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ABSTRACT

Zunyite, a rare aluminosilicate mineral of composition

(OH, F) Si_0O,,Cl, has an unusual structure built up of Si5016

18811355920

groups of linked silicon tetrahedra and aluminium-oxygen groups
of linked octahedra. The structure proposed by Pauling is verified
and refined by X-ray methods, using 163 (hkO) reflections from
single-crystal photographs with Mo Ko radiation., Refinement of
positional parameters is carried out by the least-squares method,
with inclusion of off-diagonal terms in the normal equation matrix
because of overlap of oxygen atoms in the (100) projection. Refine-
ment of isotropic temperature parameters for separate atoms is
carried out with the use of difference syntheses, by methods dif-
fering somewhat from published ones. A general discussion of
isotropic temperature factor refinement from differerence syn-
theses is given, One stage of least-squares refinement using

410 (hhl) reflections is carried out, for comparison with the (hkO)
refinement, The corresponding accuracy of interatomic distances
is + 0,02 R, a large apparent temperature factor discrepancy be-
tween the two refinements is attributed to a deviation in the con-
trast of one of the X-ray photographs., The refined structure
differs from the trial structure in distortion of coordination poly-
hedra, as found in other similar structures, The arrangement

of protons in the structure is proposed from structural arguments,
and the proposed arrangement requires the inclusion of at least

two fluorine atoms per stoichiometric molecule,
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I. INTRODUCTION

The study of crystals by means of X-rays has introduced
new order and understanding into mineralogy. Before X-rays were
used, minerals could be described only by variable and sometimes
intangible physical properties, and could be classified only on the
basis of uncertain and frequently disputed chemical formulae,
whose relationships to the physical properties were at best con-
jectural, This was especially true in the mineralogy and chem-~
istry of silicates, whose complex structures allow a great variety
of substitutions of one element by others, The X-ray techniques
introduced by W. H. and W. L. Bragg, with their discovery in
1913 of the diamond and rock salt structures, were developed and
strengthened by application to crystals of simple composition in
the early days of X-ray crystallography, and then, beginning in
the 1920's, were turned upon the complicated silicate structures,
From this study came the idea that the silicate minerals group
themselves naturally into several large classes, according to the
broad plans of their structure, and that the structural plan of a
silicate mineral largely determines its properties and hence its
role in chemical processes - an idea that has been widely and
fruitfully applied in geology.

Aberrant from the large and well-known classes of sili-
cate minerals are a few rare species of relatively little geologic
interest but of definite significance crystallographically, because
of the unusual features of their structures. One of these is the

aluminosilicate mineral zunyite, whose structure is of a type
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unknown for any other substance. This unusual structure was pro-
posed by Pauling in 1933, Professor Pauling showed that the pro-
posed structure accounted well for the size of the unit cell and the
intensities of X-ray reflections from crystals of the mineral; but
the X-ray diffraction techniques available at the time were not
capable of subjecting so complicated a structure to a systematic
study that would prove beyond any reasonable doubt that its atoms
were arranged in the proposed way, and that could use the X-ray
data to determine the most probable atomic positions., Although
the crystallographic world has not hesitated in general to accept
results of the stochastic method of discovering crystal structures,
some skepticism about the zunyite structure has prevailed, due
perhaps to the complexity of the proposed structure and to the fact
that Professor Pauling proposed not only the structure for the
mineral but also its chemical formula, which was also in dispute,
W. L. Bragg may have regarded the structure as speculative,

for he did not include it in his celebrated book The Atomic Structure

of Minerals,

During the last fifteen years powerful new methods have
been developed for the study of complicated crystal structures,
In view of the unique features of the proposed structure, it has
been desirable to reinvestigate zunyite to see whether the struc-
ture can be established according to modern crystallographic
standards, This thesis presents the results of such a study, The
correctness of the atomic arrangement proposed by Professor
Pauling has been verified, and all atoms in the crystal, with the

exception of hydrogen, have been located to within a probable
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accuracy of a hundredth of an Angstrom.

Although, therefore, this thesis presents no essentially new
facts about the atomic arrangement in silicate minerals, the results
of this study have made it possible to consider the unusual zunyite
structure in a detailed way that was not possible before its verifi-
cation and refinement, At the present stage of progress in research
in the field of silicate structural chemistry, most of the problems
of greatest interest concern structural details in substances whose
general atomic arrangement is already known, and interpretation
of these details in terms of the physical and chemical properties of
the materials and their possible application to geologic and other
problems, The recent intensive work on the structures of the feld-
spars is a good example of this,

In keeping with the spirit of this attack on structural prob-
lems, we have endeavored to carry the present study as far toward
interpretation of the geologic role of zunyite as known data permit,
although, of course, our main concern has been strictly structural,
The very rarity of zunyite is indication of the special geologic set-
ting of its occurrences, and of the very special conditions in the
earth which must have produced it, Our study has made it possible,
we believe, to outline these conditions with considerable confidence,

But the bulk of this thesis will be devoted to derivation and
interpretation of accurate atomic positions, After surveying briefly
the development of ideas on the composition and structure of zuny-
ite, we will present the X-ray data used in this investigation, and
then turn to the procedure of testing and refining the proposed struc-

ture by means of least squares and difference synthesis methods,
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It will be shown that the atomic parameters obtained can be relied
on to +0,001, and interatomic distances to +0,02 X. By luse of the
refined distances, a number of features of interest in the structure
can be considered in detail, and in particular a satisfactory arrange-

ment of the protons in the structure can be postulated,
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II. HISTORICAL SKETCH

Zunyite was discovered in ores of the Zuni Mine, on Anvil
Mountain, near Silverton, San Juan County, Colorado, It was first
described by W. F. Hillebrand in 1883 as occurring as hard, small,
clear, isotropic, perfectly developed tetrahedral crystals imbedded
in a matrix of another previously unknown mineral, the sulfarsenide
of lead, guitermanite, Hillebrand had available only two small
samples of the fresh zunyite-guitermanite rock, although he had
in addition a quantity of cloudy to opaque white, porcelain-like,
partially altered crystals., He analyzed the crystals chemically,
but was obliged to use the partially altered material for his analyses,
The analyses are given in Appendix I, together with all other pub-
lished analyses of zunyite, Hillebrand assigned the empirical for-
mula R18A116 516 (0, Fz, C12)45, where R was to include the sup-
posedly isomorphous substituents H, Na, and K.

S. L. Penfield discovered zunyite at the Charter Oak Mine,
five miles from the Zuni Mine,in 1852, Writing of his analyses,
he stated (1893, p. 398): "The agreement between the author's
and Mr, Hillebrand's analyses is very satisfactory, Especially the
percentages of chlorine, fluorine, and hydroxyl, which are regarded
as isomorphous, are very close and yet there seems to be no defi-
nite proportion in which these constituents are related to one another,"

Opinion on the composition of zunyite underwent several
changes after Hillebrand's original formulation., This development

is summarized by L, T. Nel (1930, p. 215):
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""Hillebrand's original empirical formula was modified
by P, Groth in 1889 as (SiO )3A12 [Al(OH, F,Cl) 6?
representing a basic orthosﬁicate analogous to t?he
garnet formula. B. Gossner and F. Mussgnug in 1926,
insisting on a ratio Si:Al = 1:3 gave as alternate formula

SiOZ~ AlQOF . ZAIOZH or SiOz' AlF(OH)2° ZAIOZH
and
ZSiOZ- 2A10F - 3A102H= Al(OH)3,

while later, in order to conform with the results given
by X-ray analysis, Gossner again readjusted the for-
mula to

3 SiOZ°3A10(F, Cl)e 4A102H- Z.A.l(OH)3 .
J. McCrae (1929), who analyzed crystals of zunyite discovered by
L. T. Nel at Postmasburg, South Africa, wrote:

"The formula assigned to zunyite is A16(OH, F,C1)12(3i04)
The amount of chlorine in the specimens (savy,

2,5%0) shows that whereas a halogen-free zunyite might
be formulated as 4A1{OH})3 ¢ 2A1203+35i0;, the speci-
mens contain chlorine replacing hydroxyl to the extent
expressed by the (doubled) formula

AICL{OH),* 2AIF ,OHs 5A1(OH) ;+ 4A1,0 5+ 6Si0,,

but in the South African specimen hydroxyl has been re~
placed only to an extent approximately represented by
the (quadrupled) formula

2AIC1{OH),* AIF(OH),+ 13A1(OH) 3+ 8A1,0,+ 125i0, .

30

B. Gossner (1927) was the first to study zunyite by means
of X-rays, He made powder photographs using iron and also copper
radiation and determined the size of the (cubic) unit cell as a =
13,80 X.U. and 13,97 + .04 X, U, for the respective radiations.
On the basis of the chemical study of Gossner and Mussgnug (1926}

he accepted the formula

Si0,- AIO- (15 F + 75 Cl)- 2A10(0H) - £ H,0

and, from the measured density, 2,878 gm cm-3, found six mole-
cules of this composition in the unit cell. He assigned the point-

group symmetry T, . From oscillation photographs about [100] R
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[110] ,» and [111] as oscillation axes he derived a mean value
a = 13,93 X.U., based on the layer-line spacings, On the photo-
graph around [1 10] all odd layer lines were absent, due to extinc-
tion of all reflections with mixed indices. This indicated face-
centering, which could not, however, be in harmony with the
number of molecules found in the unit cell. Gossner therefore
dismissed the systematic extinction evidence and assigned the
mineral to space-group le - PZr 3m, stating that among all
space groups isomorphous with Td’ only in Té could plausible
atomic positioﬁs be found., He commented (1927, S, B. p. 468)

as follows:

(1) Das falsche VerhHltnis der Translationen (TlOO: TllO:
T,., = 1: +V2: /3 anstatt 1:V2 :J3 fur TY) 14t sich viel-

leicht so erkldren, dass durch das sehr E?hnliche Beugungs-
vermbBgen von Si and Al filr die RBntgenuntersuchung eine
zu kleine Translation T, vorgetauscht wird, "
This was the state of affairs when Pauling (1933) under-
took the study of zunyite, Pauling confirmed the point-group
symmetry Td found by Gossner but assigned the crystals to
space group Tg - F 43 m, regarding the face-centering trans-
lations as significant, He then reviewed published analyses of
the mineral by calculating the number of atoms of Si, Al, OH, F,
and Cl present in the fundamental unit (one fourth of the unit cell),
using a density P = 2,89 gm c1rnm3 and using the value a, = 13,82 X.U.
found by him from an oscillation photograph, By assuming that
fluorine could substitute for hydroxyl in the structure but not for
chlorine, and that aluminium could be expected to replace silicon
to some extent, he arrived at the provisional formula (OH,F)18
Al

13 Sig O, Cl,
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The choice of this formula was an excellent demonstration
of the value of X-ray study in deciding compositional questions.
The size of the cell determined the number of atoms in the funda-
mental unit, and this restricted the Al:Si ratio, Because the
number of silicon atoms was calculated consistently at about 4, 6
for all analyses (see Appendix II) there had to be at least 5 silicon-
type positions in the structure, with therefore some substitution
of aluminium for silicon., Finally, the recognition of the distinct
structural roles of Cl and F, contrary to previous investigations,
allowed a satisfactory assignment of anion composition and a
(partial) explanation for Penfield!s observation, p. %, on the OH,
F, and Cl content,

With this formula, with a knowledge of the space group
and cell dimensions, and using the coordination theory of ionic
crystals and the electrostatic valence rule (Pauling, 1939, p. 378-
384) Pauling was able to formulate a detailed atomic arrangement
for zunyite, This arrangement is the trial structure used in the
present investigation, and we present Fauling's derivation and
description of it in Chapter 3,

Pauling then measured the intensities of 72 X-ray re-
flections on oscillation photographs of zunyite made with Mo Ka
radiation, Using the proposed structure he calculated intensities
to be expected for these reflections, applying Lorentz and polari-
zation corrections but no temperature factor, The calculated
values agreed well with the observed values, All strong reflec-
tions were accounted for, and there was general agreement be-

tween calculated and observed values for moderate and weak
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reflections, The overall agreement may be judged from the value

of the mean discrepancy

Z |Io"'-_[c|
4

LI,

s

(the sum being over all observed reflections), which for Pauling's

/
R, =

data (1933, p. 450) is 0,29, Considering the fact that Lipson and

Cochran {1953, p. 147) regard a value of 0,4 for the residual
_ LRI IR
| =
z | Fol

as indicating that a proposed structure is probably correct, and

realizing that I = | F | 2, it is clear that Pauling's structure is

promising,
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111, THE TRIAL STRUCTURE
Pauling's discussion (1933, pp. 446-448) of his derivation
of the trial structure is illuminating, and because it provides an

excellent description of this structure, we reproduce it here:

i Let us first assume that there are six equivalent
silicon atoms in the fundamental unit, that is, 24 or
more in the unit cube. (a) If there are 24 equivalent
and distinct tetrahedra, the 24 Si occupy 24a or 24b (in
Wyckoff's notation), No value of the parameter pre-
vents infraction of the condition 0-0 > 2,4 &, eliminating
this possibility. (b) If the 24 equivalent silicon tetra-
hedra share corners, these corners lie on three-fold
axes, which makes 0¥ common to three silicon tetra-
hedra, contradicting assumption 3,

The only remaining positions for 20 or 24 silicon
atoms are l6a plus one or two of the positions 4b, 4c,
4d, and 4e., Agreement with the electrostatic valence
rule with silicon tetrahedra in 4b (or c, d, e) is reached
only when the corners are shared with other tetrahedra.
The crystals must consequently contain groups of five
tetrahedra such as shown in Fig. 1.

The formula suggests that the unit contains four
groups of twelve octahedra, with point-group sym-
metry Tq (positions 4b, ¢, d, e). Such groups, shown
in Fig, 2, occur in spinel. A framework might be con-
structed by sharing the tetrahedral groups of Fig, 1
with these, the three oxygen atoms labeled A in Fig, 2
forming the base of a tetrahedron, The chemical
formula and the electrostatic valence rule require,
however, that the atoms labeled B be shared with
similar octahedra in a neighboring group, and it is
found that this sharing is not geometrically possible.

If the groups of three octahedra be inverted, the
group of twelve shown in Fig, 3, also with point-group
symmetry Ty, is obtained. When four such groups are
placed in the positions 4b, it is found that the corners B
of one group (at 0 0 0 , say) can be shared with the
corners B! of an adjacent group (at + 0 ), and that
such sharing for regular octahedra with A1-O = 1,89 A
leads to a value of 13.82 A for a_, in exact agreement
with the observed value. Moreo%er, the groups of five
tetrahedra can be placed in position 4d, and tetrahedron
corners shared with corners A with only a slight dis-
tortion {(of a few hundredths of an AngstrBm). This
agreement in dimensions makes it highly probable
that this is the framework of zunyite.
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Fig. 1. The 315016 group of linkega

tetrahedrs, From Pauling (1933},

Fig. 2. PFrom Pauling (10%3%)

/



From Pauling (1933).

The zunyite structure.

Fig. 3.

From Pauling (1933).

4
2 + ®
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Agreement with the electrostatic valence rule is
satisfactory except for the oxygen atoms C (Fig, 4),
common to only three octahedra. It is seen, however,
that these atoms occur in groups of four, which can be
combined to tetrahedra by placing aluminum ions in
positions 4e, the total bond strengths then becoming
2 1/4. The four chlorine ions occupy _positions 4c,
4b being ruled out by the small C1 -O  distance it
leads to (2.72 &, sum of radii 3,21 ). "

The resulting structure is described as follows, using the
notation of the International Tables for X-ray Crystallography

(1952, p. 325):

4Clinb

4 SiI in ¢

4 Al ind

16 Sii  in e, x) = 0,117

48 AlII in h, X = 0,089, Zo, = -0,228

16 OI in e, X, = -0,177

16 OII in e, x; = 0,184

24 O (OH, F) in f, x, = 0,273

48 O (OH, F) in h, x, = 0,181, 2, = 0,545

48 OV in h, X = 0,139, zy = 0,006

The main features of the structure may be summarized
as follows:

l. The S5igO,, group of linked silicon tetrahedra; no other
structure is known to have this group, the only finite groups of
linked silica tetrahedra being rings, or else pairs 51207.

2, The group of coordinated aluminum octahedra: this
group is also unique, its closest relative being found in the

structure of diaspore,
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3. The isolated aluminium tetrahedra: this feature is
unique, as is also the linking of the silicon tetrahedra in an
aluminosilicate material whose composition would allow all
silicon tetrahedra to be isolated and linked with aluminum octa-
hedra or tetrahedra, as in the structures of the polymorphs
of Al,5i0g,

4, The chlorine atom occupying cavities in the frame-
work of linked octahedra and tetrahedra: this has its counter~-
part in the structures of sodalite and the ultramarines.

5, The vacancy in the structure at the center§ of the
large group of coordinated aluminum octahedra,

6. Linking of the tetrahedral and octahedral groups:
this builds up a sphalerite-type arrangement with the tetra-
hedral groups at positions corresponding to, say, the zinc
atoms and the octahedral groups corresponding to sulfur, and

is a typical arrangement in cubic crystals,



-15-
IV. THE X-RAY DATA

1. Material.,--The zunyite used in the present study is from
the Zuiii Mine, The material is the same as used originally by Prof,
Pauling, and was obtained by him from R. M. Wilke in Palo Alto,
California, It consists of fresh zunyite-guitermanite rock, Samples
of this were crushed and the small tetrahedral zunyite crystals
were selected by hand under the binocular microscope, Crystals
selected varied in size from 0.2 to 0.8 mm, and were clear, well-
formed tetrahedra showing a small negative tetrahedral truncation,
All crystals from the zunyite-guitermanite rock contain black in-
clusions, which W. F. Hillebrand (1885, p. 127) identified as rutile.
Crystals for the present study were selected as free from these in-
clusions as possible, and contained at most two or three minute
black particles less than 0l mm in size,

Crystals which supplied X-ray data used in the present study
are listed in Table I. The octahedral habit of crystal No. 1 resulted
from near equal development of the positive and negative tetrahedral
faces, This crystal was selected because of its near equant shape,
to minimize errors due to absorption,

Each crystal was mounted on the end of a glass fiber at-
tached to a standard goniometer pin. Mounting was by the hot-wire
technique using shellac,

Crystals were oriented first by means of a two-circle opti-
cal goniometer, Positive tetrahedral faces give strong signals,
sometimes sharp and clear, but usually multiple with 3 te 10 sig-

nals, forming a pattern extending for several minutes of arc in
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latitude and longitude. The angle between face normals was al-
ways within 5 minutes of the ideal value, 109° 28!, and for sharp
signals, within 1 minute of this value.

The orientation was checked and small corrections were
made by means of Laue photographs, one of which is reproduced
in Fig. 5. It was found, however, that optical orientation was
adequate and that only final corrections with the crystals in place
in the Weissenberg or oscillation cameras were necessary, |

2., X-Ray Photographs.--A list of all X-ray photographs

used in this study is given in Table II. The photographs were

made on Eastman no-screen X-ray film, and processed by standard
procedures, Multiple films (in groups of three) to provide three
intensity ranges for a given exposure are lettered a, b, c. With
copper radiation the three films were placed directly one behind
the other in the camera, With Mo Ka radiation it is necessary

to interleave brass foil between the films to get an adequate range
of intensities,

3. Oscillation Photographs,.--The purpose of these photo-

graphs was to check the size of the unit cell, to gather preliminary
X-ray intensity data, and to record intensities for reflections
occurring at angles too small to observe in the Weissenberg
cameras using Mo Ka radiation, The photographs were made

on Tube Stand No. 1 in the X-ray laboratory of the Chemistry De-
partment, California Institute of Technology, The X-ray tube of
this apparatus is of the self-rectifying '"gas tube'" type, with alu-
minium cathode and copper target, operated under continuous

evacuation using an air leak to maintain a suitable pressure of



17.

Fig. 5
Beam parallel to [110]
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TABLE I
CRYSTALS
Crystal No. Size Habit  fotation Use
Axis
1 0.8 mm Octahedral [100] Weissenberg Ph,, Mo K«
3 0.2 Tetrahedral [100] Oscillation, Rotn,, Cu K«
5 0.2 e [110] Weissenberg Ph.,, Mo K«
TABLE II
X-RAY PHOTOGRAPHS
Fil Tube . Exp.
1\}01?1 XI. Purpose Stand Camera Rad., Filter Tinrlz Notes
1 3 Layer line 1 Osc, #1 Cu none 1,6 hr Srfcl.e
spacing 3&%
2a-c " Intensities " " " 3,2 O.a,15°
3a.~C t 13 i it 1t 11 3. 1 i
4a_c 1 11 1t 1t 1 11 30 1 i
5a_c 18] 11 1 18] 1t 1h] 3° 4 11
7 1  Orient, 6 Weiss, #4544 Mo " 0.5 O.a.19°
lla-c ' Intensities " nwoozr 14,1 [A=o0
12 3 Cell size 1 C.I.T.Powd, Cu none 3.6 Rotation
17a-c v 1intens. z Osc. #1 T " gcaled Incl,(660)
scale
18a-c 1 u 6 Weiss, #4544 Mo Zr " n
19a~c " Intensities " i " 1" 14,7 I=0
Intens, .
23a-c Y scale " Weiss, #673 " " scaled Incl, (660)
26a-c 5 Intensities " " " 30,5 O.a,215°
28a-c 1 it 1 1 1" 1 47,6 0. a°125°
29a-c n Intens. " " " n scaled Incl, (660)

scale
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air in the tube, The photographs were made using Camera No. 1,
of radius 50,08 + 0,02 mm (as measured by J. A. Ibers). One of
the photographs is shown in Fig., 6.

The photographs were indexed using a Bernal chart, by
the graphical method described by Buerger (1942, p. 196). All
equatorial reflections ( h k O) were indexed, but only such general
reflections (h k 1) on higher layer lines as were necessary to com-
plete the set of (h h 1) intensities,

Intensities of the reflections were estimated by visual
comparison of the spots on the photographs with a set of standard
spots. The standard spots were made by taking a series of seven
exposures on one set of 3 films, using a given oscillation range,
the exposure times for the successive exposures being devised to
form a logarithmic scale in logarithmic intervals of 0. 1,

Intensities were measured of all equatorial reflections on
photographs 2-5 produced by the Cu Ke and Cu Ka, (when resolved)
lines, Intensities were recorded in logarithmic form, The film
factor was estimated by averaging the logarithmic differences be-
tween intensities of spots due to the same reflection appearing on
successive photographs. Insufficient data were available to estimate
with confidence the film factors for the pairs (a, b) and (b, c) sep-
arately. The film factor determined was 3.7,

Determination of the film factor provides a method of es-
timating the internal precision of visual estimation, by observing
the scatter in the logarithmic differences of (independently esti-

mated) intensities for the same reflection. The standard deviation
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TABLE III

COMPARISON OF ESTIMATED INTENSITIES

Reflection Pauling (1933) This Investigation
020 e 5 0 71
040 « 0 .19
060 ol 0 32
080 .4 o 79
0100 o2 « 60
0120 1,0 1,32
220 .6 .29
240 » 0 .0
260 o1 021
280 1.0 .93
2100 .0 . 05
2120 .0 0 22
440 2 1,44
460 .0 . 00
480 .0 . 10
4100 .0 .03
660 10 10.0
680 e 2 0 27

880 3 3.1
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for a single visual measurement was estimated in this way at 0= 0,04
for moderate and strong reflections, and at 0 = 0,08 for faint reflec-
tions, These standard deviations correspond respectively to scatters
of about 2%/0 and 4°/o in the intensities,

Intensities for resolved Ka, - Ka, doublets were corrected

1 2
to log (IKo(‘ + IK“z) by assuming log I Ke, ™ log I = 0,3, The

Ka,
value estimated for this difference from the X-ray data was 0, 38.

