.62	2.01	2.18	1-87	1-48	0.97
Cr ₂ O ₃	1.3	1.3	1.25	1.02	2.15	1.37	1.38	1.81	1.94	1.26
FeO	16.9	15•7	16.0	1 7· 3	15.3	16.95	18.01	11.9	14.7	11.32
MnO	0.02	0.02	0.03	0.03	0.08	0.02	0.05		0.07	0.01
MgO	8.6	8.9	8·7	8.0	7.70	5-98	5.52	8.12	8.7	11.06
CaO					0.01	0.13			0.32	
V_2O_3					<0.5				0.07	
CoO					< 0.02					
NiO					< 0.01					
CuO					<0.01					
ZnO					< 0.01					
Totals	99.52	99.32	99.18	99.15	100-25	98.82	98.77	99.30	99.28	96.52
			A	tomic proporti	ons based on 5	oxygens				
Ti	1.897	1.909	1.934	1.910	1.968	1.986	1.940	2.012	1.917	1.938
Al	0.076	0.076	0.085	0.076	0.068	0.085	0.093	0.077	0.062	0.041
Cr	0.037	0.037	0.036	0.029	0.061	0.039	0.040	0.051	0.055	0.036
Fe	0.506	0.469	0.483	0.521	0.456	0.512	0.547	0.352	0.438	0.342
Mn	0.001	0.001	0.001	0.001	0.002	0.001	0.001		0.002	
Мg	0.459	0.473	0.468	0.430	0.409	0.322	0.299	0.428	0.462	0.595
Ca					0.0004	0.005			0.012	
V									0.002	
Totals	2.976	2.965	3.000	<u>2·967</u>	2.914	2.920	2.920	2.950	2.952	

^{*} Investigating groups: (1) University of Chicago, (2) Geophysical Laboratory, (3) University of Wisconsin, (4) Max-Planck Institut, (5) University of New Mexico, (6) U.S. Geological Survey.

The positions of the analytical data points by Anderson (group 1) for grains a and b are shown in Fig. 2.

11·90–18·01 per cent FeO, 5·52–11·06 per cent MgO. Minor amounts of Cr_2O_3 (1·3–2·15 per cent), Al₂O₃ (1·48–2·18 per cent), MnO (0·01–0·08 per cent), and CaO (0·01–0·32 per cent) were also reported. The variations and spread in major element concentrations, in terms of the end members Fe²⁺Ti₂O₅ and MgTi₂O₅, are graphically expressed in the ternary diagram FeO–MgO–TiO₂ in Fig. 1.. Detailed analyses by

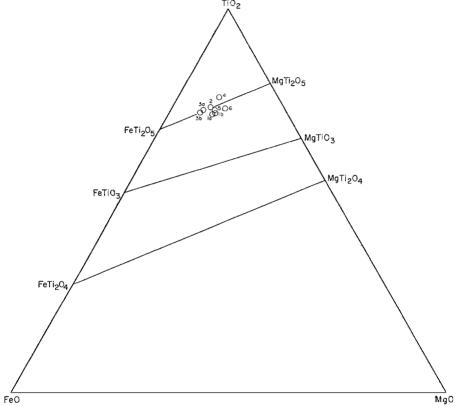


Fig. 1. Armalcolite analyses (wt. %) plotted on the join FeTi₂O₅-MgTi₂O₅ in the system FeO- MgO-TiO₂. The tie lines represent possible solid solution series. Investigating groups: (1) University of Chicago, (2) Geophysical Laboratory, (3) University of Wisconsin, (4) Max-Planck Institut, (5) University of New Mexico, (6) U.S. Geological Survey.

Anderson (Table 2, Fig. 2) indicate that armalcolite in section 10022-37 is unzoned, but similar electron microprobe analyses by Keil, Prinz and Bunch (Fig. 3) of an armalcolite grain in section 10059-27 show slight core-to-boundary variations in Fe, Ti and Mg; in both of these examples armalcolite is mantled by ilmenite and apparent zoning may be due to geometry effects.

