АКАДЕМИЯ НАУК СССР

ИНСТИТУТ МИНЕРАЛОГИИ, ГЕОХИМИИ И КРИСТАЛЛОХИМИИ РЕДКИХ ЭЛЕМЕНТОВ

Труды, вып. 4, 1960

Гл. ред. член-корр. АН СССР К. А. Власов

Отв. ред. В. В. Ляхович

А. Г. Ж А Б И Н, Г. Н. М У Х И Т Д И Н О В, М. Е. К А З А К О В А

ПАРАГЕНЕТИЧЕСКИЕ АССОЦИАЦИИ АКЦЕССОРНЫХ МИНЕРАЛОВ РЕДКИХ ЭЛЕМЕНТОВ В ЭКЗОКОНТАКТОВЫХ ФЕНИТИЗИРОВАННЫХ ПОРОДАХ ИНТРУЗИИ МИАСКИТОВ ВИШНЕВЫХ ГОР

ВВЕДЕНИЕ

Интрузия нефелиновых сненитов (мнаскитов) Вишиевых — Ильменских гор вытянута в меридиональном направлении и пережата в средней части. Вишневогорский (северный) и Ильменогорский (южный) массивы имеют форму каплеобразных тел, узкие концы которых обращены друг к другу. Между этими массивами расположена Увильдинская полоса щелочных пород. Протяженность интрузии — около 135 км, ширина — от 0,3—0.5 км в средней части до 3,5—4 км на северном и южном концах.

Интрузня мнаскитов залегает в ядре антиклинальной складки, сложенной породами ильменогорской свиты и являющейся структурной частью Сысертско-Ильменогорского антиклинория. Ильменогорская свита состоит из метаморфических парапород: гнейсов, кристаллических сланцев и амфиболитов, предположительно относимых к докембрию—нижнему палеозою (Роненсон, 1959). Возраст интрузии по А. Н. Заварицкому (1939) определяется как посленижнекарбоновый.

Известны две фазы внедрения щелочных пород. К первой относится внедрение щелочных пород — миаскитов, ко второй — миаскит-аплитов (микромнаскитов) и нефелин-полевошпатовых пегматитов. Эндоконтактовые разновидности миаскитов силицифицированы при взаимодействии с вмещающими породами и представлены биотитовыми безнефелиновыми сиенитами. Экзоконтактовый метасоматический ореол миаскитов сложен эгирин-авгито-микроклиновыми фенитами 1.

ГЕОЛОГИЧЕСКАЯ ПОЗИЦИЯ ФЕНИТОВ И ИХ СРЕДНИИ МИНЕРАЛЬНЫИ И ХИМИЧЕСКИИ СОСТАВЫ

По А. Н. Заварицкому (1939) и Д. С. Белянкину (1926), щелочные эгирин-авгито-микроклиновые снениты, широко проявленные в экзоконтакте ильменогорской интрузии миаскитов, представляют собой сложные по генезису метасоматические породы. А. Н. Заварицкий считал

¹ Впервые для Вишневых гор термин «фенит» был употреблен Б. М. Роненсоном в 1958 г.

щелочные эгирин-авгито-макроклиновые спениты «своего рода реакционной каймой между миаскитами и породами гранито-гнейсовой толщи». Он также отмечал, что эгирин-авгито-микроклиновые снениты имеют сходство с фенитами, изученными В. Брёггером (Brögger, 1921).

Исследования Б. М. Роненсона (1959) в Вишневых горах показали, что эгирин-авгито-микроклиновые сиениты по своему геологическому положению и составу являются фенитами, слагающими экзоконтактовый метасоматический ореол вокруг массивов миаскитов. Мощность фенитового ореола различна в разных участках, но он присутствует на всем протяжении контакта миаскитов с вмещающей гранито-гнейсовой свитой. Оторочки эгирин-авгито-микроклиновых фенитов отмечаются также у жил нефелин-полевошпатовых пегматитов, пересекающих гнейсы и кристаллические сланцы.

Макроскопически эгирин-авгито-микроклиновые фениты представляют собой лейкократовые или мезократовые породы, мелко- и — реже —

среднезернистой структуры и полосчатой реликтовой текстуры.

Средний минералогический состав фенитов следующий: микроклинпертит — 58.04%, альбит — 18.82%, эгирин-авгит — 17.31%, роговая обманка — 1.42%, ильменит — 0.21%, сфен — 1.54%, апатит — 0.7%, циркон — 0.01%, пирохлор — 0.01%, кальцит — 0.36% и кварц — 1.59%(Еськова и др., 1959).

Сравнение химического состава фенитов, миаскитов и гнейсов (табл. 1) показывает, что фениты занимают промежуточное положение

Таблица 1
Химический состав миаскитов, эгирин-авгито-микроклиновых фенитов
и гнейсов Вишневых гор
(в весовых процентах)¹

: Компо- венты	Мнаскиты (средняя проба)	Эгирин-авги- то-микрокли- новые фениты (средняя проба)	Гисёсы	Компо- непты	Миаскиты (средияя проба)	Эгирин-авги- то-микрокли- новые фениты (средняя проба)	Гиейсы
SiO ₂	53,20	65,00	69,54	P_2O_5	Не оби.	Не оби.	3,73
TiO_2	0,49	0,60	0,80	CO ₂	0,44	0,06	_
Al_2O_3	26,00	15,00	14, 17	F	Не оби.	Не оби.	_
Fe_2O_3	1,91	5,32	2,17	CI	Следы	Следы	-
FeO	2,11	1,12	2,82	Nb₂O₅	0,036	0,023	
MnO	0,10	0,19	0,14	ZrO_2	0,06	0,05	
MgO	0,26	0,24	0,92	TR ₂ O ₃	0,03	0,04	
CaO	1,50	1,40	2,40	П.п.п.		0,13	0,34
SrO	0,15	0,05	_	H ₂ O+			0,68
BaO	0,43	0,07	-	H ₂ O-	0,80	0,20	\ —
$^{\circ}$ Na $_2$ O	7,00	5,80	2,51		<u> </u>	1	[
K_2O	6,00	4,80	3,73	Сумма	100,24	100,10	100,22
Li ₂ O	Не оби.	Не оби.]	[
i.				Аналитик	Α. Ι	3. Быкова, 19	õõr.

