Refined crystal structure of chkalovite Na₂Be[Si₂O₆]

M. A. Simonov, Yu. K. Egorov-Tismenko, and N. V. Belov

Lomonosov University, Moscow (Submitted July 22, 1975) Dokl. Akad. Nauk SSSR, 225, 1319–1322 (December 1975)

PACS numbers: 61.50.Qy

The crystal structure of the natural Na-Be silicate chkalovite Na₂Be[Si₂O₆] was elucidated in 1956 by Pyatenko and Bokii.¹ This repeat investigation arose from differences found on comparing the structures of Be chkalovite and the Zn analog Na₂Zn[Si₂O₆] (ref. 2) within the framework of the symmetry group C_{2v}^{19} = Fdd2, which replaces that proposed in ref. 1, namely Fddd, on the basis of crystallochemical considerations, since the R factor was too high (about 30%).

The specimens of natural chkalovite were obtained from the Fersman mineralogical museum. The intensities of 3285 independent nonzero reflections (I \geq 1.96 σ I) were recorded by the 2θ : θ method with a scan rate varying from 6 to 24° per minute by using a PI Syntex automatic diffractometer with a spherical specimen of diameter 0.4 mm (μ r = 0.17, λ Mo K α , planar graphite monochromator max (sin θ/λ)) 1.08 Å⁼¹). No absorption corrections were applied.

The revised parameters of the orthorhombic F cell are $a = 21.129 \pm 0.005$, $b = 6.881 \pm 0.002$, $c = 21.188 \pm 0.005$ Å; V = 3080.45 Å³, d = 2.66 g/cm³, $\rho = 2.68$ g/cm³; Z = 24, which agree well with those given in ref. 1.

The absences corresponded unambiguously with the space group Fdd2. The I was converted to $|F_{hkl}|$ and

Fig. 1. Chkalovite Na₂Be[Si₂O₆], xz projection, Si tetrahedra hatched.

then processed with the XTL Syntex specialized computing system.

The heavier Si and Na were revealed in the analysis, and also by comparison of the three-dimensional Patterson functions for Na₂Be[Si₂O₆] and the synthetic analog Na₂. Be[Ge₂O₆]. Electron-density distributions constructed from the Si and Na localized the O and Be. The resulting s structural model was refined by the method of leastsquares in the complete-matrix isotropic approximation to R_{hkl} = 7.0% and in the anisotropic approximation to R_{hkl} = 5.9%; Table 1 gives the coordinates of the basal atoms with their standard deviations and individual temperature factors, while Table 2 gives the corresponding interatomic distances.

The Si and Be atoms lie in almost regular tetrahedra with the usual separations; there are four sorts of Na: The nearest six O lie at the vertices of octahedra (Na₁-O = 2.263 - 2.668 Å for O-O = 2.563 - 3.901 Å; Na₂-O = 2.475 - 2.593 Å for O-O = 2.625 - 3.930 Å; Na₃-O = 2.229 - 2.898 Å for O-O = 4.363 - 2.613 Å; Na₄-O = 2.285 - 3.132 Å for O-O = 2.619 - 4.707 Å).

In accordance with ref. 1, the Si *a*bd Be tetrahedra in a ratio 2:1 are linked into a framework resembling that in β -cristobalite (Fig. 1). However, the classification of silicates causes chkalovite Na₂Be[Si₂O₆] to fall among the chain group. The repeating increment in the metachain [Si₆O₁₈]_{∞}...-Si₁-Si₃-Si₂-Si₄-Si₃-Si₁-... has three independent angles: Si₁-O₃-Si₃ = 139°, 81, Si₂-O₁-Si₄ = 139°, 22, and Si₃-O₄-Si₄ = 138°, 36 (Fig.2).

Fig. 2. Na₂Be[Si₂O₆], chains of pyroxene type with $[Si_6O_{18}]_{\infty}$ six-membered links.

Fig. 3. Zn chkalovite Na₂Zn[Si₂O₆]; xz projection, Zn tetrahedra in special positions (on two-fold axes).

TABLE 1. Chkalovite $\rm Na_2Be[Si_2O_6]$: Basal-Atom Coordinates and Individual Isotropic Temperature Factors

Atom	x/a	y/b	z/c	B _j
$\begin{array}{c} Si_1 \\ Si_2 \\ Si_3 \\ Si_4 \\ Be_1 \\ Be_2 \\ Na_1 \\ Na_2 \\ Na_3 \\ Na_4 \\ O_1 \\ O_2 \\ O_3 \\ O_4 \\ O_5 \\ O_6 \end{array}$	0 0 0.1500(1) 0.1837(1) 0.1685(3) 0 0 0.1732(1) 0.1582(1) 0.1582(1) 0.0143(2) 0.1111(2) 0.1890(2) 0.1509(2) 0.2226(2) 0.2226(2) 0.1883(2)	0 0,500 0,0124 (2) 0,5068 (2) 0,018 (1) 0 0 0 0,0047 (4) 0,018 (5) 0,0852 (5) 0,2014 (5) 0,2050 (5) 0,0697 (5) 0,1997 (5)	0 0,1601(1) 0,1754(1) 0,0118(1) 0,3259(3) 0,3649(4) 0,5116(2) 0,1402(2) 0,0306(2) 0,1402(2) 0,0306(2) 0,6646(2) 0,7076(2) 0,1154(2) 0,2038(2) 0,4816(2) 0,5728(2) 0,8703(2)	$\begin{array}{c} 0, 16(2)\\ 0, 14(2)\\ 0, 15(1)\\ 0, 15(1)\\ 0, 39(7)\\ 0, 53(11)\\ 1, 04(5)\\ 0, 96(5)\\ 0, 87(3)\\ 0, 74(3)\\ 0, 51(4)\\ 0, 50(4)\\ 0, 53(4)\\ 0, 48(4)\\ 0, 42(4)\\ 0, 42(4)\\ 0, 42(4)\\ \end{array}$
07 08 09	0.0179(2) 0.0546(2)	0,0843(5) 0,1883(5) 0,0808(5)	0.7713(2) 0.0406(2) 0.4128(2)	0.41(4) 0.38(3) 0.41(4)