Synthesis

Thermal stability experiments similar to those described by HAGGERTY and LINDSLEY (1970) for the series Fe₂TiO₅-FeTi₂O₅ are in progress for members of the join FeTi₂O₅ (F)-MgTi₂O₅ (M) at the Geophysical Laboratory. LINDSLEY (1965)

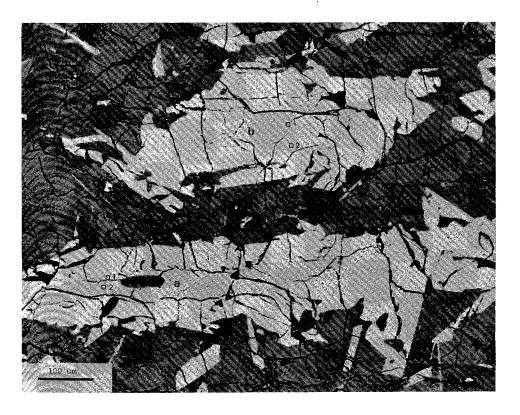


Fig. 2. Armalcolite (medium gray) rimmed by ilmenite (light gray). Electron microprobe analyses were carried out at points 1 and 2 in each of grains a and b by A. T. Anderson. These data are listed in Table 2 (group 1). Rock section 10022-37. Oil immersion, plane polarized light.

and Haggerty and Lindsley (1970) have established in reversible experiments that the FeTi₂O₅ end member breaks down to FeTiO₃ + TiO₂ at $1140^{\circ} \pm 10^{\circ}$ C. The predicted decomposition products for the end member MgTi₂O₅ are MgTiO₃ + TiO₂, whereas intermediate members should break down to FeTiO₃-MgTiO₃ ss + TiO₂.

Synthetic armalcolite with compositions $F_{40}M_{60}$, $F_{50}M_{50}$, $F_{60}M_{40}$, as well as the end members $FeTi_2O_5$ and $MgTi_2O_5$, have been successfully synthesized* at $1300^{\circ}C$; the intermediate members represent the span of analyses for the lunar armalcolite. The experimental products have a black metallic luster and provide an excellent polish. The synthetic minerals are gray and distinctly anisotropic in oil immersion in tones of pale gray with a tan tint. Estimated reflectivity values for the synthetic phases are comparable with lunar armalcolite (15–18 per cent). An equigranular texture with some well developed laths, and a large number of twinned grains (Fig. 4)

^{*} Experiments were carried out in sealed, evacuated silica glass tubes reacted for 2 hr. and quenched. Reactants were chemically pure and dried Fe, Fe_2O_3 , TiO_2 , and MgO. Compositions were thoroughly mixed and ground under alcohol for 2–4 hr before firing.

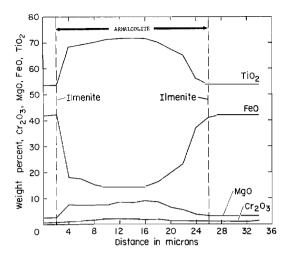


Fig. 3. Electron microprobe traverse across ilmenite-armalcolite-ilmenite, showing variations in Cr₂O₃, MgO, FeO and TiO₂ contents (University of New Mexico group).

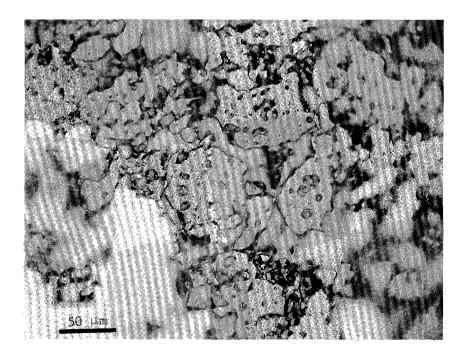


Fig. 4. An intergranular aggregate of synthetic armalcolite produced at 1300°C. Note the bladed form of some of the grains and also the twinned crystals. Oil immersion and polarized light, nicol ×10° (S. E. Haggerty).

are produced in each of the experiments. X-ray diffraction data for $F_{50}M_{50}$ are presented in Table 3.