The photographs were corrected to the intensity scale of pho-
tograph No. 2a by adding constants to the logarithmic intensities of
photographs 3-5, the constants being determined by a comparison
of the estimated intensities of reflections appearing on more than
one photograph., There were four to seven such reflections for each
comparison,

The resulting intensities of the 19 equatorial reflections mea-
sured by Pauling (1933, p. 450) were reduced to a scale consistent
with Pauling's, The comparison is shown in Table III, and indicates
the scatter to be expected between the two sets of data,

The logarithmic intensities of the complete set of 37 equa-

torial reflections (h k O) were then corrected for the Lorentz

factor and for the polarization factor (James, 1950, p. 39). This
| + cos 260
5in 20

the values of O being calculated from the Bragg relation

sing = AVh K \/2'12+'<2
do

where a, was taken equal to 13.87 &,

was done by subtracting log ( ) from each reflection,

The resulting logarithmic intensities were used for com-
parison with intensities derived from Crystal No, 1, as discussed

in the next section,
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4. Weissenberg Photographs around [100] . ~~These photo-

graphs, using Crystal No. 1, provided the X-ray intensities for the
main refinement of the structure, The photographs were mad‘e
with standard Buerger-type equi~-inclination Weissenberg camera
assemblies, The radiation used was from the molybdenum target
of a G. E. XR—4 tube operated at 50, 000 volts cathode potential,
The radiation was filtered through zirconium,

Owing to the relatively large unit cell size and small wave-
length of radiation used, the spacing of the layer lines on photo-
graphs made with the Buerger cameras was so small, as shown
in Fig. 7, that it was necessary to narrow the layer line screen
to a width of about 1 mm, using lead foil, to achieve separation of
single layer lines in the Weissenberg arrangement,

A typical equatorial Weissenberg is shown in Fig, 8, In-
dexing of these photographs is carried out in the usual way with
the guidance of lattice-row plats of the kind described by Buerger
(1942, p. 274). An unfortunate feature of these photographs is
the splitting of the spots, which is particularly prominent on the
lower half of the film, This is caused by the presence in the crys-
tal of two separate individuals oriented slightly differently, The
prominence of the splitting on one half of the photograph and not
on the other is the effect of the translational motion of the Weiss-
enberg camera. The misorientation responsible for the effect
consists in a small misorientation A¢, about some axis in the
eguatorial plane, combined with a small azimuthal misorientation
Ad, about the crystal rotation axis, A¢1 and A¢2 being approxi-

mately equal, This interpretation is borne out by the fact that
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Note the short layer line spacing.
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the glitting is approximately constant for a given central lattice
line on a given half of the film,

While this splitting is objectionable, it is not particularly
serious, because usual practice (S, Samson, in conversation) is
to estimate intensities only on one half of the Weissenberg film,
the intensities on opposite sides not being directly comparable
owing to the effects of camera translation. Intensities were there-
fore estimated only on the half of the film showing little to no
splitting, Intensity estimation, film factor estimation, and cor-
rection for Ka,-Ka, doubling and for Lorentz and polarization
factors on the Weissenberg films were carried out in the usual
way, as described in the previous section, The amount of data
(133 reflections) was sufficient to allow separate estimation of
the film factors for the front pair and rear pair of films. For
the front pair (closer to the crystal) the factor was 4,0 and for
the rear pair 5.0, a significant difference, This difference in
film factors is presumably due to the greater amount of fluores-
cent radiation impinging on the middle and back films than on
the front film, owing to the fact that the middle and back films
are faced with metal on both sides, while the forward side of
the front film is free (S. Samson, in conversation).

The number of non-equivalent reflections which could
appear on the (h k O) Weissenberg photographs was 163, Of
these, 133 were observed, For each of the remaining reflections
an estimate was made of the minimum observable intensity, and

an intensity was recorded of half this value.
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Intensities of the complete set of (h k O) reflections were
estimated both on photographs 11 a-c and photographs 19 a-c,
From a comparison of the two sets of data, an estimate of the
precision of visual estimation was possible, For intensities
greater than 4 times the smallest observable, the standard devi-
ation of the population log 10(19)-10g Io(ll) was estimated at 0,07,
giving an estimated standard deviation for a single visual estima-
tion of 0.07/\/_2 = 0,05, This corresponds to a scatter of about
12%0 in the estimated intensities, and is in harmony with vari-
ance estimates based on film factor determination, A similar
comparison of the Weissenberg data from photographs 11 a-c
and the oscillation photograph data (Photos 2-5) gave an esti-
mated standard deviation for the logarithmic difference of 0,09,
showing that the oscillation and Weissenberg data were in essen-
tial agreement within the limit of estimation error. This latter
comparison was made, of course, after correcting the separate
sets of data for the Lorentz and polarization effects,

The final set of logarithmic (h k O) intensities was ob-
tained by averaging the data from photographs 2-5, 11 a-c, and
19 a-c,

5. Weissenberg Photographs around (110] . --Because

the zunyite structure, having tetrahedral symmetry, has a center
of symmetry only in projection on {100} » the (h k O) data were
used for the major refinement, the center of symmetry greatly
simplifying the calculations. For the investigation of certain de-
tails, however, it was necessary to have non-centrosymmetric

data, For this purpose the projection of the structure on (110)
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was studied, by using data from equatorial Weissenberg photo-
graphs with [1 10] as rotation axis, These photographs were made
using Crystal No. 5. Because of the small size of this crystal,
the [110] Weissenbergs have a very different appearance from the

ElOO] Weissenbergs. Photograph 28 is shown in Fig, 9 as an
example, The individual spots are elongated into short ovoids,
whose axes all have a slope of about 1 on the film, quite distinct
from the slope of 2 for central lattice lines, or the horizontal
slope of the typical elongated Weissenberg spots produced by ro-
tating a needle-shaped crystal parallel to the needle axis, This
slope of one results from the fact that for Crystal No. 5 the angle
subtended by the crystal at the film is small compared to the di-
vergence of the X-ray beam, -

Reflections on these photographs have indices (h h 1),
Indexing the spots is complicated slightly by the fact that sys-
tematic extinctions cause the row lines parallel to [111] and

[llﬂin the reciprocal lattice to be very prominent, while the
row lines parallel to [001]) and [110] are difficult to follow.
Visual estimation and reduction of the intensities were carried
out in the same way described in the preceding sections, but
Lorentz and polarization corrections were not applied, and in-
tensities were converted directly from the logarithms, after
appropriate conversion to a scale approximating Té’é' I.. Fur-
ther reduction of the data was accomplished entirely on IBM
machines, as described in Chapter VII. The number of possible

(h h'1l) reflections was 410, of which 340 were observed,
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Fig. 9
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Intensities for (h O O), (h h O) and (h h h) reflections
were measured on both photographs 26 a-c and 28 a-c, The
estimated standard deviation for log I (28) - log I (26) was
0= 0,07, indicating that the measurement errors for these photo-
graphs were essentially the same as for the (h k O) data, Ob-
served and calculated data for (hk O) and(h h 1) reflections are
given in Appendix Il

6. Densitometric Intensity Measurements, --In the

course of refining the structure, it was found that the calculated
intensities of the strongest reflections were in every case sig-
nificantly weaker than the observed intensities, in contrast to
the more usual situation where the strong reflections are weaker
than expected owing to extinction and multiple reflection (James,
1950, pp. 25 and 49). To investigate this anomalous situation it
was necessary to measure accurately the intensities of the
strong reflections, which even on the third film are too dense

to allow confident visual estimation, Measurements were there-
fore undertaken with a Capstaff-Purdy densitometer,

The measured H and D curve (density vs, log intensity)
of standard intensity films 23 a-c is shown in Fig, 10, The
measurements can be reproduced to a precision of one or two
hundredths on the (logarithmic) density scale for intensities in
the lower part of the curve., For high intensities the measure-
ments become more inaccurate, because of stray light coming
into the field of view around the spot. It was found, in fact,

that if the ocular of the densitometer is not pressed down



-31-
firmly against the film, the H and D curve exhibits a flattening
out at the highest densities, as though the upper knee of the curve
is reached and the saturation density approached. But there is
in fact no such effect, as shown in Fig, 10, which includes mea-
surements up to the highest densities on the standard films,
Using the H and D curve for calibration, intensities were
measured for a selected group of reflection on films 1l a-c and
19 a-c, Particular attention was paid to strong spots and to spots
lying along central lattice lines, where visual estimation is im-
paired by the white radiation streak. For each spot a density
was measured at the center of the spot, and then a background
density of white radiation fog was measured on the low-6 side
of the spot (the high-0 side was avoided in most cases because
there is frequently a significant contribution to the white radia-
tion streak there by the reflection in question), The spot and
background density were converted separately to absolute inten-
sities (not logarithms), subtracted, and the resulting intensity
reconverted to logarithmic form for scale factor determination,
Comparison of photographs 11 and 19 measured in this way gave

an estimated standard deviation of 0= 0,06 for log I,(11) -

d
log Iy (19), or 0= 0,04 for a single estimation, This value is
significantly highér than the precision of measurement, and
shows that intensity measurement is affected by other errors
than random errors of measurement,

A comparison of structure factors calculated from the

final structure with observed structure factors measured densi-

tometrically and estimated visually is given in Table IV, Although
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the residual R, for this data is lowered from 0,12 to 0,09 by the

1
densitometric measurements, the improvement does not seem
striking., One may justifiably conclude that the improvement
does not adequately repay the considerably greater effort required
in reducing the measurements. The chief advantage of using the
densitometer is that it frees the observor from the plaguing sense
of subjectivity attendant on visual estimation,

It is not possible to make densitometiric measurements
on the (h h 1) data, because the spot size produced by Crystal

No. 5 was smaller than the field of the densitometer,

7. Comparison of Intensity Estimates, --As has been men-

tioned, the (h k O) data from photographs 2-5, 11, and 19 showed
essential agreement within the error of measurement, Reflec-
tions of the type (h h O) and (h O O) occur both among thesedata
and in the (h h 1) data derived from photographs 26 and 28, A
comparison of these two sets of data showed considerably greater
scatter than could be expected from the errors of measurement,
the estimated standard deviation of H = log 1, (26,28) - log I_(11,19)
being 0= 0.2, With the idea that this scatter might be due to ef-
fects depending on the Bragg angle, such as the Lorentz and po-
larization corrections, the values of ﬂ were plotted against
Sin2 6 , as shown in Fig, 11, There is no definite indication of
a regression in this plot. When plotted against log Io’ however,
a definite linear regression is suggested, as shown in Fig, 12,
The scatter about the visually estimated regression line gives a

standard deviation estimate of 0,1, much more reasonable in
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TABLE IV

RESULTS OF DENSITOMETER MEASUREMENTS

Reflection
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2,8
5.1
8.1
8.9
19.0
3.7
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0.9
1.8
10,2
4.4
1.9
3.5
2,8
1.5
5.0
2.9
10,2
41,7
24,5
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relation to the measurement errors,

The plot of I{ against log I shows that there is a distinct
tendency for the intensities of strong reflections to be stronger in
photographs 26 and 28 than in photographs 11 and 19, and for the
reverse for weak reflections, suggesting that there is a difference
in contrast X between the two sets of films, either for the standard
intensity films used or for the Weissenberg photographs, or both,
but in such a way that the effects are not compensated for in in-
tensity estimation,

This discrepancy between the two sets of intensities we
will call the "contrast problem'., Although the amount of data
available in Fig. 12 can only suggest the effect, the complete study
of the (h k O) and (h h 1) intensities is able to establish it definitely,
The contrast effect has three repercussions: (1} it affects the
temperature factors strongly; (2) it causes a problem in the com-
parison of calculated and observed intensities for strong reflec-
tions, giving rise, we believe, to the anomaly mertioned above;
and (3) it raises the question as to how great an effect a systematic
error of this kind can have on the atomic positions derived,

From an intercomparison of measurements made on the
various photographs with the use of different standard intensity
films it is possible to argue that the discrepancy between the
sets of data is caused by a contrast error in photograph 29, This
conclusion should be tested experimentally., The arguments for
it are too lengthy to include here, but they are substantiated by

a detailed study of the (h h 1) intensities, discussed in Chapter IV,
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On the strength of this conclusion, the (h k O) refinement of the
structure may be pursued without fear of appreciable systematic
errors of the kind introduced by the contrast problems,

8. Absorption Correction, ~-From data in the Internationale

Tabellen (1935, p. 577}, the absorption coefficient for Mo Ka is
calculated to be M =10.5 cm—1 in a substance of composition

(OH)18 Al 3 Sig 0,4 Cl and density p = 2,90, The optimum crys-

tal size is then 2 mm, almost 3 times as large as the largest

20

crystal used. The absorption corrections for the large crystal
(No. 1}, which has approximately equant shape, may be judged
from Table I, p. 584, of the Internationale Tabellen, which gives
absorption corrections to be applied to intensities of reflection
from a cylinder of radius r and absorption coefficient M for
various values of the Bragg angle 8 . Taking an average equa-
torial diameter of 0,6 mm for Crystal No, 1, giving M7 = 0.3,
the correction factor varies by only 10/0, in the range from
D=0%to H=90° Although this correction is negligible, the
crystal is approaching the upper limit of size for which absorp-
tion corrections are smalle For MT = 0,5, the variation is 100/0,
which is appreciable, though probably not significant, because the
probable error of visual intensity estimation is about 10%. These
estimates cannot predict the absorption effects due to the depar-
ture from cylindrical shape, However, it seems apparent that
these effects are negligible for Crystal No. 1, and certainly so

for Crystal No. 5,
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V. THE SIZE OF THE UNIT CELL

It has been desirable to redetermine the size of the zunyite unit
cell to check against previous values and to make certain the conversion.
from atomic parameters to interatomic distances. Layer-line spacings
on oscillation photographs gave a mean value of 3;, = /\Cu/ao =0.110.
When this value was used in indexing the oscillation photographs, a
systematic difference between expected and observed positions appeared.
This difference was proportional to reciprocal radius § , and could be
eliminated by a revision of I/ to 0.111.

The most accurate determination of 5, was derived from a
Straumanis photograph (No. 12, see Fig. 13) made with Crystal No. 3.
Witﬁ:gearly correct value J, = 0.111 it was possible to attempt index-
ing of the 3 equatorial spots at highest Bragg angle on the Straumanis

photograph. High-angle reflections were used because they give the

most accurate determination of as the accuracy being proportional to

[.‘i qo:l oc tan 8
ol ©
which increases as 6 —— 900. Bragg angles were measured by the
usual Straumanis technique, using three reflections at small angle to
fix the 26 = 0° position. The reflections were found to be (12. 12. 0},
(16.6.0) and (16. 8. 0) and gave values §, =0.1111, 0.1110, and 0.11104,
the last value being for (16.8.0), at a Bragg angle 0 = 8393,

These measurements were regarded as preliminary, and were

made on a North American-Phillips powder film-measuring viewer.

The amount of data available on the Straumanis photograph (about
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50 equatorial reflections) would make possible an accurate statistical
determination of the cell size. Although this has not been carried out,
the results of the preliminary measurements show that we can adopt
with some confidence the value E’ =0.11104 + .00005.

Using the most recent value (Clark, 1956) )\Cu K™ 1.5405 jc{ s
we derive a, = 13. 874 + .007 f?; . This value is to be compared with
Pauling's (1933, p. 442) value of a, = 13.82 X . The ratio
13.874/13.82 =1.0039 is in part accounted for by the difference

between the ”_&ngstrom“ units employed in 1933, now called k X.U.,

o)
and present-day Angstrom units, there being 1.0020 A in one k X.U.
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V1. THE PROCEDURE OF
TESTING AND REFINING THE STRUCTURE

1. General. -- The present study of the zunyite structure can
be divided into three phases: (l) testing and preliminary refinement using
a limited part of the (h k O) data; (2) systematic refinement by least
squares and difference synthesis methods using all (h k O} data; (3) final
study of {(h h 1) data for comparison with results of the (h k O) refinement
and for answering certain questions which could not be tested with
{h k O) data.

The testing and preliminary refinement was carried out by hand
calclulation of structure factors and of Fourier line and plane projections.
Systematic refinement began with the use of the least squares method,
but difficulties in applying this method to the refinement of temperature
parameters made it desirable to use difference maps so that the effects
of parameter changes could be directly seen. After refinement of
temperature parameters using this method, the final refinement of the
structure was completed by the least squares method. The calculations
required for handling (h h 1) data are so extensive that only a limited
study of these data could be made. However, projections on the (IIO)
plane verified all of the essential results of the (h k O) refinement.

In this chapter we describe this refinement process from the
standpoint of the results obtained and of the motivation for the pro-
cedure. Our aim is to present a relatively coherent picture of the re-
finement and to point out the special problems which arose, problems
which seem to be of general interest in connection with modern struc-

tural refinement methods. To do this we postpone discussion or
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derivation of the details of these methods until later chapters.

2. Testing and Preliminary Refinement. -- The zunyite space

group has tetrahedral symmetry and therefore has no centers of

symmetry. The projection of Tg

group symmetry p4m (International Tables, 1952, p. 66). Because this

on the {100& plane has the plane

plane group contains 2-fold axes, it is centrosymmetric, corresponding
to the fact that the octahedron and tetrahedron cannot be distinguished
when projected onto {100} . Because all crystallographic calculations
are simplified for centrosymmetry, because refinement may be expected
to be faster for centrosymmetric than for non-centrosymmetric data, and
because the variances of atomic positions derived from a given amount of
data are expected to be twice as great for non-centrosymmetric structures
as for centrosymmetric ones (Cruickshank, 1950, p. 72}, the {lOO} pro-
jection was chosen for the main refinement of the structure. This pro-
jection is described by the {(h k O) data.

Preliminary testing of the structure was carried out using (h k O)
data out to sin2 e/ )xz = 0.5 ./i—z, slightly beyond the copper limit at
0.42 K-z. There were 43 reflections in this group. Structure factors
were calculated by hand for these reflections, and converted to
logarithmic intensities without application of a Debye temperature
factor correction. The differences log Ié) - log Ié (the primes indicating
that the intensities are corrected for the Lorentz and polarization
effects) were plotted against (sinZG/XZ). Although there was considerable
scatter in the points, it was possible to estimate a linear regression line,
and thus to determine provisional scale and temperature factoi‘s for the

data. The calculated logarithmic intensities were then corrected for
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thermal vibration using the provisional temperature factor parameter
B =0.61l. Observed and calculated logarithmic intensities so corrected
were reduced to the same scale and then converted to structure factor
values and compared. The resulting residual R1 was 0.33. This value
is not entirely representative, because it is based only on data but
sinZO/ >\2 = 0.5, but it serves to show the general initial agreement
between calculated and observed structure factors for (h k O) data. It
is surprisingly higher than the value R'l = 0. 29 derived from the
intensities calculated and observed by Pauling (see p.9). The reason
for this was not definitely determined, though it may be due to the fact
that Pauling's (h k O), (h k 1), and(h k 2} data went out only to
sinZQ/ 7\2 = 0.20, with (h h h) data out to 0.32. Thus the resolution
of Pauling's data was lower than for our preliminary (h k O) data, so
that small errors in atomic positions would have relatively smaller
effects on the calculated structure factors. Another reason for the
better agreement in Pauling's calculations may be the lower dispersion
of the distribution function for intensities from acentric structures, as
mentioned by Wilson (1950, p. 398): only 300/0 of Pauling's data came
from the centrosymmetric projection on {100} . While our value
R, = 0.33 was higher than Pauling's, it still was well below the value
0.5 suggested by Lipson and Cochran (1953, p. 147) as the upper limit
for acceptable centrosymmetric trial structures.

The success of line projections, on [lOO] and [110], encouraged
the preparation of a two-dimensional Fourier synthesis, which we will
designate FO I (the line projections will not be discussed). This

synthesis, a projection of the structure on the (100} plane, made use of
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all (h k O) data for which structure factors had been calculated, that is,
but to the limit (sin6/A)% = 0.5. In addition (h O O) and (h h O)
refections out to (sinQ/')\)2 = 0.8 were included. Of the 49 (h k O)
reflections in this group, three were omitted because their signs were
in doubt at this stage. Calculation of the synthesis was carried out by
hand, using Beevers-Lipson strips.

The resulting electron density map is given in Fig. 14, which
shows only the asymmetric unit of the projected structure, comprising
1/32 of the projected area of the unit cell (see Fig. 25c). The atomic
positions assumed in the trial structure are plotted, using small
crosses. The general representation of the assumed structure is good.
The electron density is high at all positions where atoms were assumed
to be located. In addition, there are several unexpected peaks. None
of these peaks reach the height'of the lowest well-defined atomic peak,
the single oxygen peak at O! though they approach the height of the

v’

somewhat diffuse single oxygen peak at O'I'I It was originally thought

I
that these low peaks, or some of them, might rqresent electron density
localized near protons in the structure, but all of them proved later to

be false.

The resolving power of F_ 1 is about 0.5& . The Alj, and Siy

peaks, at about this distance, are separated but not strongly resolved.

The Al'iI peak is not resolved from its mirror image in the adjacent

asymmetric unit. The O'V atom is lost entirely, although it doubtless

contributes to displacing the Si,. peak away from its assumed position.

I1

Fo I suggests that several atoms are displaced from their

assumed positions in the structure. The biggest displacement is
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indicated for OIII' The lack of resolution of the AI'I'I peaks suggests
that these atoms are actually closer together (as seen in the projection)}
than assumed. The same is indicated for OV by the shape of the double
O'\'/. peak. A displacement of this double peak is also suggested.
Parameter changes corresponding to the indicated atomic dis-
placements for AIH, OIII’ and OV were estimated from FO I. The new
positions for OIII and OV were chosen at the centers of the correspond-
ing peaks. The z coordinate of OV’ which is the displacement of Olv'.
away from the mirror line located along the [100] axis, was taken to be
zero because of the shape of the double O'V'. peak, which is elongated

along [100] rather than transverse to it. The z parameter of Al I which

I

determines the separation of Al'I'I from its mimor image, was changed.

The new value of Zpp  Was derived by a method suggested by Professor
II

Pauling, in which the distance between two appropriately shaped one-
atom peaks was adjusted to give an unresolved double peak of the
observed shape. The new parameters chosen in this way are contained
in Table V, which summarizes the parameter values obtained at
successive stages of the refinement.

With the use of the three new parameters, structure factors for
12 reflections showing particularly large discrepancies were recalcu-
lated to see if the parameter changes tended to improve the agreement
between calculated and observed values. No improvement in the general
agreement was evident. Structure factors for (h O O) reflections out to
(24.0.0) were then systematically recalculated, and it was found that
the residual R, for these 12 reflections, originally at 0. 25, remained

at this value as a result of the parameter changes. The meaning of this



TABLE V

PARAMETER REFINEMENT
VALUES OF THE PARAMETERS AT STAGES IN THE REFINEMENT

SF 0 I 11 111 Vi VIII X1 XIII Final
Result of: Trial LSO LSI LSII AFIII AFIV SF VIII LSVIII
LSV
R, --- R, 0.18
R, 0.33 0.27 0.17 0.175 0.123 0.117 R'i 0. 24 R'i o 27
Data 43(hkO)  (hkO) (hkO)  (hkO) (hkO) (hkO) (hhl) (hhl)
Sij %, L117 L117 J114 . 1145 L1139 L1141 L1141 L1141 . 1141
O x, =177  -.177 - 173 - 1742 -, 1737  -.1747 -, 1747 -. 1733 -. 174
Op x3  .184 . 184 .184 . 1828 . 1823 . 1818 . 1818 . 1818 . 1818
Opx,  +273 . 282 . 279 . 2791 . 2799 . 2796 . 2796 L2776 . 279
o \éxs . 181 . 181 . 179 . 1793 . 1793 . 1793 . 1793 , 1793 . 1793
IVlz;  .545 . 545 . 547 . 5471 . 5471 . 5466 . 5466 . 5479 . 547
o {xé . 139 . 139 . 139 . 1389 . 1382 . 1385 . 1385 . 1385 . 1385
vlz,  .006 . 006 . 002 .0010 . 0010 . 0000 . 0000 . 0000 . 0000
Al {x.] . 089 . 089 . 085 . 0853 . 0853 . 0853 . 0853 . 0853 . 0853
Mzy -.228  -,232 ~.233  -,2330  -,2330  -.2333  -.2333 -4 2333 -.2333
), 1,00 1,00 .93 .92 .92 . 92 . 92 .92
Bg. ) .28 .24 .24 .24
B, . 26 .24 .24 .24
Bey o 0.6 0.5 0.5 0.5 .77 . 90 . 90 . 90
B .62 . 62 . 62
OH ° 57
B .52 .52 .52

—L%—
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peculiar result was investigated by carrying out a simplified least
squares adjustment of the (h O O) data, in which the three contribu-

tions to the structure factor from the three atoms O OV’ and AlII

r
were treated as the independent variables. This calculation showed
that the OV atom should not have been moved at all, and that the OIII

and Alﬂ atoms should be moved by the full amount indicated by FO I.

[

Upon moving VOV back to its original position and recalculating
structure factors for the (h O O) reflections, Rl for these reflections
dropped to 0. 20.

Liater work showed that the position of the double O'\; peak was
displaced in Fo I, due, probably, to series termination effects. The
shape of the peak was, however, correct, and the suggested choice of
ZOV = . 000 was in fact later established.

The studies described above served to establish that the trial
structure was essentially correct, at least as seen in projection on {100},
and they suggested that it would refine. A program of systematic
refinement was therefore undertaken. This program consisted of, first,
a series of least squares refinements, followed by several refinements
using the methods of difference synthesis, and finally a last least squares
refinement. The change from least squares to difference synthesis
refinement was not planned in advance, but was dictated by difficulties

which arose in the course of the refinement.