Note: The standard deviations are given in parentheses.

TABLE 2. Chkalovite Na₂Be[Si2O₆]: Interatomic Distances

Note: The numbers of distances and standard deviations are given in parentheses,

The arrows denote the two types of Si on two-fold axes, which are perpendicular to the chain axis.

These chains (four in each c repeat period) lie inturn in the a/3 + b and $a/3 - b^{1}$ directions in the *ab* plane,¹⁾ and they are linked into a framework by intermediate isolated Be tetrahedra.

The structure of Be chkalovite may be compared with that of Zn "chkalovite" recently elucidated² (Fig. 3), which reveals the reasons why the latter has only one axis triplicated with respect to the β -cristobalite, while Be chkalovite has two such axes. Neither structure has a (001) symmetry plane but (100) and (010) diamond planes are retained. In Zn chkalovite, the replacement of Si by Zn in every third layer along the *a* axis allows (100) to remain a diamond plane with alternation of d' and d", these being enclosed in the crossing $[Si_4O_{12}]_{\infty}$ chains. The lateral (010) = *a*c plane cannot contain short-linked chains, since it contains Zn tetrahedra intersecting the layers, and so that the *a* axis has to be triplicated in accordance with Buerger's rule³ to retain the diamond feature in (010). In Be chkalovite, each third layer of Si along the c axis is replaced by Be, and to keep the (010) plane of the diamond type the parameter is tripled, but there are no such analogous factors for the *a* parameter and tripling here should be ascribed⁴ to insufficient symmetry of the Be atoms in their tetrahedra.

Fig. 4. Laves polyhedra in: A) β -cristobalite; B) Be chkalovite. Population of these in the ratio 2:1 trebles the *a* repeat while retaining the diamond plane (1, 2, 3, 4).

In the first description of Be chkalovite, the structure of β -cristobalite was represented as a packing of large Laves polyhedra of the MgCu₂ type,⁵ with appropriately fitted Si tetrahedra, but with the figures with 12 vertices themselves empty (Fig. 4A). Replacement of one-third of the Si⁴⁺ by Be²⁺ causes two thirds of the polyhedra to be filled by Na atoms; the ones remaining empty are those which have edges in common with the Be tetrahedra along the c axis (Fig. 1). Then Buerger's rule triples (Fig. 4B) one of the repeat distances in the original cristobalite cell.

Comparison of the structures of the similar Zn and Be chkalovites $Na_2Zn[Si_2O_6]$ and $Na_2Be[Si_2O_6]$ (and also $Na_2Zn[SiO_4]$, ref. 6, and $Na_2Be[SiO_4]$, ref. 7) shows that the analogy in behavior between Be and Zn observed in mineralogy does not, strictly speaking, go further than the simplest structures: bromellite BeO-zincite ZnO, phenakite Be₂[SiO₄]-willemite Zn₂[SiO₄], and is altered in a characteristic fashion in complex structures.

We are indebted to E. L. Belokoneva for her assistance in the complex calculations and E. P. Zhelezin for obtaining the experimental data.

¹⁾These are former oblique translations in the centered face of the initial cubic structure of β -cristobalite; the present triplicated $a\bar{b}$ face of chkalovite contains three parallel parts of the metachain with four tetrahedra in each. The chain emerging from x, y = 0 reaches the level x = 1 only for y = 3b.

G. F. Plakhov, M. A. Simonov, and N. V. Belov, Dokl. Akad. Nauk SSSR, : 218, 335 (1974) [Sov. Phys. - Dokl., 19, 556 (1975)].

Translated by John E. S. Bradley

¹Yu. A. Pyatenko, G. B. Bokii, and N. V. Belov, Dokl. Akad. Nauk SSSR, 108, No. 6 (1956).

²E. L. Belokoneva, Yu. K. Egorov-Tismenko, et al., Kristallografiya, <u>14</u>, 1060 (1969) [Sov. Phys.-Crystallogr., <u>14</u>, 918 (1970)].

³M. J. Buerger, Am. Mineral., <u>39</u>, 600 (1954).

⁴N. V. Belov, Min. Sborn, L'vov. Univ., No. 16, 29 (1962).

⁵N. V. Belov, Structures of Ionic Crystals and Metallic Phases [in Russian], Izd. AN SSSR, Moscow (1947).

⁶V. V. Ilyukhin, A. V. Nikitin, and N. V. Belov, Dokl. Akad. Nauk SSSR, 171, 1325 (1966) [Sov. Phys. - Dokl., 11, 1035 (1967)].