X-RAY DIFFRACTION DATA

A small amount of armalcolite was extracted from the surface of polished section 10071-28 using the microsampling technique described by KINGSTON (1966). A Debye-Scherrer X-ray pattern using Mn filtered $\text{Fe}K_{\alpha}$ radiation was obtained on this material. These data (Geophysical Laboratory) are presented in Table 3, and the

Synthetic armalcolite				Lunar armalcolite			
hki	d (obs)	d (cal)	<u> </u>	d (obs)	d (cal)	I	
020	5.019	5.024	40				
200	4.879	4.876	80				
101, 220	3.493	3.499	100	3.468	3.483	100	
230	2.762	3.761	80	2.763	2.755	25	
301	2.452	2.452	10	2.454	2.452	25	
400	2.438	2.438	5				
131	2-415	2.416	10	2-414	2.428	10	
240	2.233	2.233	15	2.235	2.228	15	
420	2.194	2.193	4	2.199	2.191	15	
430	1.972	1.971	17	1.958	1.968	80	
250	1.858	1.858	8				
341	1.755	1.755	8	(.751	1.752	10	
060	1.675	1.675	10	1.669	1.669	10	
521	1.634	1.635	28	1.632	1.634	10	
600	1.625	1.625	13				
232, 620, 450	1.549	1.546	. 18				
531	1.537	1.536	8				
$a=9.752\pm0.003 \text{ Å} \ b=10.048\pm0.003 \text{ Å} \ c=3.736\pm0.004 \text{ Å} \ V=366.071\pm0.322 \text{ Å}^3$			$a = 9.743 \pm 0.03 \text{ Å}$ $b = 10.024 \pm 0.02 \text{ Å}$ $c = 3.738 \pm 0.03 \text{ Å}$ $V = 365.077 + 0.619 \text{ Å}^3$				

Table 3. X-ray data for synthetic and lunar armalcolite*

electron microprobe analysis for the same grain is listed in Table 2 (group 2). Diffractometer data on synthetic armalcolite (Table 3) were obtained with Ni-filtered CuKa radiation. A powdered Si internal standard was used whose absolute cell edge (a=5.4301~Å) was previously measured (J. Whitney, Dupont Co.) with a Hägg-Guinier camera and a Mann photometer. Refinement by computer of the unit cell was initiated for both the natural and synthetic armalcolite on values approximated from Pauling's (1930) structure for pseudobrookite. Lattice constants and unit-cell volume data for lunar and synthetic armalcolite and for the end members FeTi₂O₅ and MgTi₂O₅ are presented in Table 4.

DENSITY

The theoretical density of armalcolite is $4.94~g/cm^3$. This is the value determined for synthetic armalcolite, $F_{0.5}Mg_{0.5}Ti_2O_5$; the calculation is based on the unit-cell volume data presented above.

^{*} Diffractometer patterns and an internal Si standard were used for synthetic armalcolite (Fe₀²+5 Mg_{0.5}Ti₂O₅. A Debye-Scherrer pattern was used for the lunar armalcolite. This pattern was contaminated by adhering ilmenite. Reflections considered to be due to the armalcolite alone are presented (Geophysical Laboratory).

the members $Fe_{11_2O_5}$ and $Mg_{11_2O_5}$							
	a (Å)	b (Å)	c (Å)	V (Å3)			
Lunar armalcolite* Synthetic armalcolite†	9·743	10·024	3·738	365·077			
	9·75 2	10·048	3·736	366·071			
Synthetic FeTi ₂ O ₅ ‡ Synthetic MgTi ₂ O ₅ §	9•798	10·041	3·741	368·046			
	9•8	10·0	3·7	362·60			

Table 4. Comparison of lattice constants and unit-cell volume data for natural and synthetic armalcolite and for the members FeTi₂O₅ and MgTi₂O₅

DISCUSSION

Neither Fe²⁺Ti₂O₅ ("ferropseudobrookite")* nor MgTi₂O₅ ("karrooite")* has previously been found as a discrete end member in nature. Both phases have been synthesized, but a complete solid solution series between them has not yet been experimentally demonstrated. The formula of pure pseudobrookite is Fe³⁺₂TiO₅, and solid solution of MgTi₂O₅ or Fe²⁺Ti₂O₅ with this phase is accomplished by the coupled substitution (Mg, Fe²⁺)-Ti for Fe³⁺-Fe³⁺. Fe²⁺Ti₂O₅ and MgTi₂O₅ have been found as subordinate components in various pseudobrookite-like minerals in terrestrial occurrences (SMITH, 1965). An example of such a mineral is kennedyite (Fe³⁺₂MgTi₃O₁₀), a phase found in the Karroo basalts (von Knorring and Cox, 1961). Kennedyite is isostructural with pseudobrookite and contains 28·77 per cent Fe₂O₃ and 60·33 per cent TiO₂. The MgO content of kennedyite (6·45 per cent) is within the range of the lunar phase (5·52–11·06 per cent), but the apparent absence of Fe₂O₃ and higher TiO₂ content in armalcolite make its composition distinctive.