3. Systematic Refinement. -- The lengthy calculations required

for the systematic refinement procedures were carried out by punched-
card methods on the IBM machines of the C.I.T. Digital Computing

Laboratory, 206 Throop Hall. Using the scale factor derived in the
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the preliminary calculations, the (h k O) structure factors were reduced
to the absolute scale of the calculated structure factors. These
structure factors, together with the appropriate atomic scattering factors
for each reflection, and other information, were punched onto IBM cards
and thereafter all major calculations were carried out by machine.

The first step in systematic structural refinement was calculation
of structure factors for all (h k O) reflections, and comparison with
observed values. The first of these calculations using all the (h k O)
data was designated S.F.I. The parameters used in S.F.I. were those
and Al

11 i for

which the parameters derived from FOIA were used. The temperature

given by the trial structure for all atoms except O

factor parameter B was arbitrarily taken to be 0.5. The results of
S.F.I. gave a residual R1 = 0.27. Considering that the original value
Rl = 0.33 was derived from data only out as far as the copper limit,

it is seen that the preliminary parameter change derived from Fo I
caused a marked improvement in the agreement.

A least squares adjustment of the calculated structure factors
was then made for variation of all positional parameters, and for
temperature parameter B and for scale factor o (which was taken
equal to 1.00 in S. F.1.). This calculation was designated L..S.I. It
was carried out in the fullest detail of the least squares method, with
the use of all terms of the normal equation matrix. Two sets of
normal equations were derived. In L.S.I. A , all the (h k O) data were
used except for a group of about 15 reflections rejected because of
uncertainty in the sign of Fo' In L..S.I C , only reflections for which

sinZQ/ XZ £ 0.6 were included. Almost all the parameter shifts
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derived from L,S.I C were larger than those from L.S.I A, suggesting
that at this stage in the refinement the structure factor derivatives were
not sufficiently reliable for high order reflections to give a satisfactory
indication of the required parameter changes. For the sake of more
rapid convergence of the refinement, therefore, the positional parameter
shifts given by L.S.I C were adopted.

The parameter changes derived from L.S.I are given in Table
VI, along with all parameter changes calculated in this study.

With use of the new parameters from L.S.I C , including the
new scale factor but not a new temperature factor, structure factors
for all (h k O) reflections were recalculated (S.F.II}. The residual Rl
dropped to 0.17, a distinct improvement.

A second least squares refinement was then made (L. S.II},
with variation for positional parameters only, and with use of (h k O)
reflections for which sinZG/ }\2 %< 1.1 (about 90 reflections). The
parameter shifts obtained were all small (Table X), only 3 shifts being
as large as .001.

Surprisingly, the residual derived from the new parameters
went up slightly, to 0.175. There are three possible reasons for this:
(1) the least squares adjustment was for only part of the (h k O) data,
whereas R1 is calculated for all the (h k O} data; (2) the least squares
adjustment is for minimization of the weighted sum of squares of
differences between calculated and observed structure factors, whereas
R, is calculated from the unweighted sum of absolute values (not
squared) of the differences; (3) there were errors in the calculations.

Although we did not investigate the question closely, the general
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TABLE VI

PARAMETER CHANGES DERIVED IN THE REFINEMENT

Refinement: FoI LSO LSLA LSLC LSII LS III
Used data from: Trial Trial LSO LSO LS I LS II
Results calc. in: - SF 1 - SF 11 SF IiI SEF IV
Resulting Rj: - 0.27 - 0.17 0.175  0.134°
SIy Ax, - - -.002 -.003 . 005 -
0, Ax, - - . 005 .004 -.0012 -
Oy Ax, - - . 001 . 000 -.0012 -
Oy Ax, . 009 .009  -.002 -.003 . 0001 -
{ Ax - - . 000 -.002 .0003 -
5 ,
Orv
Az - - . 000 .002 . 0001 -
Ax, -.005 .000 . 000 . 000 -. 0001 -
Oy 4
Az -.006 .000 -.003 -. 004 -.0019 -
Ax - - -. 003 -. 004 .0003 -
7
Al
Az, -.004 -.004 . 000 -. 001 . 0000 -
A - - -.09 -. 07 - -.015
AB, -.22
AB 1 -‘:216
AB, - - -.07 -. 13 - -. 062(+. 10)
ABoy w } o5
ABg
20 0.5 \
Range: smz £ 0.5 (h00) 1.9 0.6 1.1 1.9

only
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TABLE VI (Continued)

PARAMETER CHANGES DERIVED IN THE REFINEMENT

LSV +
Refinement: AF 1 AFIII AF IV LSV AF III LS VIII
Used data from: LS II LS III* F III F IV - SF XI
Results calc. in: - SF VI SF VII3 SF VIII - SF XIII
Resulting R: - 0.123 0.121 0.117 - 0.18
Sig Axy - -.0006  .0002 . 0002 -.0004 .0000
o} Ax, - .0005 .0000 -.0010 -.0005 .0014
O Axg - -.0005 .0000  -.0005 -.0010 .0000
Oy 8%, - .0008 .0000  -.0003 . 0005 .0000 -
% Axg - .0000 .0000 . 0000 . 0000 .0000
o
v Azg - .0000 .0000  -.0005 -. 0005 ~.0020
Axg - -.0007 .0000 . 0003 .0004 . 00l3
O {
v Az, - 0000  .0000  -.0010 ~.0010 . 0000
Ax - .0000 .0002 . 0000 .0000 . 0000
Al { 7
I Az, 0000  .0000  -.0003 .0003 . 0000
atl - - - -
AB... -.18 .00 -.02 -
Si
AB -.18 -.08 .00 -
AB, .24 +.17 +.09 -
ABoy .0 } +.05 -
AB .0 02 -. 05 -
sinZQ

/N

Range: > 1.9 1.9 1.9 1.9 1.9 1.9
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NOTES TO TABLE VI

1. This parameter change not applied in S. F. IIL

2. The value given in parenthesis is obtained by disregarding
off-diagonal coefficients in the normal equation matrix. See p.57.

3. Calculated only for change in temperature parameters.

4. Change actually applied in S. F. IIL: =. 0010.

5. Half of the improvement of this value over the S.F. III
value was due to a revision of the (660) and (880) intensities as a result

of remeasurement. Though this revision cannot be completely justified,
it is retained in Table VI, because it entered into all later calculations.
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statistical validity of the least squares method leads us to think
that (2) is probably the correct explanation,

But whatever the explanation, it seemed apparent at this
point that the positional parameters had pretty well converged to
final values, and that further least squares calculations of the same
kind would not be worthwhile, Consequently a complete Fourier
synthesis and a difference synthesis were prepared using the re-
sults of S. F. III for assigning signs to the observed structure fac-
tors and for deriving F,- Fc values,

The electron density map, called F, II, is shown in Fig,

15, The comparison of FO 11 with FO Iis striking. In Fo II the
atomic peaks have become rounded and symmetrical and there

are no significant false peaks and no areas of negative electron
density. Most striking is the improvement in resolution, Al!

11

is now well resolved from its mirror image, and 0.\'/. is distinctly

separated from the Si_. peak,

II
The contrast between Fo II and Fo I shows decisively that
copper radiation does not provide adequate resolution for satis-
factory description of ionic crystals, This contention conflicts
with the commonly quoted statement (for example, J. H. Sturdi-
vant, in lectures on crystal structure methods) that molybdenum
radiation is not worthwhile unless necessary to avoid absorption
effects, because of the longer exposure times required, Dr.
" Sturdivant (in lecture) defines the ""resolution'" of a given X-ray
reflection somewhat arbitrarily as Mt=7 where M= 41 sinB/2
and 70 is the minimum separation of two electrons that can be
detected as separate particles using a reflection at Bragg angle

© . The maximum "resolution' is then T= 7\/4 . This
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corresponds to the hé.lf—wavelength for the highest frequency terms
in the observable Fourier analysis of the electron density, and
would seem to be a reasonable measure of the smallest detail in
the electron density that can be portrayed. For Cu Ka this limit
is 0.4 A,and 0.2 A for Mo Ka. Since the atomic peaks (except
Cl) on FO II are 0,4 - 0,5 A in width, clearly copper radiation is
inadequate for describing their shape in any but the crudest way,
whereas molybdenum radiation may be expected to give at least
a second order description of the atomic shapes, The reason for
the usual discrediting of molybdenum radiation seems to be that
in organic structures the large thermal motions of the atoms
make the atomic shapes much broader and more diffuse, so that
on photographs with molybdenum radiation the high order reflec-
tions do not appear because temperature factors are so small
(large values of B).

The atomic positions plotted on Fo Il are the positions
used in S, F. III, which differ but little from the final positions.,
The only conspicuous difference is for the O'{l_ positions, which
coincide (z=0) in the final structure, With the exception of the
0! peak, all assumed atomic positions lie close to the electron

A%

density maxima of the corresponding peaks. The 0'V peak is

doubtless displaced on account of the overlap with the outer part
of the SiH atom (as seen in this projection).
All atomic positions are therefore well defined except

the positions of 0 OII’ and 0! . in the large multiple oxygen

r v

peak., Because of the complete overlapping of these three atoms,
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without any chance of resolution, it might be thought that good
atomic positions for them could not be derived from refinement
of (h k 0) data, Actually, good positions can be obtained. OIV

occurs in a separate peak (O'I'V) where its x and z parameters
can both be determined, The resolution of the X-ray data is so
great that when all (h k 0) reflections are included in a least
squares calculation, the size of the off-diagonal coefficient (in
the normal equation matrix) representing the interaction of the
OI parameter change with the OII parameter change is only 20%0
of the diagonal coefficients, so that the two parameter changes,
while not independent, are nevertheless well distinguished,

It is therefore possible to derive accurate positions for
0

OII’ and OI from (h k 0) data. Statistical study (Chapter

r v
X1I) shows that probable errors for the corresponding param-
eters are about twice as great as for parameters derived from
isolated peaks., For values of the greatest reliability, there-
fore, it would be necessary to work either with 3-dimensional

data or with a projection in which 0_, 0 I and OI are resolved,

' I v

But although OI and 0.. positions can be derived from

IT
the (h k 0) data, it is not possible to establish which position
corresponds to which atom, for the tetrahedral positions
around (1/4, 1/4, 1/4) and around (3/4, 3/4, 3/4) are indis~
tinguishable in the {lOO} projection. There are, of course,
strong chemical arguments which indicate the proper assign-

ment, But verification by means of X-rays is not possible

with the (h k 0) data,
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The difference synthesis prepared with the results of
S. F, III is designated AFI and is shown in Fig, 16. The princi-
pal features exhibited by this map are the large '"hole'" (negative
area) at the origin and the large peak, surrounded by a trough, at
1/4,1/4. Each aluminium and silicon atom on the projection, in
fact, lies at a peak. There is thus clear indication that the amp-
litude of thermal vibration, assumed to be the same for all
atoms, is distinctly different for different atoms in the structure.
The effects of the temperature factor errors so swamp any indi-
cations of positional parameter error as to make determinations
of the latter quite unreliable. Hence it is necessary to evaluate
the correct temperature parameters B for the individual atoms
and thereby smooth out the difference map before further posi-
tional parameter refinement is undertaken,

To determine the correct temperature parameters,
least squares adjustment of the (h k 0) data was carried out for
variation of BSi s BAl s BOH,O , and BC’] « The results of
this calculation, called L. S. III, were surprising, Bg. and BAl

decreased, as expected, and B increased slightly (Table VI),

OH
But BCl’ instead of increasing strongly, decreased slightly,

This decrease was caused by the interaction through off-diagonal
terms of ABC1 with ABg,; and ABAI" Such interaction did not

seem reasonable physically, in spite of the results of the mathe~-
matics, and so a value of AB; was calculated ignoring off-diagonal

terms, The result, ABCl = + 0,12, when compared to AB,. = -0,22

Si

and BAl = -0, 16, was simply out of all proportion to the relative



Fig. 16 =- Difference Synthesis AF I.

Contour interval approximately 3 e A °
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trough depth and peak heights for the single Cl trough and the single
Alh and SiH peaks. Without any question the largest temperature
parameter change was expected for chlorine,

These unsatisfactory results raised the possibility that the
electron deficiency at the origin might be due to a statistical de-
ficiency of chlorine atoms in the structure, Such an interpretation
was favored by the weak shoulder around the Cl trough, when com-
pared to the deep trough surrounding the Al;-5i; peak at 1/4, 1/4.
The reported analyses of zunyite showed no strong suggestion of
a deficiency of chlorine, however, Nevertheless, a least squares
adjustment for variation of a compositional parameter a for chlo-
rine was carried out to test this possibility. When the previously
calculated values of the AB's were introduced into the additional
normal equation involving Aa, the value Aa = +0,011 was calcu-
lated. This allowed no change of the chlorine parameter, because
a= 1,00 represented 100%0 occupation of the chlorine sites in the
structure, When the normal equations were solved simultaneously
with inclusion of terms due to Aa but ignoring interactions of AB

Cl

with ABSi and AB the result obtained was Aa = -0,08, AB

Al, c1”®

-0,015, ABHy = 40,031, This value for Aa was not in agreement
with what could be estimated from the depth of the trough at the
origin,

These contradictions and discrepancies caused us to lose

confidence in the least squares method when applied to this prob-

lem. The fact that the method gives reasonable values for ABSi’
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ABAl’ and ABOH is evidence that the calculations were carried
out correctly, There was abundant opportunity for checking the
calculations, too, because of the repetition involved in setting up
to calculate the normal equations for compositional parameter
variation, We are unable to explain these difficulties, Perhaps
they are related to the greater probable error of electron density
at special positions (Cruickshank and Rollett, 1953),

Because of these difficulties we turned to methods of de-
riving temperature factors directly from difference maps. A
method for this has been given by Cochran (195 1 b), For rea-
sons given in Chapter X, however, we found it desirable to de-
velop our own methods independently, The resulting formulae
were applied to AF I. In succeeding difference maps, tempera-
ture parameter correction was carried out synchronously with
positional parameter correction also derived from the difference
maps. By these procedures R1 was lowered from 0, 154 to 0,121,

The last difference map that was calculated is shown in
Fig., 18, Irregularities attributable to parameter errors have
been largely removed., The final temperature parameter correc-
tions were calculated from the remaining irregularities around
atomic positions, There are several regions showing irregulari-
ties not associated with atomic positions, These irregularities
can presumably be due only to errors in the X-ray data, The
shapes of some of the irregularities around atoms along the
diagonal (x,x) suggest possible applicability of anisotropic tem-
perature factors. The most pronounced indication is the negative

region on the [110] diagonal, adjacent to the SiI.AlI peak, This
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feature suggests a need for tetrahedral temperature factors for
these atoms, Application of such factors was studied, but theo-
retical considerations (Chapter XI} indicated that the observed
electron density discrepancies could not be accounted for by any
reasonable atomic motions of the required symmetry.

The C1 + ZOIII position still presents a problem, At the
stage of refinement of AF IV, the increased BCl has wiped out
all vestiges of the positive shoulder around the trough at the
center of the atom., The final trough is probably the effect of
an error in the Fourier scale, as discussed in Chapter X,

Because the effective weighting system in differénce
synthesis refinement differs from the weighting system used in
least squares refinement (Cochran, 1948, p. 139), it is to be
expected that coordinates obtained by the two methods may dif-
fer slightly. The structure had for practical purposes reached
complete refinement using the difference synthesis method (see
Table VI under the heading AF IV, where all positional param-
eter shifts are very small). Because least squares refinement
is more satisfactory statistically, however, we returned to this
method to see {1} what effect temperature factor refinement had
on positional parameters given by the least squares method,
and (2) how greatly coordinates determined by least squares
and difference synthesis methods differ in a practical case,

The results of the final least squares refinement performed
on (h k 0) data (L..S. V. ) are shown in Table VI. Although all

parameter changes are small, there is a general small read-

justment from the values given by the difference syntheses,
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These readjustments are of the same order of magnitude as the
parameter variances derived in Chapter XII, a fact which seems
to be in contradiction with the statement by Lipson and Cochran
(1953, p. 283) that "all reasonable systems of weighting lead to
coordinates which differ by amounts small compared with the
random errors of the final coordinates, "

It is necessary to consider the question, whether the re-
sults of L. S. VII show the (h k 0) refinement to be converged or
not, in tﬁe least-squares sense, Strictly speaking, they do not,
because convergence requires that the coordinate changes cal-
culated from the normal equations should be zero, Strictly
speaking, therefore, at least one additional least squares re-
finement of the (h k 0) data would be required to test the conver-
gence. In discontinuing the refinement at this stage, we were
prompted by two considerations: (1) The refinement may be re-
garded as converged when coordinate changes are small compared
to coordinate variances; and (2) in a rapidly converging refine-
ment, if the coordinate changes resulting from a least squares
calculation are of the size of the coordinate variances, it may
be expected that the changes given by the next least squares ad-
justment will be small compared to coordinate variances, In the
present case we have removed the effects of the difference syn-
thesis coordinate refinement by combining the results of AFIII
plus L.S. VII in a separate column in Table VI, The sequence
of significant least squares refinements is then L.S.0 (except
0.,)s L.S.I, L.S.1I, and (AFIII + L.S.VII}. (The 0., coordinate

v v

changes in L.S. 0. are not to be considered,because X and zg
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were not treated as independent in L,,S.0.), It is seen from a
comparison of L..S5.0., L.S.I , and L.S,II. that the convergence
was rapid. Most coordinate changes in L.S.1I. are only a tenth
as large as those in L.S.I, The main exceptions are Ax, and Ax g,

the parameter shifts for 0, and OII’ which, because of the overlap,

I
cannot be expected to converge rapidly without inclusion of all
the (h k 0) data, AZ() is a special exception, discussed below,
Comparison of the parameter changes in 1..S.II with those
in (AFIII + L. S, VIII) shows, however, that the latter are generally
as large or somewhat larger than the former, and that both are
about the size of the parameter variances, all of which are less
than 0,001, (see Chapter XIII}s This demonstrates the effects
on positional parameters of correction of temperature parameters.,
It is expected that these effects should be of the order of magni-
tude of the parameter variances, or larger. Because no further
temperature parameter correction would be required in further
refinement of the structure, it seems reasonable, in view of the
rapid coordinate convergence in the sequence L,S.I - L.S.1I,
that coordinate changes derived by refinement of the coordinates
obtained in 1..S. VII would be small compared to the coordinate
variances, These considerations, although reasonable, should
be tested by computation while the punched cards are still avail-
able. That such calculations have not been carried out is due
principally to the fact that more serious problems were found
in calculations carried out with the (h h 1) intensities,

The z coordinate of OV, Zgs presented a peculiar problem



65~

in the refinement, The shapes of the double O'\'/. peaks in FO I
and FIL indicated quite unequivocally that we should take Z6=0°
L.S.I forced zZg down to 0,002, The Az of 1., S. Il would have
given z, = 0,0001, but, because aFC/c)Zé =0 strictly for z, =0,
we chose zg = 0.0010 to observe the next refinement, Difference
maps are unable to predict a parameter shift in such a case, but
L. S. VII gave Az, = -0,0010, Hence z, is certainly less than

0,0010 and may well be strictly zero,

4, Study of (h h 1) Data. --The chief reasons for the de-

sirability of studying the structure in other than {1003 projection

are as follows: (1) inability to distinguish between 0I and OII in
the {100} projection, and relatively large uncertainty in the

parameter values derived; (2) relatively large variance for the
) owing to overlap with 0

zg parameter (0 and OH; (3) inability

\'A I
to choose an accurate value for z¢ when it is so near zero, with-
out carrying out a series of least squares refinements for this
parameter; (4) inability to make a reasonable statistical estimate
of the variance of Zys without going to a second order theory;
(5) inability to distinguish the positions {0, 0, 0) where a vacancy
is assumed in the trial structure, ard (3, 1, 3), where the chlorine
atom has been placed;‘ (6) desirability of a refinement using inde-
pendent data,

The last point has been emphasized by Sten Samson (in
conversation), The practical investigator, while he makes use

of the statistical methods developed by Cruickshank and others

to assess the reliability of the coordinates he has derived, would
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very much like to see the theoretical results put to a practical
test by independent refinement of the same structure using inde-
pendent data, either from different layer lines or from a different
projection,

It was originally thought that final refinement of the 0

I

and OII positions could be carried out with the use of (h h h) data,
but exploratory calculations did not bear this out. We will not
discuss the (h h h) calculations in detail, but simply present the
results of the projection of the structure on [lll] using this

data., Projections of po; P and Py~P OB [111} are shown in

Fig. 18, and it can be seen that the observed intensities, when
used with phases determined from the calculated intensities, ac-
count for all the major features of the assumed structure,

One study using the (h h h) data should be mentioned: a
study of the position of the chlorine atom. Although structural
reasons require placing the chlorine atom at (3, 4, 1) rather than
at (0 0 0), it seemed desirable to test the possibility that the va-
cancy in the structure at (0, 0, 0) might be occupied by chlorine
to some extent, A series of structure factor calculations for the
(h h h) data were made, with successively Oo/o, 50/0, IOO/o, 15%0
and 20%o of the chlorine removed from the (3, 3, 3) position and
placed at (0, 0, 0). The respective residuals Rll =71~ ICI/ZIO
which resulted were 0,252, 0,256, 0,259, 0,263, and 0,267, From

these calculations there is therefore no suggestion of chlorine at

(0, 0, 0). Although not the best calculations for the purpose,
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Fig., 18 == Projection on [111]

Projection interval: 1/3 the body
diagonsl of the unit cell.
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these results can probably also be interpreted to mean that the
vacancy at (0, 0, 0) is not occupied to any extent by F  or OH
either,

The (h h h) calculations showed that more extensive non-
centrosymmetric data would have to be used if detailed information
about the structure was sought, Although X-ray photographs of
upper layer lines (h k 1) (1 > 0) were available for Crystal
No, 1, the (h h 1) data from Crystal No, 5 were chosen, first,
because this data was completely independent of the data ob-
tained with Crystal No, 1, and second, because by construction
of the (110) projection using the (h h 1) data it should be possible

to verify the identification of 0I and OI directly,

I
The treatment of the (h h 1) data was satisfying in that it
was carried out with the maximum efficiency of IBM techniques,
It was possible to handle two and a half times as much data as
used in the {(h k 0) refinement, and to carry out calculations of
considerably greater complexity, in a time much shorter than
was required for the development and use of procedures for the
(h k O)refinement, Nevertheless, the length and complexity of
the calculations, caused by the non-centrosymmetry of the (110)
projection, would have made systematic refinement quite tedious.
Because of these limitations, the treatment of the (h h 1) data
was restricted to the following calculations: (1) a first structure
factor calculation (S. F.XI), using the parameters derived in
L.S.V; (2) a least~squares adjustment for positional parameters

only (L.S. VIII); (3) a structure factor recalculation based on
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the new positions (S.F. XIII}; (4) 2 Fourier synthesis and a differ-

ence synthesis, projecting the structure onto the (110) plane.
S.F. XI gave a residual Ri = 0,27 (actually 0,268). This

corresponds to a value Ry

culation in which the square roots of I, and I, were extracted,

= 0,18, as determined by a direct cal-

The least squares adjustment (L.S. VIII) gave parameter changes
listed in Table XI and discussed in Chapter VIII. The sizes of
these changes is about the same as those obtained in L.S. V except
for three shifts of more than 0,001, Although one of these shifts
was for 0., inspection of the Fourier synthesis Fo III (Fig. 19)

I
showed that 0  and 0 had been correctly identified in the {100]
projection, The three parameter changes mentioned were the
only changes considered significant, and were the only ones ac-
tually applied, as listed in Table VI. Upon recalculating structure
factors with these changes, R‘l went up very slightly, to 0,270,

We believe this effect is analogous to the slight increase in R,
observed as a result of L..S, II. The parameter changes of L..S, II
were applied to data more in need of temperature-parameter than
of positional-parameter correction, The same is discovered to
be the case in L.S. VIII

Appendix II shows that there is a marked tendency for re-
flections with intensities greater than about 80,0 to be observed
stronger than they are calculated, and the reverse for reflections
less intense than this, Such an effect is immediately suggestive
of temperature parameter error, This is brought out in striking

fashion in the (110) difference synthesis (AF V}, shown in Fig,

20, At the position of almost every atom there is a crater-like
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peak, a ring of positive density with a deep depression at the center,
By applying the methods used for correcting temperature parame-
ters for the (h k 0) data, it is estimated that an increase of 0, 2-

0.3 A -2 is required for B,. and B

Si Al°
mately doubling the BSi and BAF’ which corresponds to a doubling

This amounts to approxi-

of the absolute temperature, Although it is possible that the X-ray
photographs of Crystals No. 1 and 5 were prepared at different
ambient temperature, the absolute temperature doubling repre-
sents no possible temperature effect, but instead a systematic
error in the X-ray intensity data, The reéognition of this fact
establishes beyond doubt the "contrast effect'" which we have dis~
cussed previously, but which could only be imperfectly substan-
tiated in direct comparisons of the (h k 0) and (h h 1) data.

In a further attempt to determine which set of data con-
tains the systematic error (supposing that only one does!), we
have made a study of the first Zzg}:};zﬂectiens from Appendix II.
Values of § = log I} - log I. for these reflections are plotted
against (sin 6/7\)2 in Fig, 21, and against log I (not log Iol )
in Fig. 22, It is seen that both plots exhibit regression, though
we have ﬁot drawn in regression lines so as not to prejudice the
reader's judgment, In Fig., 25 the regression line drops off
linearly with increasing (sin 9/)\)2, as would be expected for a
general temperature parameter error., This slope continues
out to about (sin 9/)\)2 = 1,0, and the slope of the line out to this

point corresponds to a temperature parameter error of AB = 0,22,

essentially what is observed on A¥ V. But beyond (sin 9/)\)2 =1,0,
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the regression no longer continues downward, but instead stabilizes
at approximately a constant value of § . Thereisa great enough
number of points at large angles to show that this effect is real,

In Fig. 26, on the other hand, there is seen to be a distinct
linear regression of $ against log I, which persists over the
entire range of log I, except for a discrepancy at the lower end
of the curve, below log I, = 0,4, The few points in this lowest
region are unreliable at best, because their intensities are esti-
mated from the faintest suggestion of evidence of aspot on the photo-
graphs, The three highest intensities drop below the regression
line, an effect which could be ascribed to extinction, although in
view ofAh;revious discussion of the strong reflection problem we
hesitate to do this, The slope of the regression line would be
about 0,17, which is in tolerable agreement with slopes encoun-
tered in the previous discussion of the contrast effect.

On the basis of Figs, 21 and 22, we submit that a regres-
sion curve can more reasonably be fitted to fig., 22 than to Fig.
21, and that the regression curve in Fig., 22 represents the true
physical effect--a contrast error--and that the regression in Fig,
21 is to be regarded simply as a consequence of the regress\ion
in Fige 22. While these considerations locate the contrast error
in the (h h 1) data, it should be pointed out that the case is far
from watertight, and that the type of argument presented here
cannot really be relied upon without further investigation, For

example, it is possible that by small positional parameter

changes the calculated intensities of the high order reflections
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in Fig. 21 could be increased enough to produce a linear regression
over the entire range of (sin 9/)\)2, The increase required is by
more than a factor of 2 for the highest angles, which seems unlike-
ly, though perhaps possible,

Some features of the AF V map point toward conclusions
similar to those reached in the last paragraph., While in general
there is a crater-shaped peak at each atomic position, and while
in general the height of the crater walls and the depth of the cen-
tral depressions are roughly proportional to the heights of the
atomic peaks in the Fourier synthesis FOIII (Fig. 19), there are
some conspicuous exceptions: the double peak 'OI + ZON s the
Cl peak, the 20y, peak at (43.4, 43.4), the ZOW peak at (0, 54, 4),

and the oxygen peaks in the vicinity of Al Except for the latter

I°
group of oxygen peaks, overlap with other atoms is inadequate to
account for most of the irregularities observed, For our purposes
here a detailed study of these peaks would be unnecessarily lengthy,
but we believe that the failure of the temperature parameter effect
to appear as expected for some peaks is another indication that

the effect is not truly one of temperature factor error, but one
which only simulates it, The deviations would be produced by the
high order reflections which do not follow the required regression
trend of & Vs, (sin O/)\)Z. It does not appear that small motions

of the atoms corresponding to the dex}iating peaks could in all

cases effect new peak shapes that would be in harmony with the

general temperature parameter error implied by AF V.

This somewhat protracted discussion of the meaning of the

discrepancies in the (h h 1) data has been prompted by the necessity
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to choose between the results of the (h k 0) and {(h h 1) refinements
in adopting final positional parameters to describe the structure.
The parameter shifts given by L.S. VIII are of sizes similar to
those of the positional parameter variances derived from the (h k 0)
data, and actually up to several times larger for the parameter
shifts given in Table XI. These shifts are analogous to the param-
eter shifts given by L.S. II, i.e., before temperature parameter
correction. It may be that the shifts given by L.S. VIII are mainly
in response to the systematic errors, and that correction of these
errors would reduce the shifts to small values, Because we are
unable to make such a correction with confidence on the basis of
present evidence, we can test the significance of the parameter
shifts only by comparing them with the estimated parameter var-
iances, In Fig. 23 the magnitudes of all 20 parameter changes
given under L.S. VIII are plotted in histogram form as a frequency
diagram (for a detailed discussion of these parameter changes,
see Chapter VIII),

Also plotted is the normal distribution for the same num-
ber of observations and with variance 0vz =(O. 00 1),z which is the
value which we have adopted as the limiting variance for all pa-
rameters, as a result of the statistical considerations of Chapter
XII. The actual estimated variances (Table XVI) all lie below
this limiting value, the average value being (0. 0005)2 The value
(0.0004)'is predicted by Booth's (1946) method from a considera-
tion of the random errors of measurement. We conclude, there-

fore, that the systematic and random differences between the



-77-
(h k 0) and (h h 1) sets of data result in differences between param-
eter values which are significantly larger than differences to be
expected from Cruickshank's statistical theory, and in fact about
twice as large on the average; but that adoption of a limiting
parameter variance of (0. OOl)zfor all positional parameters, as
we have done independently and without consideration of the con-
trast problem, leads to agreement between the results of (h k 0)
and (h h 1) refinement to within the accuracy claimed,

The upshot of these considerations is the choice of final
parameters for the zunyite structure: we have adopted the values
given by the (h k 0) refinement, except where they are in conflict
with the (h h 1) refinement to the extent of a parameter difference
of greater than 0,001, as given under L.S. VIII in Table VI, In
this case we have rounded off the (h k 0) results in the direction
of the (h h 1) prediction, to the nearest whole multiple of 0,001,
The procedure is somewhat arbitrary, but we regard the result
as being good to 0,001 (estimated as variance), The final param-
eters are given in the last column in Table IX,

Parenthetically we may add that the study of the (h h 1)
data, although apparently raising more problems than it solves;,
gives a valuable insight into the difficulties of accurate X-ray
structural analysis, The problems raised have made our discus-
sion of the refinement of the zunyite structure more lengthy and
involved than we should have wished. This entire chapter, in
fact, is a great deal more cumbersome than should have been
required by a straightforward application of the modern structural

methods that we have used. To some extent the various complications
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we have discussed may perhaps be criticized as imaginary., But
we believe that these complications express in some essential way
the nature of a refinement process required to get parameters of
the highest accuracy and to assess intelligently that accuracy. It
is often said that structural refinement is a matter of pure routine.
Our experience leads us to the belief that pure routine is a diffi-

cult thing to apply to X-ray data in practice,
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Vil. THE CALCULATION OF STRUCTURE FACTORS

1. Atomic Scattering Factors. -- f-values for atoms in the

zunyite structure were obtained from the recently calculated values

given by Berghnis et al. (1955). We will refer to these as the McGillavry
values. The values given in the paper were plotted against sin8/2% ,
smooth curves were drawn through the points, and f-values for the

{(h k 0) reflections were read from these curves. In the (hh 1} calcula-
tions all f-values were derived from punched cards. The punched cards
were prepared using the IBM 604 computer. For selected values of
sinZQ/ ?\Z, the computer interpolated linearly between the MacGillavry
values. Linear interpolation between the values was considered accurate
enough for our calculations. The f-values for (h k 0} calculations were
taken to one decimal place, and for the (h h 1) calculations to two places.

Scattering factors for Si+4, Al+3

, Cl17, and F were available
from the MacGillavry data, but no recent scattering factors have been
published for O~ . In view of the fact that atomic shapes are not critical
in structural refinement, we used semiempirical methods of obtaining
f-values for O from published values of O and F , rather than contem-
plating the extensive calculations required to derive scattering factors from
electronic wave functions.

First consider the comparison of scattering factors for iso-
electronic atoms. Suppose that the difference in nuclear charge produces
a simple scaling of the atomic shape: UZ(/‘L) = kUl(?{N/) where Ul(/‘t/) is
the radial charge density in atom 1, and % is the size-scaling factor.

k is a factor to be determined from
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fﬁxmdnx: e
o 0

so that k = % . From the fact that the most probable radial distance
(from the nucleus) for an electron in a hydrogen-like wave function is
the radius of the corresponding Bohr orbit,

n*Hh*

a'::rﬂez(Z~S)

(Pauling and Wilson, 1935, p. 140), where s is the screening constant

appropriate to the orbit, the scaling factor may be taken in the form

LZ,-s
l,~ s

H =

where s is supposed not to differ greatly for ions whose nuclear charges
differ by one electron unit. The scattering factors (James, 1950, p. 97)

are then related by

g = [ U SR e = £ ()
o

where M= 4w sin6/)A . Thus for values /Al s /JZ such that
fl( }il) = fz( ,MZ), we should expect /“1//“2 = " .

If scattering factors for F, obtained from the MacGillavry data
quoted above, are compared with scattering factors for Ne (Brown, 1933,
p. 214), it is found that the ratio M, / Mg -isa function of M-
varying from 1. 42 for low angles to 1.13 for sinQF—/ 2 = 1.1. This

is a demonstration of the fact that the simple model of a scaled atom is
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inadequate. The effective screening constant s depends on the distance
from the nucleus. The % for low M is appropriate to an ""average"
screening constant for the whole atom, while the % for high M
corresponds to scattering only from the innermost electrons and should
therefore approach the unscreened value 2 = 10/9 = 1,11,

For a rough calculation, we may suppose that s{p)} is the same
for O:, F, and Ne, where §(’A) is the appropriate "average' screen-
ing constant for scattering at an angle defined by M . Then we have

S _9un(pn ) - 1o
e %(,U:-)—I

so that

This relation has been used to calculate scattering factors for O~ from
scattering factors for F , and the results are given in column 1 of
Table VII.

A second set of values was obtained by correcting the MacGillavry
values for atomic oxygen with the difference between the values for o~
and O given in the compilation of the Internationale Tabellen (1935, p. 571}.

There is general agreement between the values obtained in these
two ways, except for M < 0.3, where values obtained in the second
way are higher by up to 0. 4 electrons. In our (h k 0) calculations we
used the second set of values.

A third set of O f-values was obtained through the kindess of

E. L. Eichhorn of the Gates and Crellin Laboratories. These are
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TABLE VII

ATOMIC SCATTERING FACTORS FOR 0~

sin 0 1 2 3
IS

0,00 10.0 10,0 16.00
0.05 9.1 --- 9.54
0.10 7.8 8.2 8,33
0.15 6.5 - 6. 82
0,20 5.4 5.8 5,42
0,25 4,5 - 4,33
0, 30 3.8 4,0 3. 60
0. 35 363 - 3.13
0. 40 2.9 2,8 2,80
0,50 202 202 228
0,60 1.9 1.9 1.94
0,70 1.7 1.7 1.71
0.80 1.5 1.5 1.57
0.90 1.4 1.4 1,46
1,00 1.4 1.4 1,37
1. 10 1.3 1.3 1.30
1,20 1.2 1.2 1,22
1.30 1.2 1.2 1.14

1. By method of Chapter VI, Section 1.

2, MacGillavry values for atomic oxygen, corrected by the differ-
ence between values for 0~ and 0 from the Internationale Tabellen,

3. Values courtesy of E. L. Eichhorn, extrapolated using MacGillavry
values (atomic oxygen) for SiI 9 > 0,60,
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semi-empirical values derived by Frank Eiland. Though they cover the
sin@/ A range only out to the copper limit, it is found that they can
be matched nicely to atomic 0 values for higher values of sinB/ A
These values were used in the (h h 1) calculations. The slight difference
in scattering factors between the (h k 0) and (h h 1) calculations could
cause a change in effective temperature factors for the oxygen atoms,
but this change would be small compared to the differences actually
observed between the two sets of data.

Scattering factors for OI’ OH, and OV were taken to be the fO:

values. For OIII and OIV the values used were f = O.SfO: + 0.2 fF-,

corresponding approximately to the fluorine content of the mineral.

2. Structure Factor for Tg . -=- Although given in the

International Tables (1952, p. 508), we derive the structure factor
briefly here, so as to show the forms it takes for various point positions.
The coordinates of the general position are x, vy, z; i,{]'r,z; X, YV, Z;

x, v, z; and all coordinates obtained by cyclic and acyclic permutation
of indices and by adding the four face-centering translations. The
structure factor, which gives the amplitude and phase of the X-ray waves
scattered by the contents of one unit cell through an angle defined by the

reciprocal vector h, relative to the wave which would be so scattered

by a single Thomson electron at the origin of the unit cell, is

i h- T,

F = Z‘fie

where V) is the position of the center of the i'th atom. Consider,

first,part of the contribution from the general position:
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4 _ama (hx e+ ky +12) 2wi (hx-ky-1lz)
XYz € + €
ler’i (-hx+ky-12) +\€2rr¢(—hx—ky+lz)

= (a,+1a) (by+1b (¢, + tc,)
+( +« )0 - 90 - )
+( - )C + 0 - )
+( - 00 - Y + )

= 4abc, + 4i°a,b,c,

where a, = cos 2whyx |

a, = sin2 1 hx, etc. All cross product terms vanish because each of

2
-them occurs four times, half with a plus sign and half with minus. The

contribution to the structure factor for a given point position p is

Fo= 46 L Pas
P(X’\/IZ)

where the sum is over the permutations of x, y, and z, and the
factor 4 is introduced by the face centering translation for allowed
reflections. Hence for point position 48h = (x, x, z), the number of

permutations is 3 and we have Fh = Ah + i Bh )
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LA, = (cos2nhx cosZnkx cos Znlz + cos Zmhz cos Zmkx cos 2nlx

+ cos 2mhx cos Znkz cos Znlx ) f; = Al £ (1)

T'é-Bh: replace cos by sin = Blfi

(2)

Let us now write for any point position p that is a special case of

48h = {x, x, =z},

If we expand by the same procedure used above, we obtain the following

set of Y values:

Point position (Wyckoff} 48h 24f l6e 4

‘Y 1 1/2 1/3 1/12

The structure factor is then calculated as

Fro=T (¥pAnlP) + 4 7, BL(p) ),
Pi b

where the sum is over atoms by point positions, and we simply put in

for (x, x, z) the appropriate coordinates for the atom in question. This

is the form must suitable for calculation, because we can write
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c - g fiypi(A’~iB’) (3)

Pi
and treat all atoms alike, with scattering factors {1 YP where
1
o -B; 9
fi=+1;e (4)
and .
? g = 5\\126/)\2

(5)

3. Calculation of Structure Factors for (h k 0) data. -- When
l= 0, Equation 3 can be written out specifically as
wF= % Zﬂj‘cj cos 2hx; cos 2nkz; (Part a) (6)
! h+k
tafut d Uge e+ 26, ¢ P

where we have assumed a common temperature factor for all atoms,
and have introduced the scale factor {)[/ . It is seen that the structure
factor is real for | = O.

The form (6) is the one used in all hand calculations and in IBM
calculations carried out before introduction of separate temperature
parameters for the separate atoms. Part a is the only part depending
on the positional parameters, and consists of 14 terms coded by the
number j as shown in Table VIII.

Equation 6 and Table VIII have been written to show the form

that is suitable for machine computation, which we discuss in section 4.
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TABLE VIII

CODING TABLE FOR (hkO)

Code (j)

01
02
03
04
05
06
07
08
69
10
11
12
13

14

B

1/2

1/2

OH
OH
OH
OH

OH

Al
Al

Al
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In hand calculation the terms given in the table are simply written out
in full, and the trigonometric parts obtained from tables (Buerger, 1941).

4. Evaluation of Scale and Temperature Factors. -- Let us

write equation 6 in the form
_ / - B 9
Fo=F'Ue

1
In a preliminary calculation which gives values of FC, we wish to choose
a scale for F0 such that Fo ~ Fc' If the original observed values
are FO' on an arbitrary scale, and we wish to have fft = 1.0, then we

need to choose a scale factor A so as to make
/ 1 -BY
AF, =~ F. e

¥ 1
One can plot log(Fo/FC\against 9 and fit a regression line to the

resulting array of points. Because we require
lo E/:—lo A -Bloge - 4 = a-B*g |
B ¥, 6 g

we call -log A the intercept of the regression line and -B log e the
slope.

It is customary to perform some averaging process for reflect-
ions in suitable intervals of A , so as to reduce the scatter of points
around the regression line. In our work we have instead fitted the
regression line directly, and have asked the question, what is the best
way to do this on statistical grounds ?

For centrosymmetric structures Wilson (1949) has shown that
the structure factors corresponding to a given Bragg angle are, for

sufficiently large angles, distributed according to



P(F)dF = —— ¢ la

Vin Z.

where Z = Z fiz summed over the atoms in the structure, the fi
being atomic slcattering factors appropriate for the Bragg angle con-
cerned. We have disregarded cell centering as it does not affect the
result. We may assume (Wilson, 1950, p. 397) that the calculated values

FC and the observed values FO are both distributed in this way. Then
¥

FC

° we find that

letting A = In
P(a)da = L secha dA
2t

Because of the interesting fact that Z drops out, the distribution of
A is the same for any value of 8 or 9 , which makes possible a

simple procedure of estimating the scale and temperature factors. In-

' ' F!
troducing FO = AFO, Fc = Fce—Bﬂ , and M= 1n —FS-_ we find
c
P(MYdrM = 1 sech (M+2%-B9q)

If we now have a series of observations { Pi, ﬂi), the best choice of %
and B will be that which maximizes the likelihood function (Mood, 1950,

p- 153):

N M

| = (Ziﬂ\ | sech("l.+% -BA)

1=
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In other words, we require

—_— =

oL
= 0
0N

or simply

Z'I’th (F]:-F’K—Bgi\:o
i
Similarly, from 0L/0®» =0 we have

Zﬂi*anh('ﬁi*ﬂ"‘ﬁﬂi\:O

Because of the shape of the tanh x function, we may write these

relations approximately

S an-BR) ¢ T (+1) = 0

i: { in-"’

E— ﬂ]‘_(ri+’“‘5ﬂi\ —+ % (t”gi - 0

! 1=T+!

where the summation from 1 to 7T is over values of the argument for
which tank x =~ x, and the remaining terms are for large Ix| ,
where ltanh x| =~ 1. The maximum likelihood estimate of the scale
and temperature factors is thus seen to be in the form of a simple
least squares fit to a linear regression line, with the additional feature
of a "cut off" which prevents large discrepancies from making large
contributions to the solution. For the scatter encountered in our data,
the "cut off" feature was unimportant. Hence we simply used the least

squares fitting procedure.
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The above considerations apply to the case where the scatter in

" is due to errors in the trial structure. This may well be true in
the early part of a structural investigation, and our treatment actually
applies rigorously only to the case of a randomly chosen trial structure.
At a later stage, the scatter will be due in part to random errors of
measurement, and in part to systematic errors which we can not
evaluate, and therefore must disregard in this discussion. Because of
the logarithmic nature of the intensity measuring process, the obser-
vations rli will be normally distributed around the regression line,
with a dispersion independent of fl . Hence a least squares fit is
appropriate for measurement errors, and therefore, in view of the
above results, for errors of either kind.

4. Calculation of (h k 0) Structure Factors With The Use of

IBM Machines. -~ The machines used in the calculations described

here are: (l) electronic digital computer, type 604, with punch unit,
type 521; (2) reproducing and summary punch, type 514; (3) collator,
type 77; (4) accounting machine (tabulator), type 402; and (5) card
sorter. These machines are described in manuals published by the
International Business Machines Corporation (for example, 1954).
Crystallographic calculations for cubic space groups are more
cumbersome than calculations for space groups of lower symmetry.
The high symmetry produces a large number of positions equivalent to
a given atom, and this gives rise to complicated structure factor
expressions when the contributions of equivalentatoms are combined so
that the structure factor can be written in terms of contributions of non-

equivalent atoms only. The high symmetry also makes possible a
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variety of special positions of different multiplicity, for each of which
the structure factor contribution takes on a different form. For hand
calculation these features present no difficulty and in fact are a
distinct advantage, because the greater the number of contributions
that can be combined into a single term due to space group equivalence,
the shorter is the required computation. For machine calculation, how-
ever, it is desirable to be able to treat every atom by one routine
procedure, or at least by one of a limited number of procedures, de-
pending, say, on parity of (h + k), etc. This could be done for cubic
space groups by ignoring the space group equivalence of atoms, treat-
ing each atom as independent, and using structure factor expressions
for a space group of lower symmetry (say, orthorhombic). Such a
procedure would have two disadvantages: (1) the number of equivalent
2

d >’

neglecting the face-centering repetition) that machine calculating time

atoms is so large (e.g. up to 24 for the structural unit in T

would be lengthened far beyond the additional time required for the
preparation of more complicated calculation programs, especially if
the calculation is to be repeated several times and with a large amount
of data; and (2) the procedure would run into great difficulty in least
squares calculations, where it is necessary to vary the parameters for
all equivalent atoms synchronously--unless, of course, the equivalent
atoms are treated as non-equivalent in the least squares refinement, in
which case the power of the refinement procedure is greatly reduced.
An alternative approach is to take the structure factor
expres sio'ns as given in terms of non-equivalent atoms, and to code the

calculations in such a way that the proper procedure is followed for each
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point position. This method requires complicated program for the
computer, which is a disadvantage because testing and perfecting a com-
plicated program can use considerable computer time. More fundament-
al is the fact that storage space in the computer is limited, so that for
the more complicated calculations it is impossible to read enough
information into the computer and still have room for the answer to
appear, if the structure factor contribution from a given point position
is to be computed in full in one operation — that is, from the information
contained on one IBM card.

We have followed an intermediate method. The structure factor
expression, in terms of the contributions of non-equivalent atoms, is
rewritten in such a way that each term has the same form. For (h k 0}
calculation, the form is as shown in equation 6, where j is a code
number designating a particular term in the structure factor expression,
and ﬁJ is a constant factor by which the fj must be multiplied so as to
give the correct contributions from the different point positions. When
written in this way, and when coded as shown in Table VIII, atoms in
point position lbe require one term, in 24f two terms, and in 48h three
terms. The resulting calculation for Part a of the structure factor
expression can be carried out easily with the machines, and the com-
plications introduced into least squares calculations are not excessive.

In our calculation of structure factors on the IBM machines, we
have used the conventional system in which trigonometric terms are
calculated on *'detail cards' and the calculated structure factors are
punched out on "reflection cards'. In our first calculations, Part a of

equation 6 was calculated from the detail cards, there being 14 detail
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cards (one for each value of j) for each reflection, Part b {the
parameter-insensitive contribution) was calculated as the re~
flection cards passed through the machine, and in the same oper-
ation Parts a and b were added, multiplied by 0[, and by e B4
and the result punched, as well as Fo - Fc » The need to vary
temperature parameters separately for each atom required the
system to be changed to the simple form

-B; 1

LFC:{Z/J’J.{]'@ cos 2mhyx; cos 21ikz

16 j ] }% : (7)

~

The number of detail cards per reflection was thus increased to
18, but the calculating program was simplified.,

-BA

Values of € were originally obtained by gang punch-
ing from a permanent master deck of e values. This method
is cumbersome, as it requires first calculating Bf values for
each card, and becomes particularly unwieldy when the e—x values
must be gang punched onto all 3,000 detail cards. We therefore
computed the e values on the 604 computer, using the perma-
nent € control panels designed by E. L. Eichhorn., In this setup
the B and 9 values were given to the machine separately and

the multiplication carried out internally.

5 Calculation of (h h 1) Structure Factors, --The struc-

ture factor for (h h 1) reflections is in general complex, and it is
necessary to calculate both real and imaginary parts., For (h h 1),

equations 1 and 2 become

(8)
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A’ = cos? 2nhx cos2nlz + 2 cos 2nhz cos 2rihx cos 2nlx

B = replace cos by sin (9)

Because of the form of Ah, it is no longer advantageous to
separate the structure factor contribution for a given atom into
several terms, The reason for this is that the general term would
have to contain three different trigonometric factors, It is possible
to calculate only two cosine values and two sine values in one oper-
ation on the 604, and so all cards must be run through the machine
twice in any case, It is therefore more economical to calculate
the four cosines and four sines required in equations 8 and 9,
which can also be done in two passages of all cards through the
machine, The storage capacity of the 604 is such that one can
then calculate and punch Z‘FiYi /'\Il in one operation, and

1
then, in an operation identical except for interchanging sines for
/
the corresponding cosines, Z fi(Yi Bi « This procedure re-
quires only one detail card per 1a,tom for each reflection, The
final step of the {(h h 1) calculations, which is carried out after
separation of the reflection cards from detail cards, is to form

2 2
A +B :I.)andlo —Ic.