A low content of Fe_2O_3 in armalcolite is obviously essential for its recognition as a new mineral. There are several reasons that lead to the strong presumption that the concentration of Fe^{3+} is very small in this lunar phase. If the electron probe analyses of armalcolite are recalculated to an ionic formula where O=5 (Table 2), Ti is found to vary between 1·897 and 2·012 (mean 1·941), in comparison with the maximum possible value of 2·00. Inasmuch as half of any Fe^{3+} present must replace Ti, there is obviously not much possibility of significant Fe^{3+} . Moreover, native iron coexists with armalcolite in all samples. In conclusion, therefore, the presence of metallic iron, the occurrence of Cr^{2+} in olivine (Haggerty *et al.*, 1970), the compositions of other solid solutions (e.g. titanian chromite and chromian ulvöspinel; Agrell *et al.*, 1970), and the lack of ferric iron in chemical analyses of lunar rock samples (e.g. Rose *et al.*, 1970) indicate that these rocks crystallized under highly reducing conditions and that ferric iron is absent.

REFERENCES

^{*} Rock section 10071-28 (Type A lava).

[†] Geophysical Laboratory.

[‡] Акімото et al. (1957).

[&]amp; ZHDANOV and RUSAKOV (1952). ASTM Index File No. 9-16.

^{* &}quot;Ferropseudobrookite" (AGRELL and LONG, 1960) and "karrooite" (von Knorring and Cox, 1961) have no standing as mineral names.

AGRELL S. O. and LONG J. V. P. (1960) The application of the scanning X-ray microanalyser in mineralogy. In X-ray Microscopy and Microanalysis (editors, Engström, Cosslett and Pattee), pp. 391–400. Elsevier.

- AGRELL S. O., SCOON J. H., MUIR I. D., LONG J. V. P., McCONNELL J. D. C. and PECKETT A. (1970) Observations on the chemistry, mineralogy, and petrology of some Apollo 11 lunar fines and selected rocks. *Geochim. Cosmochim. Acta*, Supplement I.
- AKIMOTO S., NAGATA T. and KATSURA T. (1957) The TiFe₂O₅-Ti₂FeO₅ solid solution series. *Nature* 179, 37-38.
- HAGGERTY S. E., BOYD F. R., BELL P. M., FINGER L. W. and BRYAN W. B. (1970) Iron-titanium oxides and olivine from 10020 and 10071. Science 167, 613-615.
- HAGGERTY S. E. and LINDSLEY D. H. (1970) Stability of the pseudobrookite (Fe₂TiO₅)-ferropseudobrookite (FeTi₂O₅) series. *Carnegie Inst. Wash. Yearb.* 68, 247–249.
- KINGSTON G. A. (1966) The occurrence of platinoids and bismuthotellurides in the Merensky reef at Rustenburg platinum mine in the western Bushveld. *Mineral. Mag.* 32, 815–834.
- LINDSLEY D. H. (1965) Lower thermal stability of FeTi₂O₅-Fe₂TiO₅ (pseudobrookite) solid-solution series (Abstract). Geol. Soc. Amer. Spec. Paper 87, 97.
- Pauling L. (1930) The crystal structure of pseudobrookite. Z. Kristallogr. 73, 97-112.
- Rose H. J., CUTTITTA E. J., DWORNIK F., CARRON M. K., CHRISTIAN R. P., LINDSAY J. R., LIGON D. T. and LARSON R. R. (1970) Semimicro chemical and X-ray fluorescence analysis of lunar samples. *Science* 167, 520-521.
- SMITH D. G. W. (1965) The chemistry and mineralogy of some emery-like rocks from Sithean Sluaigh, Strachur, Argyllshire. *Amer. Mineral.* **50**, 1982–2022.
- von Knorring O. and Cox K. G. (1961) Kennedyite, a new mineral of the pseudobrookite series. *Mineral. Mag.* 32, 672-682.
- ZHDANOV G. S. and RUSAKOV A. A. (1952) Isomorphic series of A₂BO₅, with the type of anosovite. Dokl. Akad. Nauk SSSR 82, 901-904.