Pages 96,97 are missing.
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VIII. ADJUSTMENT OF PARAMETERS BY

THE LEAST SQUARES METHOD

1, Principles, ~~The least squares method of parameter
adjustment was introduced into crystallography by E. W, Hughes
(1941). It consists of minimizing a weighted sum of the squares
of the discrepancies between observed and calculated structure
factors: Z Wy, [F},(H - Fc(l\nzz min, This is accomplished in
successive ;teps, by making parameter changes AX; , which, to

first order, change the discrepancies to
I o Fe ,
Fo—Fc = F, - FL*Z &C,Axl
1 1
The best parameter changes are those which minimize the weighted
0 ( =Y
sum: — w (F,-F/) =0
e IAX; % h % e

The resulting equations,

LB
|
o)

7 Ax; e ofe w, = 7w, (F-F)
- OX: OXz
i h 1 ] h

I

(10)

(e}
x
[

are known as the normal equations, The number of normal equa-
tions is equal to the number of parameter changes, so that the
latter are completely determined,

2. Procedure for (h k 0) Data: Positional Parameters, -~

Our method of carrying out (h k 0) structure factor calculations
has the result that a given parameter may enter into the contribu-
tions of from one to three detail cards for any one reflection,
This introduces a complication into the least squares calculation,
because only a part of oF. /9 XJ' can be calculated from one

detail card if Xj also occurs in the trigonometric arguments
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of other cards, The cards were therefore divided into three
classes on the basis of their conftributions to the structure factor
derivatives, as shown in Table IX.

A further complication is caused by the fact that for some
atoms BFC/@X is to be obtained from one detail card, for some
from two, and for some from three cards, In the usual applica-
tion of least-squares theory, off-~-diagonal coefficients of the nor-
mal equations are neglected, and only the coefficient Z;Wh (&FC/JX])Z
is calculated, The derivatives are calculated and squared and the
sum carried out in one operation, the information being read from
the detail cards, which are sorted by atoms, and the results
punched on summary cards which follow each pack corresponding
to a given atom, Such a procedure would be more difficult with
multiple card groups for each reflection, as in our calculations,
though it would still be possible with proper control punching,
But for off-diagonal coefficients, which it was necessary for us
to calculate, the merging and separating operations that would
have to be carried out, in addition to the control complications,
make this procedure unmanageable.

We therefore resorted to a procedure suggested by L. L.
Merritt (in conversation), in which a set of ""observational equa-
tion cards' is prepared from the detail cards, and the observa-
tional equation cards are then used to calculate the normal equations.
The detail cards are sorted by atom number (not by code number),
and the sequence in h and k is preserved so that for a given atom

all detail cards corresponding to a given reflection remain
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TABLE IX

CALCULATION OF STRUCTURE FACTOR DERIVATIVES

Class Contribution to %{— Contribution to “géz‘}}: Codes
i i

I 2mh sin Z'rrhxj cos 211‘kzj 0 1, 2, 3, 4,

+ 2wk cos thxj sin 21rkzj
11 2wh sin ZTrhxj cos Zwkzj 2wk cos Z'IThXj sin ZTI'ij 7, 10, 13

11 27k cos Znhxj sin Zwkzj 2mh sin ZTThXJ. cos erkzj 8, 11, 14
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together, The observational equation cards, one for each reflec-
tion, are merged with the detail cards so that each observational
equations card follows the group of detail cards for the correspond-
ing reflection, The merged cards are passed through the computer,
and the derivatives are calculated on the detail cards and punched
on the observational equation cards, The derivatives are of course
obtained by adding the contributions from the several cards if the
detail card group is multiple, Calculation of the contributions is
controlled by pilot selectors actuated by control punches corres-
ponding to classes I, II, and III of the detail cards, This procedure
enables all atoms to be treated alike, and minimizes the amount of
merging and separating required,

Summation to form the coefficients and constant terms in
the normal equations is then carried out with the small pack of
observational equation cards, the derivatives being read from the
various fields as required, While cumbersome, this method is
much more flexible than the standard technique, and enables all
coefficients in the normal equations to be calculated,

3. Weighting Systems, -- The weighting factors in equation

10 are introduced to take into account the fact that the differences

(F, ~F. ) are of different reliability for different reflections,

the expected scatter being proportional to |F0| because of the lo-

garithmic nature of the intensity measurement process, In con-

sidering what weighting factors would be most appropriate, the

maximum likelihood principle may be applied. If the discrepancies
Fo(h) - Fc(in) s where h labels the reflections, are normally

2
distributed with zero means and variances ¢, , then this principle

h
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2
leads to the least squares criterion with weighting factors w, = _gez
where 0';2 is arbitrary. This was the weighting system used orighi-
nally by Hughes (1941), the standard deviations being taken propor-
tional to ]Fol for the stronger reflections,

If we consider the normal equations, however, this weight-
ing system seems anomalous, The constant term in each normal
equation may be regarded as a measure of the correlation between
the structure factor discrepancies and the changes in those discrep-
ancies which would result on altering a given parameter, In con-
structing this correlation, we would want to require that the dis-
crepancies for all reflections contribute on an equal basis, so
that the contributions to the correlation from all reflections, large
and small, are on the average equal, Because the magnitudes of
the derivatives 3F/3X are essentially independent of the magni-
tudes of the F(;‘S except for a broad correlation depending on the
magnitudes of the f-values, it is seen from equation 10 that the
reflections are taken on an equal basis in the above sense by choos-
ing W, = 0, / o, + If we choose w,= a‘c,l/o‘h2 » as suggested by
the maximum likelihood principle, then the stronger a given reflec-
tion, the less it contributes to the correlation which determines
the parameter shifts.,

The anomalous contradiction of these points of view has
led us to investigate the weighting question more fully, We have
found that the maximum likelihood weighting can be justified on
more general grounds, and we have been able to make somewhat

plausible the basis for the failure of our intuition in the argument

of the last paragraph,
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It is possible to avoid the maximum likelihood and least
squares criteria altogether by considering the question, what is
the best way to choose the Axi regardless of what criterion is
used? There are two properties that reasonable estimators
should have: They must be unbiased, so that the estimated value
of AX; is on the average equal to the true parameter error, and
they should have the lowest variances possible, so that on refin-
ing the structure with independent sets of data the random errors
of measurement will have the smallest possible effect on the es-
timated parameters, If in addition we ask that for mathematical
simplicity and to be consistent with our first-order theory, the
Axi be given as linear functions of the (Fo (h) - FC {h)) values,
then we have specified the three conditions for '""best linear un-
biasedness' of the estimators., Kempthorne (1952, pp. 54-46,
and p. 64) has shown that these three conditions alone give esti-
mators which are identical with those derived from the maximum
likelihood criterion, and in particular they specify that the weights
should be W, = c/a? .

The significance of the '"best linear unbiasedness!'' property
can be seen in terms of the normal equations, in which, for sim-
plicity, we keep only the diagonal coefficients, so that the equations

may be written

2
%wh o(hj ax; = % Wy, % Y

Here the Yy, are the discrepancies and are taken to have variances
6]12 . Since the A XJ‘ are given as a linear combination of the
Yy, » the Central Limit Theorem (Cramer, 1937, pp. 56-60) shows

that, regardless of the distributions of the Y, , the variance of
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the estimator AX: approaches (for a large number of reflections)

3
P Z (w, o(h].jz O‘h2
AXy (7w, 0(5).)2

2
If we now ask for weights which minimize the ¢, , , we require

the value

) . AXJ
o, .
_..,QXJ = 0
oW,
from which
w = &
k 7t

where C is a constant, independent of k. This is the weighting
system given by the maximum likelihood criterion,
Our intuition in this matter may be bolstered by considering

a limiting case, Suppose that for some reason (that we need not
specify) the FO for one reflection,say k , were very accurately
known. This would mean that 0, was very small. If the struc-
ture were nearly correct, F (k) — Fe (k) ~ J}:. Now the fact that

F_o(k) is so accurately known means that no parameter change can
be carried out which allows Fo[k) - F-c(k) to become larger than

~ G'k o In other words, for parameter changes AX; we must have

Z o F (k) Ax; ~ @ ~ O
; o0 X.
1 1

Now compare the results of least-squares calculations using the

two weighting systems in question. If w,= 7, /()‘h s then the

contribution
s, BUY-F U 5F
% 0X;

to the correlation term in the least squares calculation is of the

same order of magnitude as the contributions from other reflections,
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so that k plays no special role and a more or less ""usual" set of
normal equations results (usual except for the domination of the
coefficient matrix by the k terms). But if wy = 0‘02/6;?, the con-
tributions of reflection K dominate both on the right and on the
left of equation 10, and all normal equations reduce simply to

3 ‘922(“ Ax; = Fylk) = F (k) ~ 0
X3 -

1
since we suppose the structure is already good enough that

Folk) = F (k) ~ @ .

Thus the maximum-likelihood weighting takes care of this
special case in a reasonable way, whereas the weighting w, = Q/d‘h
does not, Parenthetically we may add that the solution for the
parameter shifts in this case would be completed by use of the
method of Lagrange multipliers, using as the function for mini-
mization

1

2w, (FomFN™ 4 >\Z—LI:C(HA)(
10X
h

X3

) -
and imposing the condition Z oF (k Ax; = Fy(k)-F(K, which would
1 1
remove the dominating k terms from the resulting summations.,
This discussion, while it may seem far-fetched, is perti-

nent to our refinement of the zunyite structure., On the basis of

the normal equation argument above, we originally adopted weights

for the (h k 0) refinement according to the system W)= K/]Fo(m .
The incorrectness of these weights was not realized until the calcu-
lations were completed, We might fear on this account that the

parameter values derived are subject to some error. While itis

likely that the values would change somewhat upon application of
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the correct weighting system, the statistical theory shows that the
values would not be likely to change by amounts larger than the cal-
culated standard deviations., This follows from the fact that the
least squares refinement gives an unbiased estimate of the param-
eters whether or not it is optimally weighted (cf. Kempthorne,
1952, p. 55, eqn. 12). The main effect of the weighting system
used by us is therefore to give estimated parameter variances
somewhat larger than could have been secured with optimal weight-
ing. These considerations are not very worrisome, because we
have seen that the limiting standard deviation, which best describes
the probable accuracy of our parameters, is larger than any of
the standard deviations we have estimated statistically,

In practice, of course, the relation 0 = K,l Fo(h). cannot
be applied over the entire range of intensities, because of the in-
creasing uncertainty of the intensity estimates for very faint re-
flections, We have used a weighting system similar to the one
employed by Hughes (1941). It is shown in Fig. 28, as applied to
the (h h 1) data, for which we used the correct weighting system

Wy, = 0‘02/0‘h2 . The shape of the weighting curve for the (h k 0)
data was similar to Fig. 28,
Fig., 28 shows that in handling the (h h 1) data we tried two

different weighting systems, called W, and W, with low and high

1

""cut off'' respectively, A comparison of the results of W, and w,

1

will be given in section 6,

4, Results of the (h k 0) Least Squares Calculations, --

The procedure followed in solving the normal equations was to

reduce them to a standard form by dividing each equation by the



N M N M KM K M K
BT R < R S - S N TU N et

ol

N

NOM¥ N X M M MK K
N~ O8N 0N U1 U N WD e

o)

N

-107-

TABLE X
COEFFICIENTS IN THE NORMAL EQUATION MATRIX

FOR L. S. L.

A. Data out to sinle/)‘z < 1.9

1 2 *5 5 *6 %6 *7 Zq
1,00 0,01 0,01 0,00 0,01 0,00 -0,08 -0,06 -0,16 0,08
0.03 1.00 -0.36 0,03 -0,78 -0,07 -0,0l 0,03 0,12 0,01
0,06 -0,46 1.00 -0,04 1,00 0,10 -0,29 0,15 -0.30 0,08

-0,05 0,06 -0,08 1,00 -0,22 -0,05 0,11 -0.08 0.09 0.32
0,03 -0.42 0,41 -0,05 1,00 0,08 -0,11 0,06 -0,20 0.12

-0.01 -0,08 0,09 -0,03 0,17 1,00 -0.,18 0,15 -0.17 -0,02

-0.18 0,00 -0,09 0,02 -0,09 -0,06 1,00 0,03 -0.16 0,10

-0.44 0.04 0,16 -0,05 0,14 0,18 0,10 1,00 0,12 0,03

-0.10 0,02 -0,03 0,01 -0,05 -0,02 -0,05 0,01 1,00 -0,04
0,10 0.00 0,02 0,04 0.06 0,00 0,06 0,00 -0,08 1,00

[InN

B. Data out to sin°0 [ 2% 0.6

1,06 o0.,04 0,02 -0,02 0,01 -0,04 -0,03 -0,02 -0.36 0,08
0.24 1,00 -0.,61 0,02 -0,90 -0,10 0,07 -0,02 0,20 0,23
0,15 -0,74 1,00 -0,08 0,99 0,19 -0,21 0.03 -0,45 -0.03
-0,30 0,04 -0,16 1,00 -0,14 0,06 0.36 -0,11 0,15 0,82
0,03 -0.,47 0,43 -0.03 1,00 0,14 -0,15 0,03 -0,39 0,00
-0.24 -0,09 0.14 0,03 0,25 1,00 -0,17 0.04 -0, 43 -0,09
-0,08 0,02 -0,06 0,06 -0,11 -0,07 1,00 0.02 -0,05 0,19
-0.45 -0,05 0,08 -0,14 0,15 0,13 0.16 1.00 0,24 0,07
-0.19 0.02 -0,03 0,01 -0,06 -0,04 -0,01 0,01 1.00 -0.11
6.08 0,03 0,00 0,05 0,00 -0,01 0,07 0.00 -0,19 1,00
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coefficient of its diagonal term, to produce such an array as
shown in Table X. The Table shows for comparison two sets of
normal equations obtained by taking the same set of data, in A
using all reflections, and in C using reflections only out to (sin Q/)\)Z =
0.6. It is seen that even with all the data, some of the off-diagonal
coefficients are non-negligible, The most noticeable are the coef-
ficients corresponding to the OI - OII - Oiv overlap. The resolu-
tion obtained in L.S. V was greater than in L., S. I A, because in
the latter about 30 reflections were eliminated due to indeterminate
sign of Foe InL.S5V, the x, X3 coefficient was -0, 19 and the XX,
was -0,20, Note that the coefficients X,Xg and X3Xg remain surpris-

ingly high, in spite of the presence of the resolved 0!, atom,

v
Solution of the normal equations was accomplished by ne-
glecting all off-diagonal terms less than 0,1 (at first, higher
values), and solving the resulting equations, by iteration where
small off-diagonal coefficients were involved, and simultaneously

for the three equations for Ax,s AXg and Axgo

5., Least Squares Calculations for Variation of Scale and

Temperature Factors, ~- We list here the equations used for varia-

tion of scale factor and of temperature parameters for separate

atoms:

7w, FclAa - ZABiZWhFGFi A, = Z w, Fo (Fo- Fe)
h 1 h h

th F 4,00 —ZAB Zw S\i =/ w9, f‘J- (F-F)

where Ao = A-UL /m

(-
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and
~

~-B:9q
h . .
Fo=fle i ﬂj‘(j cos Lnhx; cos 2nkz,
Je1
where the summation J € 1 is over the code numbers corres-
ponding to a given atom,

Variation of compositional parameter for chlorine,by put-

ting fCl (actual) = {Cl (100%0), adds the equation

A

th ECTAo(Jrth FCFA}\M—ZAE)jwh Fad = T (R-F)
h " - - 4

—r’] >
T

|
plus appropriate off-diagonal terms in the previous equations,

6. Least Squares Refinement of (h h 1) Data, --This is by

far the most complicated calculation carried out in the present
study, We describe it here completely but compactly, with apol-

ogies for laconism,

Variation is for minimization of
- 2
Z W), ( J’o -1 C\
h

where IL: A%+ BZ o

This leads to normal equations

% h [ C)g \ AX é Wi, Al ( E + B >
where  §.=7Tx; . Off-diagonal terms were omitted, as justi—

fied by the large amount of data,

A = (2hcos hE cosI5sinh% 4 2hcoshy cos1EsinhE + 2] B4
5 ) ) (3) ° (Zg) : coshs coshEsinlE [fe

-31;’ = (nterchange sin amd cos
‘59?: [lcos? hE sinl¥ + Zhcos hg cos )€ sinlﬂS]\Cc’,—Bﬂ
~9B

L'nferchange s and cos

o8
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TABLE XI

RESULTS OF (hhl) LEAST SQUARES CALCULATIONS

L. S. VII L. S. VIII Accept for
S. F. XIII
1 w2 w1 w2
. 0005 . 0018 . 0002 . 0005 . 000
. 0031 . 0057 . 0012 . 0016 +.0014
. 0041 ,0108 . 0003 . 0004 . 000
-.0060  -,0093 -, 0019 -, 0020 -. 0020
. 0000 . 0000 -. 0004 +, 0005 . 000
. 0039 . 0082 . 0015 .0012 +,0013
. 0021 . 0046 . 0000 -, 0007 . 000
.0001 . 0020 -, 0002 . 0000 . 000
. 0002 . 0004 . 0000 -.0002 . 000
. 0000 . 0000 . 0005 -, 0003 . 000
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Procedure:
1, From detail cards, separate atoms AlI , SiI 3 Cl.

2, Calculate and punch on detail cards:
D;AE | (costcosd +cos2cos3)sint -2h+ cos! cos 3 sin2-21]T,;
D{AZ [(costeos2+ 0 )sin3:2h+ costeos fsing - 1]T;
b} B =

% inierchan&oe sin and cos
D?B:

This requires 4 trips for all cards through the machine, Simul-
taneously punch Y in col. 5 for atoms 1 - 3,

3. Detail cards are filled, so reproduce, retaining basic
data plus the D's. Merge new detail cards, which remain sorted
on h, 1, with reflection cards, and gang punch A, B, and Al onto
detail cards. Remove reflection cards, (}—3 = - B),

4, Calculate and punch on detail cards:

ﬂx: ﬂz:
Y Col.5 A (DjA+DA)-B (DB+DB) 0
NY Col.5 AD/A-BD B ADZA-BD.B

5. Sort detail cards by atom, with a normal equation sum-

mary card to follow each atom.

6, Calculate on detail cards, and punch on summary cards:
2
th (ﬂx\’iﬂ" and %wh (ﬂxyiﬂ) AT
h
and, as appropriate, the corresponding terms with )-.]Z replacing

ﬂx . These are the numerical constants in the normal equations,

less a factor (-4w) on the left-hand side.
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The final summations were carried out twice, using weight-
ing systems Wl and W, The parameter changes calculated from
the results are given under L.S. VII in Table XI. It is seen that
the changes using W, (high "cut off'') are about twice as great as
those using W, An investigation revealed two serious errors in
the least squares data. The errors were in the observed intensi-
ties Io of (L15) and (333), and were caused by mistakes in conver-
sion of logarithmic intensities to absolute intensities for punching
onto cards, These errors caused: (1) erroneous values of AI;

(2) abnormally high weights for these reflections, both of which
are strong, and for both of which the I, values in error had been
too low, The errors were corrected by hand, and it was found
that these reflections made large contributions to theleast squares
correlation constants. The corrected results are given under
L.S. VIIL For the larger shifts, W, and W, give about the same
results, This is an interesting example of the use of two weight-
ing systems to indicate errors and to distinguish between probably

significant and probably non-significant parameter changes,
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IX. CALCULATION OF FOURIER SYNTHESES

AND DIFFERENCE SYNTHESES

1, Projection on {100} , -- The electron density in a crystal

is given in terms of the structure factors for X-ray diffraction, as-

suming no anomalous scattering, by (Lipson and Cochran, 1953,

p. 12)
o ~2m1 (hx+ ky+1z)
p(xy,2) = v hZZk:Z: F(hk!) e (11)

where V is the volume of the unit cell, Although x, y, z are given

in fractions of the cell edges, the density in equation 11 is given in
electrons per unit volume, and the number of electrons in a volume
dx dy dz is aip dx dy dz . From the list of coordinates of the

2
general position in Td (Chapter VII) it can be shown that

F(hkl) = F(hk1)

1

F(hkl) = F(hk1)
= F¥(hk1) = F¥(hk1)

FX(hk1) = F*(hkl) (12)

With these conditions, and with F = A + iB, equation 11 re-

duces to the result given in the International Bbles (1952, p., 489):

p= 6— 711 (AcosZnhx cos 2nky cos Znlz - Bsin 2nhx sin 2nky sin 2niz)
e} 0

o

This result is not very useful, however, as it fails to show the
proper treatment for special structure factors with low multipli-
city (Lipson and Cochran, 1953, pp. 76-78)., Starting with equation

11, we project the density onto (001):

4o o ) ‘
plxy) = [pagdz = L 7T Fno) S (hx+ky)
© -0
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where V = 3.03 and A = aOZ. Introducing conditions 12, and re-

membering that F (h k 0) is real, we obtain

o
o(x,y) = i sz F(hkO0) cos 2nhx cos 2nky (13)

where multiplicity is now explicitly taken into account. Now define

C(oo0) = -1 Flopo) = T4 (115¢)

C(ho0)= C(oh0) = F/(h00), hz0 (1
C (hk0) = C(kh0) = ZF/(hk0), h,k#0

)

and write, in consideration of equation 7,
F(hk0) = 12 F/ (hkoO) ,
148

where F'O is the observed structure factor on the scale of Appendix

II. Then
00

p(xy) = el Z cos Znky Z C(hkO0) cos 2nhx
k=0 h=o0

This is the form of the actual computations, and is suitable for
calculation with Beevers-Lipson strips or by IBM methods, In
the actual computations, of course, only the summations are car-
ried out, using amplitudes C as defined above., The constant
32/A{0 . is to be used in converting the results to electron units,

Hand calculation of p{(x, y) using Beevers-Lipson strips
is a straightforward but tedious procedure, Strips in intervals
of 60ths of the cell were used to calculate projections in 120ths
by halving the frequencies and separating odd and even half-

frequencies. The chief difficulty in hand calculation is the
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possibility for error. One error in the first summation produces
31 errors in the final summation, for a projection 1/4 x 1/4 of the
cell in size, Fortunately the presence of the diagonal mirror plane
makes it possible, by calculating the full 1/4 x 1/4 projection, to
have a direct check on the internal consistency of the calculations,
By this device an error in the first summation can be quickly lo-
cated before much computational effort is lost,

Except for Fo I, all syntheses were calculated by IBM meth-
ods, using the system devised by Professor Verner Schomaker and
described by R. A. Pasternak (1954). Coding of first detail cards
and transfer of the proper amplitudes to these cards, according to
equations 14, was performed ‘in one operation on the 604 computer,
using the reflection cards from (h k 0) structure factor calculations,

Difference syntheses are carried out by the same method
as equation 15, but with F'o - Fé substituted for F(‘) in equations
14, and with the term C{000) dropped,

2, Projections on (110) . --Because the correct formula-

tion of procedure for this projection requires some care, we give
it here in detail, Starting with the density, equation 11, we make

a change of variable 0 =x+y, T=Xx-y , so that

p(d"’r,z) ~= é‘bzzz Fe

Now project on (110) » As shown in Fig, 25a,
~mi1 (hoa12)

2
/O(G',Z) = fpaodT = B\!TZ‘ ZZ F["Ih”e

Per unit area in the 110 plane, the density becomes
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—2m1 (ho+ 12)

plez)= L{ 7] Fe
do
since an interval dg¢ corresponds to a distance a, do /ﬁ . Now

using conditions 12, and expanding, we find that

o(d,z) = %ﬁ/g 7 [ cos 2nhe [A'(hh1)cos2nlz + BT (hh1) sin 271z ]
A, oo
where

At(000) = £ F(o00)

AT(001) = A(001) , 1#0

pT(ooly = O (16)
At(hho)= A(hhO), h#0

AT(hh1) = zA(hhl) , h)1 # 0

BT(hhl) = 2 B(hhl)

1

If in accordance with our calculations we now define

BT

A——_LT /\——J—
AO—'GA, Bo= 11

then we obtain the result used in practice:

%) [+.]
o(6,2) = 322‘[5 7 cos2ihe ] (A 08 2nlz + B sinznlz) , (17)
1] 0 (o}

The resulting projection has plane group symmetry cm, as
shown in Fig. 29b. The unique unit, shaded in the figure, has dimen-
sions 1/2 x 1/2. The mirror planes are represented in equation 17
by the fact that p (¢, 2) = P ( -0, z) and the centering translation

by p(0,z) =p( 0+ 1/2, z + 1/2) which follows from the fact that
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h and ] are always of the same parity for a given term in the series.
The amplitudes A and B are derived by taking the magnitude
|F0l to be ﬁo and taking the phase of FO to be the phase of Fc'

The amplitudes are therefore calculated from

~ A A‘ BC
A, = VI, de , B, =T, ¢ .
VT, VT

C

The difference synthesis amplitudes are simply :/‘XO - Ac and
N ~ A
B -B_ (where B = "1_;6— B and was the actual value calculated by
o c c c

usj.

3. Plotting Atomic Positions on Projections. -- The plotting

of positions on the S(100} projection is straightforward because pro-
jection coordinates are simply the atomic coordinates, properly chosen
and modified where necessary by the symmetry operations of the pro-
jection so as to fall within the calculated unit. For the (11 0) projection,
however, the procedure is not so direct, and we therefore list in

Table XII the coordinates of all atomic positions on the projection and the
combinations of parameter values which give rise to these coordinates.

4. Electron Counts and Atomic Shapes. -- Lipson and Cochran

(1943, p. 106) have emphasized the desirability of integrating the
electron densities derived by Fourier synthesis in order to compare the
number of electrons in the calculated atomic peaks with those in the
postulated structure. Of course, if the difference map of the final
structure is flat, one may say that the postulated and real structures

have the same electron distributions, and there is no need for recourse
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TABLE XII

COORDINATES OF ATOMIC POSITIONS ON THE (110) PROJECTION

Atom Multiplici’cy2 Parameter Combinations
lig YA
SiH 1 2x x
2 1/2 1/2 - x
OI 1 1/2 4+ 2% 1/2 + x
2 0 - X
0II 1 2x X
2 1/2 1/2 - x
0
I1I 1 1/2 1/2 - x
2 x 0
2 1/2 - x 1/2
1 0 C
1 -
0IV 2 0 Z
2 1/24+x -2 1/2 - x
1 i/2 - 2x z - 1/2
2 l-x-2 X
OV 2 1/2 1/2 - z
2 X+ z X
2 1/2 +z - x 1/2 - x
1 2x z
AlII’ 2 0 -7
2 1/2 4+ 2z - x 1/2 - x
1 1/2 - 2x 1/2 + x
2 -(x + z) X

1. In units of aO/IZO.

2. Multiplicity in atoms per two structural units.
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to electron counting. It would also seem that deviations in electron
density could best be evaluated from the difference map. The diffi-
culty with this method is one of scale: unless one is able to convert
reliably from the somewhat arbitrary units in which the calculated
electron densities or density differences appear, no counts on the
difference maps have any quantitative significance, The only sure
way to verify that the scale is taken properly into account is to dem-
onstrate that the correct electron counts can be obtained from the
Fourier syntheses, If this is shown, then counts on difference maps
can be trusted,

Our interest in perfecting reliable electron counting tech-
niques for the zunyite structure arises from the use of the atomic
shapes, peak heights, and other electron density details in the con-
siderations of the next chapter, where it is necessary to have elec-
tron densities in absolute units. We have therefore carried out
electron counts for a number of atoms in the structure, For ionic
crystals the atoms prove to be essentially spherical (projections
can show only circular symmetry, of course), and questions of
deviation from sphericity due to redistribution of electrons in bond-
ing do notarise, From equation 15 we find that for counts on F I,

the number of electrons is

N = 0.0218 Zpo(calc.) electrons,

the sum being over squares 1/120 of the cell edge on a side, Elec-
tron counts by this method--summing over densities calculated at
specific points in the structure, which is the method mentioned by
Lipson and Cochran (1953, p. 106)--does not prove particularly

satisfactory for the zunyite projections, For the AlII peak on
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FJI, containing one aluminium ion, it gives a good value of 9.9
electrons,; but for the double O'\'/_ peak on the same projection it
gives only 8.9 electrons, whereas 20 should be found.

The method that we have found more useful and more illum-
inating is the ''radial sum" method, in which a plot is made of p as
a function of distance r from the center of a given peak, by com-
piling all the point-by-point information from the projection onto
one plot of p(r), and drawing a smooth curve through the points,
Such plots of atomic shape are shown in Fig. 26, Electron den-
sities are shown in arbitrary units, but can be converted to elec-
trons A -2 by

pPo = 163 Po(cqlc.\

The electron density at the center of an aluminium peak is about
64e R _2, and at the center of an oxygen peak about 32 e A -29
Fig, 27 shows the shape of the °Aly peak at (21,8, 49.7) on

FOIII. Here the conversion is

~2

Po = 2.12 p, (calc)  eA

The central density is found to be 63 e A _Z,

To find the number of electrons in a given peak, the p(r)
curve is multiplied by r and the resulting radial charge density
is integrated graphically, Table XIII shows the results for sev-
eral atoms in F, I,

In this table the total charge N (r) is given as a function of
the radial distance out to which the integration is carried, It is

seen that the total charge depends rather critically on the behavior
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TABLE XIII

ELECTRON COUNTS FOR Fo i

N(r)2 for:
_1;1 :A_lil EQ-HV EI + AlI Cl + ZOiII
2.8 8.5 8.7
3.2 9.2 16,6
3.6 9.8 18,2
4,0 10,2 11.6 19.3 22,9
4.4 10.5 20,4
4.8 10.8 21,2
5.2 11.0
5,6 11.1
6.0 11.2 16.8 30,2
6.4 11.3 17,7
6.8 11.3 18.6 23,2
7,2 19.4 32,2
7,6 19,9
8.0 20,4
8.4 20,8
8.8 21.0
9.2 21,1
9.6 21.1

l r = radial distance from center of peak in units of a,o/ 120,

2, N(r) = number of electrons within a cricle of radius r,
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of p at large values of r, but that, with reasonable sizes for the
ions, the expected number of electrons can be accounted for in
all cases,

The main feature of the shapes of all peaks is their general
resemblance to Gaussian curves, as has been discussed by Booth
(1946) They show an additional important feature, however,
This is the "apron' of charge density which extends to values of
r at which the Gaussian distribution would have dropped practi-
cally to zero, The importance of this apron is especially great
for oxygen atoms, as can be seen in Fig, 26 and in Table XIII,
The central Gaussian core accounts for only half of the electrons
in the peak, the rest lying out in the apron, This fact adds to
the difficulty of making accurate electron counts, because an ac-
curate scale factor is required if the contribution of the apron to
the total charge is to be corrects For cations the central core
accounts for about three fourths of the total charge,

The radii of the cations, taken as the radius of the sphere
enclosing the expected charge, is 0, 50ffor the SiI+A1II peak,
which agrees tolerably with Pauling's (1948, p, 346) crystal
radii for these atoms., But the value for oxygen is conspicuously
low, 0,9 A. The value for Cl cannot be reasonably estimated,
because of irregularities in charge density in the outer part of
the atom.

Following Booth (1946), we have fitted Gaussian curves

to the density profiles of the core:
2
Pl”

p(l’) :poe—
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The simplest ready evaluation of p is from the radius at half

maximum:

ln 2
r’/?,

Values obtained in this way are in the range 19 - 23 A—Z for all
peaks in the structure.

The fact that p for all peaks observed on our Fourier syn-
theses is close to 20 might be interpreted as indicating the limit
of resolution of our X-ray data, That this is not the case is shown
by the difference maps, where peaks with half-widths correspond-
ing to values of p up to 60 are observed,

The values of 19 ~ 23 A-Z for p in zunyite are to be com-
pared with Megaw's (1952, p. 484) values 9.7 for Ca, 9,0 for
Si, and 8,2 for O in afwillite, In view of the fact that Megaw re-
ports a temperature parameter B = 9,4 A for the afwillite struc~-
ture, the values of p obtained by her are probably influenced
mainly by the resolution of her data,

Cruickshank (1949 a, p. 80) finds values p= 2,9 or 3.4
for carbon peaks in dibenzyl, the different values corresponding
to different methods of fitting the Gaussian curve to the peak
shape, The value 3.4 corresponds more closely with the method
used here, This low value doubtless reflects a high temperature
parameter for the structure, Jeffrey (1947), who obtained the
data used by Cruickshank, does not report a temperature param-
eter for dibenzyl, and Robertson (1934), who did the original anal-
ysis of dibenzyl, used empirical scattering factors, On the basis

of equations 28 and 30 of the next chapter, and assuming (for the
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sake of a rough calculation) Py = 15 for carbon, we obtain the im-
probably large value B = 8,9 A_Zg

Booth (1946) found that the shapes of peaks due to carbon, ni-
trogen, oxygen and chlorine in a number of structures could be
well accounted for (in their central regions) by taking p = 4, 69,
This circumstance parallels our observation that all peaks in the
present study can be accounted for by p near to 20, However,
it seems unlikely that the cause is the same in the two cases, as
Booth!s value was derived from organic structures where the
shapes are determined to a considerable extent by the thermal
motion alone, the value 4, 69 corresponding to a B = 6, 4, which still
seems excessive, in view of the statement by Megaw (1952} that
B for organic structures is in the neighborhood of 2,5,

A more accurate treatment has been applied to the peak
in Fig, 31, with the result p_ = 114, p = 19, Since the height
of the peak is 118, the fit is not perfect, but values of p(r) cal-
culated from these parameters are generally in good agreement
with observed values for the core, as shown in Table XIV., The
table shows that the apron appears at about r = 3,0 (120ths) or
0,34 A,

With the Gaussian density function, electron counts can be

carried out easily,
Core

N :T_TBD
P

For the ZAIH peak, which contains 4 aluminium atoms, the re-

sult is 40, 5 electrons, This value is puzzling, since it accounts
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TABLE XIV

2
p(r) FOR AlII IN Fo III

T p calculated p observed
6.0 114 118
0.5 107 108
1.0 89 89
1.5 65 64
2,0 41.5 41

24 24
3.0 12 15,5
3. 5 12
4, 2 9.5
o5 0,7 6.5
TABLE XV

TEMPERATURE PARAMETER CORRECTION
DERIVED FROM AF 1

Equatlon SlI-AlI Peak Cl—ZOIII Peak
ABgi, a1 * ABcy x
33 -0,18 --- +0, 24 ---
36, 37 -0,16 -0,015 +0.17 -0,022

56 -0,41 -0,083 40,31 -0,034
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entirely for the number of electrons in the peak without consider-
ing the contribution of the apron, which is estimated to amount to
at least 10 electrons, A similar result is obtained by this method
for other cations, the core accounting for the full number of elec-
trons,

We have not pinned down the explanation for this and for a
few other discrepancies, but it is seen that the electron counts
indicate a general consistency and correctness for the atomic

shapes derived from the projections,
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X. REFINEMENT OF THE STRUCTURE
BY MEANS OF DIFFERENCE SYNTHESES

1. Positional Parameters. -- Following the discussion by

Lipson and Cochran (1953, pp. 300-301), we have calculated positional

parameter changes from the relation

e
Ax; = 29Xl - ox |3
(%Ji ZPpo

where D represents the density on the difference map. This equation
can be applied quite satisfactorily, and even small positional parameter
errors cause a distinct gradient on the difference map.

Our chief concern in the use of difference maps has been with the
correction of temperature parameters, and we therefore devote the
remainder of the chapter to that problem.

2. Temperature Parameters. -- The evaluation and correction

of temperature parameters from information obtained from difference
syntheses was first discussed fully by Cochran (1951 b). It had been
shown (Cruickshank, 1949, p. 155) that difference synthesis refinement
is equivalent to least squares refinement with weighting factors

W = l/fi’ where fi is the atomic scattering factor for the atom whose
coordinates are to be refined. Cochran made use of this analogy to
derive normal equations for least squares refinement of temperature
factors using the weighting w = l/fi' These equations, although applied
to anisotropic temperature factors, are entirely analogous to the
equations we employed (Chapter VIII, sec. 5) in numerical calculations

for correction of isotropic temperature factors., Cochran showed that
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these normal equations reduce to a simple expression in terms of the
Fourier and difference map densities. His result for two dimensional
data (equation 4.8 of the paper cited} reads, when reduced to the
isotropic case and written in our notation:

(20
ABi = lZna_&_I_i (20)

4
9 pe
drdj.
1
where the derivatives are evaluated at the center of the i'th atom. For
. . 34 d 4
purposes of calculation Cochran gave an expression for Pe [OT
derived from the Fourier synthesis formula, with the usual trigonometric
averaging:

0 4m? ~5Bis"
(A= raee™s
1

(21)
where the sum is over all reciprocal lattice points for which structure
factors were used in making the projection on which D is measured,
and s = 2 sin@/ A

Cochran's results suffer from two drawbacks: (1) the presence
of the fourth derivative in equation 20 is difficult to understand
intuitively; and (2) the fact that this derivative cannot be evaluated
from the Fourier synthesis directly requires calculation of the sum in
equation 21, The disadvantage of using large sums is, first, that it
reduces the method to a crank-like numerical operation similar to the
least squares or differential synthesis methods. The use of difference
maps and Fourier synthesis should enable one to get away from these

purely numerical methods, and to evaluate the parameter shifts from
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the distribution of electron density itself as seen in the maps. Second,
the use of formulae such as equation 21 is always attended by the need
for a re-examination for special space groups.

These disadvantages appeared the more acute to us because
of the fact that Cochran's method is based on a least squares calcula-
tion, whereas we had gone to difference synthesis methods for the
express purpose of avoiding the uncertainties and contradictions which
had arisen in our least squares refinement of the temperature para-
meters (Chapter IV). When, therefore, the ABi's calculated by
Cochran's method came out absurdly large (due to an error in the use
of equation 21, as we subsequently discovered), we were ready to look
for other approaches. In the following pages we describe our approach,
and then discuss the temperature factor question from a more general
standpoint, from which it is possible to show the relationships between
the various methods.

The effect of thermal motion is to broaden the apparent shapes
of the atomic peaks. Let R = ix + 7y + k2 be the displacement of
an atom from its equilibrium position, and let P (R) be the probability
density of displacement due to thermal motion. Then the apparent

electron density ye (R} is related to the atomic electron density /oo(R)

by

/O(r‘e) ZJPO(Q_S) P(§)c|vg (22)

the integral extending over all of space. The "apparent' density is of
course the time average for a given atom, or the instantaneous average

for all equivalent atoms in the crystal. The probability P (R) is given
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by Boltzmann's principle (Fowler, 1929, p. 48)

UGy
P(R) = Ce KT (23)

where U (R) is the difference between the potential energy of the atom
at R and at its equilibrium position, R = 0. Without a more detailed
analysis we will regard this as an approximation, justified by the time-
averaging of the potential distribution due to the surrounding atoms.
We take the environment to be isotropic; and we suppose that the dis-
placements R are small enough that the atom behaves as though bound
by Hooke's Liaw forces, an approximation satisfactory for describing

the thermal properties of most substances at ordinary temperatures

(Seitz, 1940, p. 100}. Then

U(R)=4aR* (24)

!

where a is a force constant. Writing a/2kT =y,

2

PR = (2 [ (R-51 " av, . (29)

m S

We now assume that /Oo (ﬁ) is a Gaussian distribution of
electron density. This assumption has been criticized by Cruickshank
(1949 a, pp. 81-82) and by Professor Schomaker (in conversation}. But
we support its use for the following reasons: 1. It does approximate
the observed atomic shape in the main part of the peak quite closely.

2. Even if the observed shape is conditioned more by X-ray resolution

than by the true electron distribution, the Gaussian peak still approxi-
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mates the general shape of the central part of the real peak, which for
our purpose will be at least roughly satisfactory, since we work with
the general shape of the peak rather than with such details as may be
determined by high-order derivatives. 3. Use of the Gaussian
distribution makes simple a calculation which would otherwise involve
tedious numerical integrations for each application, a feature which,

Z -4 B st 4
like the evaluation of f e S , we expressly wish to avoid,

We therefore take
2
- - ‘POR
/Oo(R) - /‘)o(M ¢ : (26)

Performing the integration in equation 24, we obtain
., PR
o(R)= plo)e (27)

where
PoY
Pot+ Y (28}

_U
!

and /5 (0) is a constant. The density P (1?{) can now be projected

on the x, y plane. If ¥ = 1IX + 3y, then
_ - pre
plr)y = plole (29)
the simplicity of the projected density being another happy consequence
of the use of the Gaussian form.
From this result the effect of thermal motion on the observed

peak shape is seen directly. For large thermal motion ( y < Py ), the
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shape is determined largely by the statistical distribution of the atomic
centers, while for small motion (y > po), the thermal effect is only a
small modification of the electron distribution for the atom at rest. The
parameter y can be interpreted directly in terms of the temperature

parameter B (James, 1950, p. 23} by using equations 23 and 24:

. 2
B= 812 %2 = an (30)

A

For zunyite, and for hard crystals generally, the observed values of B
(around 0.5) lead to vy > p,, whereas for organic crystals, with
values of B up to 5 or more, the situationis y < P,

The required method for correcting temperature parameters is
then clear. From the shape of the difference map peak we evaluate the
error Ap in the assumed dispersion parameter p. From equation 28
we interpret Ap in terms of Ay, and from equation 30 we derive AB.

The result is simply

The problem then is how best to determine Ap. For the most
satisfactory determination, one would wish to make use of the shape of
the entire difference map peak. We will, however, be concerned
mainly with the so-called "paracentric' methods, as they are more
adaptable to application and more capable of precise analysis.

It can be shown that to first order the width of the difference

map peak or trough is independent of Ap:
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(= L (32)
p
g being the radius of the O-contour on the difference map. The only

satisfactory readily determined measures of Ap are

T
Ap = .‘__‘2_@ (33)
where Z is the number of electrons in the atom and D{0) is the

difference map density at the center of the peak, and
.. (a_D)
Ap = —4PZ D r2 . {(34)

Equation 33 is the more sixhple and direct to apply, but its use
is endangered by the possibility of scale factor error, which gives rise
to simple peaks at all atomic positions on the difference rnap.-‘ This
difficulty can be avoided by introducing the scale factor as a parameter

and solving equations corresponding to 33 and 34 simultaneously. If

we let

~(p+Ap)r2 —pbr?
(p+Ap)e - (1-9{)%-)96 Pr

O
il
S RINN

(35)

where »n 1is the fractional error in the scale factor, then the result is

Ap:«-(—-#D) (36)
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"
x:—1<2 +2D> (37}
pZ *2p
where D" = ( BZD/ 0 Yz)i and D = D(0) . Equation 36 corresponds

to an equation used by W. C. Hamilton (1954, p. 20) for refining
temperature parameters. He arrived at the result in a more formal
way which did not show explicitly the manner in which it corrects for
scale factor error. And he derived constants for the atomic shapes by
means of numerical integration rather than directly from Fourier
syntheses, as done here.

In practice, equation 36 gives results little different from
equation 33, if the scale factor correction is small, as was the case
here. That scale factor error leads to noticeable effects can be seen,
however, from the peaks on AF I, which do not satisfy equation 32, but
have 1, values displaced from the predicted ones in accordance with a
negative value of % , an effect which can be calculated from equation
40 (above). Equation 37 can be used to compare the results from
different peaks. Results and comparisions are given in the next section.

A simple non-paracentric method which takes into account the
general shape of the difference map peak may be derived by using the
central density, D(0), the density at the stationary points in the trough
surrounding the central peak or the crater lip surrounding the central
crater, D (1), and the radius of the smallest 0 -contour, V¢, . The

resulting equations are

op =3 F [ o) - D0 (38)
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L [ D(o) + e2pr°2 D] (39)

n =1L
Z'Z,P

The three data are not independent, because ¥, should be given by
r§=L(»+°_‘£) (40)
o Ap

This method has the advantage that it avoids calculation of the
second derivative on the difference map. It is not practicable, how-
ever, and we present it only as an illustration of a basic difficulty
inherent in non-pracentric methods. The factor p r‘i can be greater or
less than one, but if peaks with Ap > 0 and others with Ap < 0 are

both present, it will be greater than one for one group or the other

(equation 40). If the scale factor error is small, pr‘g“ =1. In any
2
case, the factor e?Plo o e? = 7.4 multiplying D (1) in equation

38 and 39 makes the probable error of Ap large, because D (1) is known
to no greater accuracy than D (0). The result is that local irregularities
in the outer part of the difference map peak can have large effects on
Ap. These local irregularities may be largely spurious.

Thus the main objection to non-paracentric methods is that
they are forced to use information from the low-density outer parts of
the difference map peaks, where the percentage error of the density is
much greater than at the center. A similar effect tends to enter in the
calculation of derivatives, but it can be shown that the standard derviation
of the term D"/Zp in equation 36 is only twice that of D, so that the

effect is not too serious for paracentric methods.
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We turn now to a more general discussion in which we will use
an approach suggested by Professor Hughes (in conversation). The
atomic scattering factor and the electron density are Fourier trans-

forms of one another (James, 1950, p. 96):

2n1 §E|
dv (4la)

F@) = | po(R) e i

and the inverse

~2nic_]-f—>\
(o

polR) = [£(3)

d\’c—, (41D)

where q is a vector in reciprocal space ( | ql = 2sin@/)\ ). The result
of introducing the Debye temperature factor exp (- -‘%qu) is a trans-
formed density (apparent density) given by the (three-dimensional) fold-

ing theorem (Waser and Schomaker, 1953, p. 684):

o (R) = Jpo(R—S)T(S)dvg (42)
where T(g) is the transform of the temperature factor:

_ -18q* -2n1§-S
T(S) = je‘* e dvq = (¥) e (43)

where 4TT2

the integral in equation 42 being evaluated by standard methods. Hence

equation 41 reads
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3 5%

p(R) = (L) [p,R-5) e dv, (44

This is identical with equation 25, derived from a quite different stand-
point, and shows the close connection between the Debye temperature
parameter B and the interatomic force constant a.

Instead of specifying the shape of P (f{ - é), we now derive
paracentric relationships for determining changes in y for any
radially symmetrical distribution of electron density. Since we are

interested in two-dimensional data here, we note that the projection

o(F) = jp(ﬁ)dz

can be carried out explicity in equation 44:

2
Ys
/O(F): % J/o(r_s\e dvg (45)
Now differentiate and set F = o. Because of the radial
symmetry,
d © st
Pl =X fe'“ $?p,(s) 2nsds 4+ L plo)
Y 1, ™ ! Ll

==

o0
2
J‘ Ye _‘_ﬁ(s_&) 2nsds (46)
50

Js

after integrating twice by parts. Now for F=o

2



and in cylindrical coordinates, for radially symmetric p (8},

2 1 d ap>
Y= L Y Yo
Vp,(s S&S<S&S

Hence by interchanging the order of integration and differentiation in

equation 46,

Bp $ | 2
= ==,V | (47)
oY o 4-¥ P o)
and since
0 Oxi dy7' or?
0
we obtain
op = -1 0P (48)
0y o 2y* 0r?
By the same procedure we derive
0 o2 | 4
ANV = - - Vv (49)
OY P |0 4_,x7_ Plo
and since
s - 8%
VP ]o T3 ord \O
this results in
9 p \ I
oy or* i, 3y* ar4 !, (50)
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Equation 50 describes Cochran's method of temperature para-

meter correction for the case of no scale factor error:

a‘)_‘izﬁ’ll Ay 97D
AB = —-4m éﬁ; = IZWZ_BZ—D— = 127*° ort i, (51)
Y 3 7o
dl 0 O)rq 0

Since this result is entirely equivalent, through equation 44, to
the simple methods previously discussed, one can understand the (at
first) puzzling fact that equations 31 and 33, which involve no
derivatives at all, give the same result as is obtained by introducing a
Gaussian density into Cochran's equation, which involves the fourth
derivative of p . This seemed remarkable at first because there was
no particular reason to expect the fourth derivative of the Gaussian
density to bear much relation to the fourth derivative of the actual
density.

From equation 48 a second correction formula is obtained:

. D(o)

6—1‘9\ (52}

2
dl’o

AB = 8T

This result expresses the physics of the situation more under-
standably than equation 51, and obviates the need for the fourth
derivative and hence for the sum in equation 21, regardless of the shape

of the density profile.
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Equation 52 describes a parameter refinement procedure which
was given in essence in an earlier paper by Cochran (1951 a, p. 84).
Equation 8 of that paper can be reduced exactly to our equation 52 by
taking advantage of the circular symmetry at the center of the atomic
peak.

The results derived above can be used to construct a paracentric
refinement method which takes into account a possible error in scale.

If we write

- P
/Oobs = (Ve ) Pcalc + bf'cq'c AY

(53)
and use equations 48 and 50, which are valid irrespective of scale factor

error, the result analogous to equation 36 is

D" (54)

(4/— 2 p_IV)AB
3 “;//

- D
Jo

where all densities and derivatives are to be evaluated at the center of
the peak. The coefficient of AB in equation 54 involves p IV’ and is
therefore unsuited to evaluation from electron density maps. This
difficulty can, however, be avoided by what seems to us a justifiable
approximation. The critical feature in equation 54 is the right hand
side, because it determines what portion of the observed peak height is
due to scale factor error and what portion to temperature factor error.
The coefficient of AB is unrelated to these effects and would be
expected to be the same from peak to peak for a given atom. The fourth

derivative evaluates the "first order' departure of the peak from

parabolic shape, and is therefore the term which causes the peak to have
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the shape of a Gaussian curve rather than a parabola. In this sense it
is an intrinsic feature of the Gaussian shape in the central part of the
peak, and we may therefore expect to evaluate the coefficient in

equation 54 by making use of this observed shape. On this basis

I

LECREA)

v
o2 0¥ gy (55)
0 pe
where p is the parameter in equation 29. The suggested refinement

procedure is then simply

2, D "
AB:?(-/:)-——/%/) . (56)

The scale factor error can be determined from

=
i
oo

_ 0" AR . (57)
P gm?

oo
=

We regard equation 56 as inherently the most satisfactory means
of isotropic temperature factor refinement using data derived directly
from Fourier and difference syntheses. Unfortunately we have not had
opportunity to test it out thoroughly in practice for purposes of com-
parison with other methods, because it was developed after the refine-
ment was completed, using the methods given by the Gaussian approxi-
mation. Equation 56 makes use of that approximation, but only as a
multiplying factor whose value is not critical. The basic feature of
equation 54, the difference of the ratios of densities and derivatives,

is retained in equation 56.
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The foregoing considerations have taken no notice of the fact that
the electron densities obtained in practice are affected by the finite
termination of the Fourier series. Thus in equation 41b the integration
is represented as extending over all of reciprocal space. But theeffect
of termination is readily taken into consideration. We rewrite equation

41b by including the cutoff function:

I 19l < q,

](iwd:% o 19> g, (58)

-2m1 4R

PE(R) = f{(aﬂ 1(3;9.) e dv, (59)

The density p}) could be evaluated by using the folding theorem,
but for our purposes there is no need to do this, because p(I)(I_{) is the
density distribution which would replace ,oo(ﬁ) in equation 42 and the
ensuing discussion, and hence it is seen that the results we have
obtained apply directly to the densities calculated with series termina-
tion.

The above discussion leads, we believe, to a more unified
approach to the problem of isotropic temperature parameter correction
than has hitherto been given, and allows the formulation of an improved
method for direct application, equation 56.

3. Results., -- The zunyite structural refinement did not have
the benefit of the comprehensive point of view developed in the preceding

section. Instead we were obliged to rely more on rule-of-thumb methods,
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and particularly on equation 33, which is the most readily applicable
refinement method but neglects the effect of errors of scale. In practice
it was found that parameter shifts derived from equation 33 do not
converge to the final parameters as rapidly as might be expected. This
fact was conspicuous for the chlorine atom, as shown in Table VI, which
was all the more puzzling because the estimated scale factor error

(7% negative) should have caused an overestimation of the parameter

change AB Probably the first order theory is at fault here, and the

Cl
parameter changes should have been computed directly from equation 28.

The scale factor error seen in the difference maps is of course
ficticious in the sense that it represents'only the weighting system of
the Fourier refinement, because the scale factor had been refined by
least squares methods to a final value before the difference syntheses
were calculated. In the refined difference map (FO IV), the effects of
scale factor error with » < 0 are visible at the CI, SiI, and Al'I'I
positions. At the other positions there is no definite evidence of scale
factor error, but, in fact, perhaps even evidence for # > 0 . Hence
it is debatable whether the error at the former positions is truly a
scale factor error in the sense of the preceding section or is due to some
other effect.

The present study does not provide an adequately rich sampling of
temperature parameter corrections to allow a satisfactory comparison
of the relative merits of the various refinement methods discussed in
the previous section. As an illustration of the type of comparison that

should be made, we show in Table XV the results of the various refine-

ment methods applied to the two peaks Cl + ZOiH and SiI + AlI' The
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comparison is interesting because the effects of scale factor error
should work in the opposite direction for the two peaks. However, with-
out a greater number of examples, and particularly peaks at non-special

positions, we do not feel justified in discussing the results in detail.
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XI. THE TETRAHEDRAL TEMPERATURE FACTOR

The observed electron distribution around the SiI - AlI position,
as found in the difference maps, leads to the suspicion that these atoms
may have thermal motions corresponding to a tetrahedral temperature
factor, that is, a temperature factor that is the transform of an electron
density modification having tetrahedral symmetry. At first this idea
appears absurd, because the (100) projection was chosen for the specific
purpose of projecting out the effects of tetrahedral symmetry. However,
the projection can show such effects - as, for example, if the atom
should move solely on lines directed toward the vertices of a tetrahedron.

The main feature of the observed difference density is a strong
negative anomaly projected onto the main diagonal [110] at a distance of
0.32 & from the SiI - AlI position. If the isotropic temperature
factor were completely corrected, as well as real or spurious errors in
scale, the difference map density in the neighborhood of this position
would appear as shown in Fig. 28a.

Unfortunately it is not possible to make a least squares calcula-
tion to see whether a small displacement of the average position of the
atoms in tetrahedral directions would improve the Fo’ FC agreement,

a displacement corresponding to dividing each atom into "fourths' and
putting each part in point position l16e. The calculation cannot be done
because all the required derivatives vanish. The necessary experi-
mental approach is first to place the "fourths' at a small arbitrary dis-
placement and make a structure factor calculation with these positions.

Due to the fact that the tetrahedral temperature factor has not

hitherto been discussed, we deemed it advisable before carrying out the
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suggested experimental approach to study its formulation from a theo-
retical standpoint. This study, which we now describe, showed that the
observed electron density defects could not be accounted for with any
reasonable thermal motions of the atoms, and the experimental calcula-
tions have therefore not been attempted, though it might still be of
interest to do so.

We approach the problem from the standpoint of equations 22
and 23 of the previous chapter, and investigate the probability distribu-
tion of the center of a cation moving in the potential of four anions
surrounding it at the vertices of a regular tetrahedron. For the inter-
atomic potential we employ the simple Coulomb-Born model which has

been used by Pauling (1939, p. 337 ff.) in treating ionic crystals:

n-|

U(F):—%Ez(l—hl%_,) (60)

In this equation a is the equilibrium cation-anion distance, and Z‘l and

ZZ are the respective charges on the ions.

Choosing a cartesian coordinate system with the equilibrium
position of the cation at the origin, we place the anions at (xl, 'yl, zl) =
{a, a, a), (-a, -a, a}, (a, -a, -a), and (-a, a, -a). Now we expand
the potential, due to the four anions, in powers of the displacement

(x, v, z) of the cation from its rest position. The calculation is

cumbersome but straightforward, and we simply state the result:

e® 2,2, (_(i_1 2 x4y% 2zt 4(e7)(n-1) xyz
- 2o o (1-L) 4 (n-) 2 y+z 4 Xyz
U= 2% -0-3) 5 2 s
(61)
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where all terms of third order have been retained.

The xyz term is the only third order term that appears, and it
is just what is required to describe a potential distribution of tetrahedral
symmetry. The coefficient of this term is positive, meaning that the
cation tends to move toward the tetrahedral faces rather than toward the
anions.

We now ask what kind of probability distribution of the cation
results when the system is projected onto the x, y plane. The projection
of equation 23, introducing U from equation 61, is easily carried out.
Writing U in the form

where all constants are positive, we find
— * 62
Px,y) = K€Xp§~-'2—b(x1+y7') +é€b X1y2§ (62)

It is not possible to normalize this density, but we ignore this fact
because we work with small displacements. The electron density
which would result from equation 62 is shown in Fig. 28b. The result-
ing difference map would have the plus and minus signs of Fig. 28a
interchanged. This is true regardless of the sign of C, as seen from
equation 62. Hence, motions with tetrahedral symmetry cannot
account for the observed electron density.

We have overlooked something, however. Because of the pro-
jection, a potential of octahedral symmetry would be expected to project

to give an XZYZ term to add to equation 62, and this term might
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correspond to preferred motion of the cation toward the tetrahedral

edges, which might reverse the sign of the xy term.

This proves to be a definite possibility. It requires an expansion
of the potential to fourth order, and results in a new projected prob-
ability density:

POGY) = K/exp { "zl‘b(¥2+y2)+(9~d)x2y7'§

(63)
where
6 = <
2 [b+2d(x*+y?)] (64)
and
2
= €322 ) 5 (n- 1L (h+a)(n- L - 7
d= C\;_ {'8(n:)+9(+)( :\+54(h|)(n+n+8)75 (65)
d is the coefficient of the fourth order term in the expansion. It has
not been reduced to simplest form, but evidently d is much less than
b since the motion is mainly isotropic, and so we obtain
2
6~ £ (66)
2b

A conclusion as to the sign of the x"y  term depends on the
relative size of 0

and d. We have evaluated these numerically using
n =9, and find (in arbitrary units)

6 455

{1

d = 36.2
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There seems therefore to be no possibility of d > 6, and hence
inclusion of the octahedral terms does not modify the previous con-
clusions. The calculations admit of easy error due to their complica-

tion, however, and have not been thoroughly checked.
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XII. STATISTICAL EVALUATION

Cruickshank (1949a, 1949b, 1950) has given methods for estimat-
ing standard deviations of parameters derived from difference syntheses.
We have used his approach and have estimated standard deviations of
positional parameters for comparison with standard deviations estimated
in the standard way (Mood, 1950, pp. 301 - 303) from the least squares
calculations. The results are given in Table XVI.

The main difficulty in applying Cruickshank's method is that the
formulae have to be revised for the high symmetry of TZd.

not done properly, the formulae may lead to a doubling of the electron

If this is

density curvatures for atoms at special positions. Curvatures derived
by Cruickshank's methods are found to agree roughly (to within about

5 O/o) with curvatures derived directly from the Fourier syntheses using
the Gaussian approximation.

A peculiar feature of the standard deviations given in Table XVI
is the high value for z, derived from the least squares calculations.
The reason for this is the fact that z, was taken almost zero (actually
0.001). This causes all derivatives 0 F/ d zZg to be small (they
would vanish strictly for Zg = 0), so that the coefficient of the diagonal
term for zZy in the normal equation matrix is very small. Evidently a
second order theory would be required to estimate correctly the zZg
variance.

The estimated standard deviation for the electron density is 1.3
electrons X -2 by Cruickshank's method. Cruickshank's method takes
as the estimate of ¢ for a given reflection the value of (Fo - FC). An

alternative approach was proposed by Booth (1946) and Booth and
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TABLE XVI

ESTIMATED STANDARD DEVIATIONS FOR
POSITIONAL PARAMETERS

Least Squares Fourier

Coordinate Estimate Estimate
Xy 0,00022 0,00016

X5 0,00066 0,00042

X3 0,00077 = e

X, 0.00085 0,00046

{ Xg 0,00059  aaaaa
zZg 0,00060 = e

{ x¢ 0.00033 0,00042
zZy 0,0103 -

X 0,00017 0,00018

{ z 0.00023 0.00018
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Britten (1948), and later revised by Lipson and Cochran (1953, p. 288).
In this method, (¢ is estimated from the intensity measurement errors.
Taking (¢ (FO) = 0.1 |FO| for a single structure factor estimate, which
is an outside limit on the basis of the information given in Chapter III,

we calculate on this basis
~ ‘2.
c(p)= 2. e R

¢ (x) = .0004 = .0055 R

s (x) is the estimated variance of an atomic coordinate. There is seen
to be rough general agreement between these estimates and the values
quoted previously, suggesting that random measurement errors con-
tribute a large share of the final discrepancy between calculated and
observed structure factors.

The values of 8” ( P ) merit special comment, in view of the
desirability of attempting to locate the hydrogen atoms in the structure
by means of difference syntheses. Mc Connell (1955) found the heights
of the hydrogen peaks in a difference synthesis of diphenyl napthacene
to be slightly under 0.5 X-Z‘ Projections given by Cochran (1951a,

p- 87) of adenine hydrochloride show hydrogen peaks of height 1.0 eZ—Z
If these values are representative, it is evidently out of the question to
locate the hydrogen atoms in zunyite by this method, because the
electron density around the proton is less than in organic molecules,
owing to the large electronegativity difference between oxygen and
hydrogen. The above authors did not quote standard deviations for their
electron densities, but it is evident that the values must have been

-2
o
0.2eA or lower. One wonders why the standard deviation for the
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zunyite projection is so much higher. The reason is that the peak
heights in the Fourier synthesis are much higher in zunyite, because
of the heavier atoms present. Booth (1946) has shown that ¢ (Io )
is proportional to the root mean square electron density in the Fourier
synthesis, which increases with the total number of electrons per
square Angstrom in the projection and also with the sharpness of the
Fourier peaks. Thus high density and low temperature factor lead to
high values of 0 (p ), and it therefore seems unlikely that protons
can be located in silicate structures by difference synthesis methods.

Accuracy of temperature parameters could be estimated from
the estimated standard deviation of the electron density. The tempera-
ture parameter s.d. estimate would be rather beside the point, it
would seem, in view of the large discrepancy between the temperature

parameters for the (h k 0) and the (h h 1) data.
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XIII. DISCUSSION OF THE STRUCTURE

The present study verifies the structure proposed for zunyite by
Pauling (1933). The main features of Pauling's structure, and the
features making the structure unique, as described in Chapter III, are
entirely retained. The atomic positions in the refined structure differ
by significant but not large amounts from the positions chosen by Pauling
for the trial structure. The differences are such as to give interatomic
distances and shapes of coordination polyhedra in good agreement with
those found in related ionic structures. In this chapter these detailed
features of the refined structure will be discussed. The availability of
accurate interatomic distances makes possible the prediction of the
proton positions in the structure, and this will be attempted. Finally, a
theoretical treatment of the shapes of coordination polyhedra in zunyite
will be mentioned.

1. Interatomic Distances and Accuracy. --- Final atomic

parameters, obtained in the way described in Chapter VI, and listed in
Table V, have been used to calculate interatomic distances given in
Table XVII. Values derived from the trial structure are given for
comparison. For these, values given in Pauling's paper (1933, p. 452)
have been used where available.

The accuracy of all interatomic distances derived from this
study is taken as + 0.02 R.  This figure is arrived at as follows. By
using the parameter standard deviation estimates given in Chapter XII,
standard deviation estimates can be calculated separately for each
interatomic distance by considering the combination of parameters by

o
which it is derived. The resulting estimates are less than 0.01 A for
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TABLE XVII

INTERATOMIC DISTANCES AND BOND ANGLES

Tetrahedra:
Atoms Trial Final
Si -0 1.59 A 1,64 A
S].II“OII lo 59 ].o 625
SiII--OV 1,59 1,65
AII--OI 1,74 1,82
Octahedra:
Atoms Trial Final
AIH-OI 1.86 1,92
AlII—OIII 1.85 1.79
AIH—OV 1.93 1,92
Chlorine:
Atoms Trial Final
Cl—OIII 3,14 3,07
C1-0 3,59 3.58

v
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TABLE XVII (Continued)

INTERATOMIC DISTANCES AND BOND ANGLES

Tetrahedron Edges:

Atoms Trial Final
OII-OII 2,60 2.67
OII—OV 2,60 2.66
OV OV 2,60 2.72
OI-OI 2,84 2,97

Octahedron Edges:

Unshared:
Atoms Trial Final
OI--OIV 2,68 2,69
OIII'OIV 2,67 2. 635
OIII_OV 2,67 \ 2,74
OIV_OIV 2,67 2,60
OIV-OV 2,64 2.67
OV—OV 2,84 2. 676
Average 2,68 2,67,
Shared:
Atoms Trial Final
0.-0 2. 64 2.51

IV
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TABLE XVII (Continued)

INTERATOMIC DISTANCES AND BOND ANGLES

""Non-bonded! Contact:

Atoms Trial Final

Nt
OIV OIV

Cation-Cation:

Atoms Trial Final
SlI-SlII 3,18 3,26
SIII_AIII 3.27 3,24
Alpp-Aly

Sharing edge 2.72 2.90

Sharing OIII corner 3.49 3.34

Sharing OIV corner 3.58 3.56
All—AlII 3,17 3.24

Angles:
Atoms Trial Final
o o o

A1H~OHI-A1II 142 137 + 1.6
Al _-0__ -Al 142° 147°

II '1v II
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cation-oxygen distances and are from 0.008 to 0.016 jﬁi for oxygen-
oxygen distances. However, the separate calculation of estimates for
each interatomic distance is not justified by the limited significance
that can be attached to the individual parameter standard deviations.
We therefore adopt as an inclusive parameter s.d. estimate the value
+ 0.001, from a consideration of Table XVI. This estimate
harmonizes with a comparison of the results of the (hk 0) and (hh 1)
refinements, as discussed in Chapter VI. The resulting interatomic
distance accuracy, + 0.02 }2 , can be regarded therefore as an outside
limiting estimate. Further refinement of the (h h 1) data, after
correction of the contrast effect, would perhaps justify a claim to
greater accuracy.

Using the estimate + 0.02 X for the bond length accuracy, the
estimated bond-angle accuracy is + 1%6.

2. Discussion of Distances. -- The refined structure differs

significantly from the trial structure in the following ways: (1) enlarge-

ment of the 8104c tetrahedra; (2) enlargement of the Al

(3) increased separation of Al

4 tetrahedron;

1y atoms in octahedra sharing edges;
(4) distortion of the AlO6 octahedra, with prounounced shortening of

shared edges; (5) decrease of the Cl-0 1 bond distance. All of these

II
features can be given a satisfactory interpretation.

Enlargement of the Si04 tetrahedra is due to partial replacement
of silicon by aluminium. J. V. Smith (1954) has surveyed bond
distances for tetrahedrally coordinated Si and Al in various compounds

showing differing degrees of replacement of Si by Al. He finds the

o o
distance 1.60 + 0.0l A for the pure Si positions and 1.78 + 0.02 A
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for the pure Al positions, and he postulates a linear dependence of the
mean bond length on composition, forrandom replacement. The
observed distance in zunyite, 1.64 + 0.013 K, corresponds to
replacement of 1.1 + 0.4 out of 5 silicon atoms by aluminium. This
rough measure is in rough agreement with the observed composition
(Appendix 1) of crystals from the Zuni Mine, in which the silicon
percentage is 7 O/o below the ideal composition corresponding to 5
silicon atoms in the structural unit.

Inasmuch as the Si-0 distances are equal within the accuracy of

measurement at the SiI and SiI positions, substitution of Al for Si

I
must be at random within the 515016 group. This random substitution
should have the interesting effect of imposing an apparently increased
temperature parameter on the atoms of the 815016 group. Supposing
that the largest displacement of any atom from its unsubstituted (pure
Si5016) position is half the difference between the pure Si-0 and pure
Al-0 distances, 0.09 AO, the root mean square displacement of such
an atom is 0. 041 X for 20 O/o substitution. The temperature
parameter B = 0.24 corresponds to a root mean square displacement
of 0.056 X. Thus the thermal effect and the random substitution
effect are of the same order of magnitude. The difference between

B =0.25 and B =0.50 being strongly apparent on difference maps,

it might be expected that the random substitution effect could be
detected. There is no evidence for it in zunyite, but it is not possible

to draw any substantial conclusions from the observed temperature

parameters, because of the likelihood of systematic error due to
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contrast errors. To our knowledge, such an effect has never been
reported in careful studies of structures with random substitution (for
example, in the feldspars: Bailey and Taylor, 1955).

The increased size of the 8104 tetrahedra allows the 0., atom

v
to pull back into the xy, yz, and zx planes, and increases 0-0 distances
throughout the 8:15016 group. The OV-OV distance increases by a
significantly greater amount, 0.06 X, producing a distortion in the outer
four tetrahedra of the group, by enlarging the cutward-directed faces of
these tetrahedra. This distortion is caused by the effects of repulsion
between the AlH atoms.

The effects of this repulsion are probably the most striking
features that distinguish the trial and final structures. The AIH atoms
occur in groups of three at the centers of three octahedrally coordinated
groups of oxygen atoms, sharing edges to form an Al3013 group (see
description and diagrams in Chapter III). In the trial structure, the
octahedra are nearly regular in shape, and the aluminium atoms located
nearly centrally in them, the distance AlH—OV being elongated somewhat
by the pulling in of the oxygen atoms toward silicon. In the refined
structure, the aluminium atoms increase in separation by 0. 18 ?X, and
the octahedral groups become markedly distorted. The shared edges
contract to a length of 2.51 j?x. There is a general rearrangement of

the other 0-0 distances, but the average length of the unshared edges

does not change significantly. The increased separation of All atoms

I
is facilitated by the increase in the OV—OV octahedral edge length, the
distance AlH-OV remaining practically unchanged. The AlII atoms

move away from the centers of the distorted octahedral groups, and
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toward the 0... atoms. This effect is strikingly shown in the (liO)

III
projection of the structure {Fig. 20), in which the AlH peaktis noticeably
. . 2 2
offset from the geometrical center of the projected OI— OIII— OIV- OV

octahedron. The average Al-0 distance, 1.88 ?X, remains in close
agreement with the radius sum, 1.90 1(31 (Pauling, 1939, p. 346).

The contraction of the shared edges to 2.51 ?X is in harmony
with shared-edge lengths in aluminium octahedra found in other struc-
tures: 2.50 K in diaspore (Ewing, 1935) and 2.49 + 0.03 ﬁc; (average
value) in gibbsite (Megaw, 1934). The usual comparison with corundum
(Struktunbericht, 1931, p. 242), for which a value 2. 49 g is quoted,
does not seem entirely justified, inasmuch as the value 2. 49 K refers
to the edge of a face shared between two octahedra, while the lengths
of single edges shared between octahedra is 2. 61 1?1. It would be
desirable to compare the shared-edge length with values found in the
chemically related structures of topaz, andalusite, sillimanite, and
kyanite, but the early determinations of these structures have not been
systematically refined. The available values (Strukturbericht, 1937,
pp. 116 - 117) are scattered: 2.59, 2.83, and 2. 47 %.

Another effect of the shortening of shared edges in the A13013
group is the enlargement of the coordination tetrahédron around AlI.
The value 1.82 X for the AlI-OI distance is greater than the Al-Q
distance of 1.78 X for pure aluminium tetrahedral sites given by
Smith (1954), though the difference is on the margin of significance. To
the extent that the difference is significant, it disputes Smith's contention

that the surrounding cationic environment has no effect on bond

distances at tetrahedral positions.
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3. Location of the Protons. -- Of the 38 oxygen atoms in the
zunyite structural unit, 18 must have protons attached in order to
satisfy the electrostatic valence rule, or must be substituted by fluorine
(see Chapter III}. Because it has proved impossible to locate these
protons by X-ray means, we propose to assign their positions on the
basis of structural arguments.

Pauling's reasoning {Chapter III) shows that the protons are
associated with the 0III and 0IV atoms. We first consider OIII' If the
oxygen and chlorine ions were simply in contact, the expected inter-
atomic distance would be the sum of the crystal radii or 3. 21 f?x, well
in excess of the observed value 3. 07 g. This shows that the proton
on OIII forms a hydroxyl bond (Bernal and Megaw, 1934) with the
chlorine. The observed distance may be accounted for in the following
way. The non-bonding radius of the hydroxyl ion has values ranging
from 1.6 to 1.8 X (loc. cit.}). To be specific we take the contact
radius 1.60 ?A; shown in brucite (Strukturbericht, 1931, p. 193). The
non-bonded Cl-0H distance is then 3. 41 X. The shortening of this
bond due to hydroxyl bond formation may be estimated from comparison
of the OH-0H distances in brucite and gibbsite: 3. 19 X and 2.79 X,
respectively, giving a shortening of 0. 40 K. This shortening implies
a hydroxyl-bonded Cl-0H distance of 3.01 1?;, which, while short, is
a considerable improvement over the non-bonded distance.

The above calculation is open to attack, of course. Another
approach, due to Professor Pauling (in conversation), is as follows.

The equilibrium positions of the proton between two oxygen atoms in

o)
ice are 0.8 A apart. Thus, in the Cl---H-0 bond, the distance
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expected is the sum of the proton-anion distances in HCl and in H,O0,

2
lengthened by 0.8 j?;. This results in 3. 08 oA, in excellent agreement
with the observed value of 3,07 jOX.

These considerations indicate that the proton lies along the line
of centers of the Cl and OIII atoms, a location that is supported by the

bond angles at OII Bernal and Megaw (1935) have pointed out that the

I
proton in hydroxyl bonding tends to assume a tetrahedral orientation

with respect to the surrounding cations, as seen from the oxygen ion to
which the proton is attached. Professor Pauling suggests (in conver-
sation) that the acceptable proton positions be found by the intersection
of cones of apex angle 360° - 2(109028'), the apices located at the

oxygen ion and the cone axes directed toward the surrounding cations.
For two cations subtending the tetrahedral angle at the oxygen ion, this
construction gives, of course, two possible proton positions in regular
tetrahedral orientation. As the cation-oxygen-cation angle is increased,
the possible proton positions approach one another, and when this angle
reaches 141° the cones become tangent and the single possible proton
position is coplanar with the two cations and the oxygen ion. This is
very nearly the situation at OIII’ becéuse the AIH- GHI-AIH angle is 137°.

The symmetry then places the proton along the OIH-CI line.

Fluorine probably does not substitute for 0 because the sum

Ir
o
of the fluorine and chlorine crystal radii is 3.17 A, and there would be
no hydroxyl bonding.
We now turn to the OIV atoms, of which there are 12 in the

structural unit. These atoms are arranged at the corners of a trun-

cated regular tetrahedron, shown in Fig. 29, at the center of which is
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the AlI atom. The OI atoms lie at the centers of the four large faces
of the truncated tetrahedron. Each of these large faces forms the face
of an Al3013 group (better, A1304(0H)9) which attaches on the outside.

Now the bond angle AlII-OIV—AlII is 147°. If this is interpreted

to require that the protons occupy the coplanar positions, as in OIII’

then they must stick out perpendicular to the long edges of the truncated

tetrahedron, as shown in Fig. 29a. This places the atoms OIV and O'IV

(Fig. 30a) in a non-bonding arrangement, an arrangement which seems

to us unlikely in view of its expected effect on the OIV—O' distance.

v
The OIV and 0'IV atoms are not bonded together by forces from within

the truncated tetrahedron. Instead, they form one edge of a tetrahedral

group of oxygen atoms with no cation at the center. Neither are the OIV

and OI'V atoms bonded together by forces from the Al3013 group outside.

There again they form part of a tetrahedron with no central cation, as
can be seen in Fig. 30. We therefore have reason to expect the

OIV— OiV distance to approach the non-bonded hydroxyl distance of
3.2 R or greater. This expectation is substantiated in gibbsite, in which

the octahedral groups distort in such a way that the oxygen atoms

equivalent to OIV and 01'['\/' are placed at an average distance of 3. 20 +
o
0.20 A, (see Megaw, 1934). The actual OIV—OI'V distance is only

2.77 &, Although this is notably the longest 0-0 distance in the Al3013

group, it falls far short of the expected non-bonded distance, and is

instead a typical hydroxyl-bonded distance.

v and 0IV

atoms by rearranging the protons according to a scheme such as shown

We therefore introduce hydroxyl bonds between the 0

in Fig. 29b, in which one proton is assigned to each long edge of the
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truncated tetrahedron, and one to each truncation, sticking out toward
the chlorine atom. In disregarding the requirement of coplanarity we

make use of the fact that the angle Al -Al__ is greater than 1410,

S A

so that in the strict sense of Professor Pauling's construction the
protons no longer have a preferred position. This interpretation is of
course specious as long as the bond angle is not strictly 1800, but
serves to emphasize the fact that the more nearly 180° is approached,
the less determinative is the tetrahedral orientation, so that the
protons become free to adopt positions most favorable electrostatically.
It seems clear that the configuration proposed by us is more favorable
in this way than the configuration required by coplanarity, because it
reduces the repulsive potential between the OIV and OiV atoms. But
in any case the proposed arrangement is required by the interatomic
distances, in our opinion.

It may be worthwhile to note that tetrahedral proton orientation
is not a rigid requirement, because in many structures it is impossible
to satisfy. In diaspore, for example, where three aluminium cations
are associated with the proton-bearing oxygen ions, the most acceptable
position for the proton would (due to symmetry) be in the b direction
from the 0II oxygen ion (see Ewing, 1935}, at an angle of 112° to the
aluminium atoms. Although this angle differs by only 295 from the
tetrahedral, interatomic distances show that the proton moves around
so as to form a smaller angle with two of the aluminium atoms and a
larger angle with the third. With the positions proposed by Ewing we

calculate angles of 10474 and 14375 respeétively, for the proton

attached to the OII atom (Ewing's notation). Likewise for the proton on
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OI in diaspore we find two aluminium atoms at 10978 and one at 82°3.
It seems more likely that the protons adopt intermediate positions as
suggested in the diagram of Bernal and Megaw (1935), but in any case
it is clear that the requirement of tetrahedral ;proton orientation is
mitigated by features peculiar to each individual structure.

The proton arrangement proposed for the 0 atoms of zunvyite

v
allows only 10 of the 12 protons to be placed in the truncated tetrahedral
group. Two more could be added, of course, by introducing two protons
into positions on two of the truncated corners. This would make the OIV
atoms non-bonding on these corners, but inasmuch as these atoms are
held directly to the same aluminium cations no conspicuous distance
effects would be expected. However, such an arrangement is bound to
have higher energy (lower binding energy) than the 10-proton arrange-

ment, and it can be avoided by replacing two of the 0., atoms by

v
fluorine. This, indeed, may be the true role of fluorine in the structure.
That fluorine does have a special role is suggested in a striking way by
the synthesis of presumed zunyite by Niggli, as discussed in Chapter

XIV. The mineral has been synthesized under hydrothermal conditions

in the presence of a small amount of fluorine, but not without. The

Zuni Mine crystals contain consistently about 3-3.5 atoms of F out of

the 18 (OH + F), which accords with our expectations. The same is

true for the new analyses of crystals from Uaxactum and from Kazakhstan
(see Appendix I). For the Postmasburg material values of only

0.3 - 0.5 for F are reported, but for two of the three analyses the sum

OH + F is low by about 2. 0 and the third was considered untrustworthy

by Pauling for other reasons. Hence there seems to be support for the
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proposed special role of fluorine in the zunyite structure, a role which

can be expressed by reformulating the composition thus:
(oH,FY,, F, Al ,; Si,0,,Cl

It should be mentioned in conclusion that the proposed proton-
fluorine arrangement is of course statistical, the configuration shown
in Fig. 29b being only one of many equally likely configurations.

4. Relationships to Other Structures. -- Zunyite is classified

by Dana (1932, p. 591) with helvite and the ultramarines, probably on
the basis of morphological similarity. There is no basic relationship,
however, the only feature in common being the inclusion of chlorine or
other large ions in the structures. There is no counterpart in any other
known structure for the SiSO16 group in zunyite, whose existence
conflicts with the well-known rule that silicon tetrahedra do not share
corners unless the ratio 0:Si is less than 4:1 (Bragg, 1937, p. 140).
The closest structural relative of zunyite is diaspore, AlHO 2 which is
built by linking together Al3(OH)13 groups of the kind found in zunyite.
The groups link together by sharing edges to form endless ribbons
through the structure (the double rutile strings of Ewing), and the
ribbons are linked together by sharing corners of aluminium octahedra
and by hydroxyl bonds. The linking is such that no '""non-bonded" oxygen
atoms equivalent to OIV-OiV in the A13013 group occur, because every
pair of oxygen atoms is common to at least one octahedral group

around an aluminium atom. The nearest equivalent in diaspore of the
OIV_O!IV pair in zunyite is a pair of hydroxyls which are an unshared

edge with respect to one ribbon and a '"non-bonded" pair with respect to
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the adjoining one. The interatomic distance of this pair is 2.84 A, which
is accurately known because it is the C-axis repeat distance of the
crystal. This distance is significantly larger than the OIV—OI'V distance
of 2.77 X in zunyite, and provides additional support for the expected
repulsion between non-bonded hydroxyl ions.

In bohmite the ribbons are linked together in a different way,
with the result that 0H  and 0 positions are distinguished in the
structure, a point of similarity with zunyite.

The aluminosilicate minerals andalusite, sillimanite, kyanite,
topaz, and zunyite all have ratios Al:Si = 2:1, and it would be
desirable to give a structural interpretation of the conditions required
for the stability of each. This cannot be adequately done, but we may
remark that a basic hydrothermal environment leads to topaz,
(:Al(OI—I,_F)i[Z Si0,, and the additional requirement of including chlorine

atoms would favor the zunyite structure.

5. Other Properties. -~ Ordinary X-ray data cannot distinguish

between the two possible orientations of the zunyite structure relative
to the external morphology of the crystals, owing to Friedel's Law. We
therefore predict the orientation, by considering the growth process of
the crystal. The basis of the argument is that the structure builds up
by a packing together of Si5016 groups and of large aluminium-oxygen
groups, A113016(0H)24 , formed by addition of four Al3()13 groups to
the truncated tetrahedron of Section 3. The oxygens in these large Al-0

groups are approximately in closest packing, and because of the result-

ing compactness it may be expected that such a group could build up
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relatively readily on a crystal face of any orientation, especially
with the help of the hydroxyl bonding scheme proposed in Sction 3,
The same is not true of the relatively spindly 815016 group, For
growth of the (111) face in Pauling's orientation, which is described
by the coordinates we have used (Chapter III), it is necessary for
Si5016 groups to build out from the crystal face into the surround-
ing medium in order that growth can continue, whereas c;n the
(III) face the SiSO16 group builds up in accommodating niches be-
tween the large Al-0 groups. We regard the formation of the
SiSOlé group as the rate-limiting process, and hence predict that
Pauling's orientation is in accord with the external morphology,
the (111) face being the positive tetrahedral face (large, i.e.,
slow~growing) and the (111) face being the small negative tetra-
hedral truncation.

The observed octahedral cleavage (Spencer, 1930) of zuny-
ite can be explained by planes of weakness similar to the basal
planes of topaz. Twinning is observed (Spencer, 1930) with [111]
as twinning axis and (211‘) as composition plane, We have been
unable to find a satisfactory structural interpretation of this,

6. Shapes of coordination polyhedra: theoretical, --

Pauling (1937) has shown that it is possible to account satisfac-
torily for the shapes of coordination octahedra in rutile and ana~
tase by making use of the Born-Madelung theory of the energy of
ionic crystals, We have been interested in carrying out similar
calculations for the shape of the A13013 group in zunyite, The

calculations are too involved to report here in detail, and have
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not led to satisfactory quantitative results, but we wish to mention one
feature of special interest. For small displacements of the atoms from
the undistorted configuration for the three octahedra in the Al,0

3713

group, the change in potential energy takes the form

2
- Lo 85 5 ,
AU = AU +'2LZ,LUij -;g_J +3Us -3, Sas (67)
L] ij Vs Faq

where the 81] are the changes in interatomic distances from the
undistorted configuration, atoms being labelled as shown in Fig. 31, and
U,ij and I—UIJ are the coefficients of the first and second order
terms in the expansion of the interatomic potentials for small displace-
ments from equilibrium. The AUK—K term is the change of mutual
(Coulomb) energy of the cations. Because of the fact that an undistorted
octahedron is separately in equilibrium, the sum of the first-order
energy terms vanishes, leaving the second order term in equation 67.
When the octahedra share edges, however, a linear term appears for
the shared edges (the 1-5 term), in addition to a term due to repulsion

IV_OIV contact. This linear term for the shared

edges is responsible for the pronounced shortening of these edges, and

in the ""non-bonded'" 0

the form of equation 67 shows that the shortening would be expected
irrespective of whether or not it leads to a decrease in the mutual
coulomb energy of the cations. The effect of the latter would be dis-
tributed among all 0-0 bond distances, more or less. These qualitative
considerations are in accord with the observed distortion of the octahedra

in zunyite, as described in Section 2.



~178-
XIV. GEOLOGIC OCCURRENCE AND SIGNIFICANCE OF ZUNYITE

1. Natural Occurrence. -- Zunyite has been found at five

localities in the world: the Zuni Mine and the Charter Oak Mine, near
Silverton, in the San Juan Mountains, Colorado; Uaxactum, Guatemala;
Postmasburg, South Africa; near Lake Balkash, in Kazakhstan; and
recently reported from Afn, Algeria.

The Zuti Mine locality, where the mineral was discovered,
apparently was never visited by Hillebrand (1885). The following
statement is quoted from the Proceedings of the Colorado Scientific
Society (1885, p. 131): "Mr. Guiterman, in reference to the occurrence
of the zunyite in the Zuni Mine, mentioned that there seemed to be no
indication of a fissure vein, but that the ore appeared to occur in a pipe
enclarged in places. The ore is a heavy lead ore containing arsenic and
a little silver, and much altered at the surface.'" A more illuminating
report was given by Penfield (1893), who visited both the Charter Oak
and Zufii Mines. At the Charter Oak Mine the mineral occurs only in
the wall rock, which is described as an ''altered porphyrite''. The rock
is ""very hard, fine grained, grayish white ... and very much altered by
stream and fumaro}ic action so that only remnants of the original
minerals are left.'" The zunyite crystals in the rock are fresh and clear.
It is unfortunate that an adequate petrological description and chemical
analysis of the "porphyrite' are not available.

Penfield found that zunyite crystals also occur in the wall rock
of the Zuni Mine., The wall rock is this same "porphyrite', and the
two localities are closely related, being only 5 miles apart. Penfield

states: '""At both localities zunyite is plainly secondary and formed by
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fumarolic action on the silicates of the rock.'" The associated minerals
at the Zufii Mine are guitermanite, and, in the oxidized zone,
anglesite. At the Charter Oak Mine they are enargite, pyrite, scorodite,
and sulfur.

The most illuminating occurrence of zunyite so far reported is
the locality near Postmasburg, South Africa, described in detail by
Nel (1930). The zunyite occursin small patches in a diaspore-bearing
highly aluminous shale of the Gamargara Series (probably younger pre-
Cambrian in age). The shales are red, purplish, and gray, occur at
the base of a thick quartzite section, and overlie a coarse, ferruginous,
basal breccia. Chemical analysis of a sample of the Gamargara shale
is quoted in Appendix III, with typical analyses of zunyite and common
shale for comparison. Nel considers the shales to be a lateritic residue
derived from the weathering of a large mass of older limestones and
dolomites.

Nel finds the alteration to zunyite difficult to explain as hydro-
thermal, because no igneous rocks of age as young as the shales or
younger are found in the area. Instead, he regards it as due to '"changes
set up by circulating waters or some other process without the conditions
of high temperature and mechanical force'.

The intimate association of zunyite and diaspore is noteworthy,
in view of the similarity of the two structures.

Palache (1932) reported the bizarre discovery of zunyite in
powder contained in pots from graves in the ruined Mayan city of
Uaxactum, in the plains of northern Guatemala. The powder is red and

contains an abundance of fine hematite scales, typical of fumarole
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deposits. Palache interprets the powder as a pigment brought by the
natives from the volcanic highlands of San Salvador to the south. The
zunyite presumably was formed in place with the hematite, as a
superficial deposit.

Astashenko and Moleva (1939) described zunyite from near
Lake Balkash as occurring in a vein in '*'secondary quartzite", derived
from grandodiorite porphyry. The crystals occur in a green matrix of
mimetite and anglesite, an environment resembling that of the Silverton
occurrences.

The most recent report is by Turco (personal letter, 1956) who
has discovered a mineral resembling zunyite at Afn in Algeria. It
occurs in a kaolinite-montmorillonite gangue, but unfortunately the
locality is no longer accessible, for political reasons.

2. Synthesis. -- Schlaepfer and Niggli (1914) carried out hydro-
thermal mineral syntheses in the system Si¢,-Al,0 -KZO, and found

2 273

that when KZO was absent, a zunyite-like mineral was formed under a

range of mole ratios Si0 :A1203 from 6:4 to 3:7, spanning the com-

2
position of the Gamargara shales. The mineral was isotropic,
tetrahedral, insoluble in HCl (as is zunyite}, and had index of refraction
1.545-1.547. For natural zunyite are reported indices of 1.589

(Larsen, 1921), 1.602 (Albis, 1921), 1.595 (Gossner and Mussgnug, 1925),
1.600 (Spencer, 1930), 1.590-1.594 (Astashenko and Moleva, 1939). The
average value is n = 1.596. The difference between the index of natural
zunyite and of Niggli's synthetic crystals is nicely accounted for by the

lack of chlorine in the latter. We make use of Fajan's and Joss's

treatment of the Lorenz-Lorentz equation (see Seitz, 1940, p. 660), and
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calculate An = 0.049 for the contribution of the chlorine atom to the
index (assuming no change of density). This gives a predicted n = 1.547
for the chlorine-free synthetic crystals.

The amount of synthetic material obtained was microscopic, but
the above facts confirm its identification as zunyite. The syntheses
were carried out in a closed bomb with water in excess, heated to 47 0°cC
for 8 to 10 hours. The remarkable fact is that in no subsequent phase
studies of the system SiOZ-AlZOB—HZO has zunyite been synthesized. In
the recent study by Roy, Rustum, and Osborn (1954), a wide range of

conditions was explored, with controlled pressures of H,0 up to 25, 000

2
p.s.i. The phases stable in the temperature range 420°-575° are
reported to be pyrophyllite, hydralsite (hydrous aluminosilicate related
to pyrophyllite), mullite, corundum, andalusite, quartz, and water.

The conditions of Schlaepfer and Niggli's synthesis differed in
only one tangible way from conditions covered in the more recent study:
the presence of fluorine. Schlaepfer and Niggli used silicic acid which
they prepared themselves from SiF4, and they state that the product
contained a little HF. There is strong suggestion that the presence of
fluorine is required for formation of zunyite.

Chlorine does not seem essential to the zunyite structure, to
judge from the chlorine-free synthetic crystals. Nel (1930) reports
that the chlorine is expelled from natural zunyite on heating. It is
difficult to see how chlorine moves through the structure, but perhaps
under the influence of large thermal motions it is able to squeeze

ast the Si_ 0 roup. But in any case, chlorine appears to be
P 5Y1¢6 & b

necessary for the stable mineral as formed in nature.
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In the syntheses of Schlaepfer and Niggli, the addition of 10 mol
percent. KZO (the lowest non-zero KZO composition reported)
inhibited the formation of zunyite in every case, and resulted in phases
such as kalinepheline, orthoclase, and phyrophyllite.

3. Conclusion. -- From the various lines of evidence present-
ed, the geologic role of zunyite becomes distinct: it is formed at
moderate pressures and temperatures, under hydrothermal conditions,
from rocks containing roughly equal proportions of alumina and silica
(e.g. aluminous shales), in the presence of solutions containing fluorine
and chlorine. Nel's objections to a hydrothermal origin is based only
on negative evidence, and seems premature in consideration of the
heavy ferruginous alteration of the basal Gamargara breccia and the
presence of extensive manganese deposits at the same horizon (psilomelane,
braunite, and manganese-bearing mica: see Nel, 1929). The presence
of diaspore also indicates hydrothermal conditions at moderately high
pressures { > 2000 p.s.i., see Roy, Rustum, and Osborn, 1954).
Palsche's evidence for surficial origin of the zunyite from Uaxactum
seems insubstantial.

Aside from these diverging interpretations, all evidence points
to a well-defined and special geologic meaning for zunyite. If the
present structural study has helped to clarify this meaning, it has been
in pointing out and offering an explanation for the special role of

fluorine in the structure.
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APPENDIX I

ANALYSES OF ZUNYITE *

Fe 0,03 0,09 0,03 0,19 0.21 0,07 0.23 0.0l
P 0.10 0,11 0,09 0,04 0,04 0,03 0,08 0,09
Ca meew 0,02 ---= 0,07 0,04 --=  -== 0,02
Mg mee e —== 0,12 0,09 --=  --= 0,01
Na 0,09 0,18 0,12 0,62 0.55 --- 0,05 0,05
K 0,02 === 0,04 ===  ==c  ——0  -—0 0,02
Cl 0.96 0.8 0,96 1,15 1,58 0,81 0,89 0,83
F 3,44 3,56 3,17 0,31 0.25 0,49 3,29 3,34

OH 14,04 14.37 14.37 14,71 15,05 17.39 13.54 13.18

8] 20,28 20,45 20,08 21.54 21,11 20,57

1. Hillebrand (1885)

2. Penfield (1893)

3. Gossner and Mussgnug (1926)
4, Nel (1930)

5. Nel (1930)

6. Nel (1930)

7. Palache (1932)

8. Astashenko and Moleva (1939)

*Composition given in atoms per structural unit (1/4 of the unit
cell), Columns 1 - 6 were calculated by Pauling (1933) from
the published analyses,
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APPENDIX II

STRUCTURE FACTOR AND INTENSITY TABLES

Unobserved reflections marked with an asterisk (see p, 25)
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. (h h 1) DATA
1 1, 1 AL h 1 15 . AL
2 17.1 16,0 1.1 2 18 7.9 8.5 0,6
4 9,4 7.5 1,9 2 20 28,9 32,0 3,1
6 31,8 1.1 30,7 2 22 6.6 9.6 3,0
8 86,4 88,9 2.5 2 24 1.1 1.9 0.8
10 99.8 85,4 14, 4 2 26 2,2 6.4 4.2
12 441.0  377.9 63,1 2 28 5.6 9.0 3.4
14 17,0 10,8 6.2 2 30 1.0 1,6 0,6
16 51,7  48.3 3.4 2 32 % 0,8 3,2 2.4
18 1,0 0,0 1,0 2 34 2,1 4,2 2,1
20 4,0 4.8 0,8 2 36 * 0,5 0.5 0,0
22 129.6  123,2 6o 4 31 73,2 49,5 23,7
24 20,5 23,5 3,0 3 3 1726,2 964,7 761,5
26 5,5 8.1 2.6 3 5 348,0 164,3 183,7
28 14,1 6.7 7.4 3 7 50,0 46,8 @ 3,2
30 9.5 11,7 2,2 3 9 393,4 292,9 100,5
32 3.4 5,5 2.1 3 11  343,0 269.6 73.4
34 30,2 . 28.4 1.8 3 13 46,6 56,8 10,2
36 10,6 12,5 1,9 3 15 28,2 30,7 2,5
38 0.6 0,5 0.1 3 17 52,7 54,4 1.7
1 110.4 182,5 72, 1 319 8,7 10,9 2,2
3 147.7 2071 59, 4 3 21 7.9 13,5 5,6
5  386,3 . 230,6  155,7 3 23 8.9 17.6 8.7
7 21,3 11,6 9,7 3 25 6,1 12,0 5,9
9  112.8  93.6 19,2 3 27 2,8 6,9 4,1
11 112,9 112,2 0,7 329 9.8 14,0 4,2
13 15,6 13,7 1.9 3 31 11,2 17,0 5,8
15 23.8 36,5 12,7 3 33 8.3 12,9 4.6
17 1.8 3.3 1.5 3 35 % 0,6 1.4 0,8
19 15,0 15,3 0.3 3 37 4.8 10,5 5,7
21 27,3 23,2 4.1 4 0 131,9 1302 1.7
23 5,5 840 2.5 4 2 1.3 0,4 0,9
25 6.0 13,8 7.8 4 4 1302,7 820,9 481,8
27 1.4 3.8 2,4 4 6 14,1 15,0 0.9
29 * 1,0 1.0 0,0 4 8 308,0 282.4 25,6
31 % 0,9 1.3 0.4 4 10 26,5 34,1 7.6
33 2.1 3.9 1,8 4 12 1.0 2.4 1.4
35 2.0 3.4 1.4 4 14 38,0 51.9 13,9
37 % 0.4 0, 1 0.3 4 16 126,1 112,5 13,6
0 11,1 10,0 1,1 4 18 185,6 167,2 18.4
2 225.9 318,3 92, 4 4 20 9.6 11,2 1,6
4 289.0 189,5 99,5 4 22 12,1 21,9 9.8
6 55,9 50,0 5,9 4 24 % 0,8 1,6 0,8
8 93,5 63,2 30,3 4 26 14,0 22,8 8,8
10 93,2 88,4 4.8 4 28 9.9 14.4 4,5
12 129,2 118,6 10, 6 4 30 * 0,9 1.5 0,6
14  155,8 135.4  20.4 4 32 2,6 4,6 2.0
16 18,8 24,1 5,3 4 34 % 0,6 0.4 0,2
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APPENDIX III

ANALYSES*
1 2 3
SiO2 24,25 46,5 60, 88
TiOZ - 1,75 0,62
A1203 56,75 42,2 17,78
CrZO3 -—— 0,05
Fe203 1.3 0,7 1.94
FeO - 0,2 4,07
Mg0 0.4 nil 3,53
MnO - tr
Ca0 0. 35 tr 2,77
NaZO tr 2,65
0. 35
KZO 1, 65 3,16
Cl1 3.5 -——
F 0,5 -
P205 0.25 0,05 0,29
HZO+ 11,4 8. 35 1,91
HZO— 0.4 0,1 0.13
C 1,70
Total (less
0 for Ci, F) 99,75 100, 25 101,53

1. Zumyite: Nel (1930): small crystals,
2, Gamagara shale (white or pale grayish): Nel (1930},

3. A '"common' shale: Pettijohn (1949) Sedimentary
Rocks, Harper and Bros. p. 285,

*Weight percent
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