і Литературный источник: Е. М. Еськова и др. (1959).

между щелочными и кислыми породами, приближаясь по содержаниям SiO_2 и Al_2O_3 к гнейсам, а по содержанию Na_2O , K_2O и $CaO-\kappa$ мнаскитам.

Содержание окисного и закисного железа достигает в фенитах максимальной величины; содержания MgO почти равны его содержаниям в мнаскитах, а содержания MnO по всем трем анализам пород колеблются в незначительных пределах. Различия в содержаниях редких элементоз рассматриваются ниже,

особенности процессов минералообразования в экзоконтактовом фенитовом ореоле

При изучении минералогии зоны феннтов Вишневых гор был обнаружен ряд своеобразных, до сих пор не изученных типов парагенетических ассоциаций минералов редких элементов ², что обусловлено следующими причинами:

1. Проявлением в зоне фенитов различных процессов минералообразования, генетически связанных с миаскитами. Фениты по своему минералогическому и химическому составу существенно отличаются от миаскитов, поэтому процессы минералообразования, протекавшие в них, привели к формированию особых типов парагенетических ассоциаций

породообразующих и акцессорных минералов.

2. Ход процессов минералообразования совпал с общей тенденцией к выносу редких элементов минералообразующими растворами в экзоконтактовые части массива, что привело к формированию вокруг интрузии гипогенного ореола выноса редких элементов (Жабин и Мухитдинов, 1959). В процессе фенитизации во вмещающие породы привносилось значительное количество редких элементов, таких, как редкие земли, инобий и цирконий. В табл. 2 видно, что фениты по средиим содержаниям

Таблица 2 Среднее содержание редких элементов в щелочных породах Вишневых гор (в процентах) ¹

Породы	Nb ₂ O ₅	Ta ₂ O ₄	ZrO ₂	TiO ₂	Be	Ga	BaO	ZrO	TR ₂ O ₃
Мнаскиты	0,036	0,0026	0,07	0,49	0,00043	0,0036	0,13	0,15	0,03
Биотитовые сиениты Эгирин-авгито-	0,026	0,002	0,06	0,58	0,00082	0,003	0,09	0,20	0,03
микроклино- вые фениты	0,019	0,0015	0,05	0,60	0,00066	0,003	0,07	0,05	0,04
Гранито-гнейсы	0,006	0,001	0,04	0,82	0,0006	0,003	0,005	0,005— 0,05	He onp
Амфиболиты.	0,001	100,0	Не обн.	Не опр.	0,00033	0,003	0,005— 0,05	He onp.	То же
Серпентиниты.	0,001	0,001	То же	То же	0,00033	100,0	Не обн.	То же	>>

⁴ По данным Е. М. Еськовой и др. (1959),

редких элементов приближаются к мнаскитам и резко отличаются от вмещающих пород ильменогорской свиты, не подвергшихся процессу фенитизации. Накопление редких элементов в фенитах продолжается и в последующие стадии минералообразования.

² Описываемые минералы являются акцессорными; однако это не было препятствием для их изучения, а, напротив, помогало выяснению типоморфного характера этих минералов для отдельных стадий минералообразования и для зоны фенитов в целом.

3. Состав возникающих ассоциаций породообразующих и акцессорных редкометальных минералов тесно связан с составом вмещающих фенитизированных пород. Поэтому характерно появление различных фациальных разновидностей парагенетических ассоциаций одной и той же стадии минералообразования. В результате в фенитовом ореоле возникают акцессорные редкометальные минералы, которые во внутренних частях массива миаскитов не встречаются,— чевкинит, бастнезит, катаплент, стропцианит, барит, барилит, торианит, торит и др. Отличительной чертой этих парагенезисов являются преобладание минералов редких земель и появление самостоятельных минералов стронция, бария, бериллия, тория, молибдена, свинца и цинка.

Схема последовательности этапов минералообразования и соответствующих им парагенетических ассоциаций минералов представлена в табл. 3.

Выяснено, что отдельные парагенетические ассоциации являются типоморфными для соответствующих стадий минералообразования. Уже
в процессе формирования метасоматического ореола эгирин-авгито-микроклиновых фенитов в него привносятся, наряду со щелочами и глиноземом, такие редкие элементы, как ниобий и тантал (фиксирующиеся
в пирохлоре, ильмените и сфене), цирконий (в эгирин-авгите), редкие
бемли (в апатите, ортите и бастнезите). Типоморфными для парагенезиса минералов редких элементов в фенитах являются ортит и бастнезит.
Весьма характерно почти полное отсутствие циркона в результате рассеяния циркония в породообразующем эгирин-авгите.

После возникновения зоны фенитов в них образуются своеобразные согласные или секущие эгирин-авгитовые и эгирин-авгито-микроклиновые жилы, являющиеся жильной разновидностью фенитов. Призальбандовые участки этих жил сложены эгирин-авгитом, содержащим 0,1—0,12% ZrO₂, апатитом и акцессорным пирохлором, а центральные части—микроклином. Ошибочно эти жилы иногда называются «пегматитами».

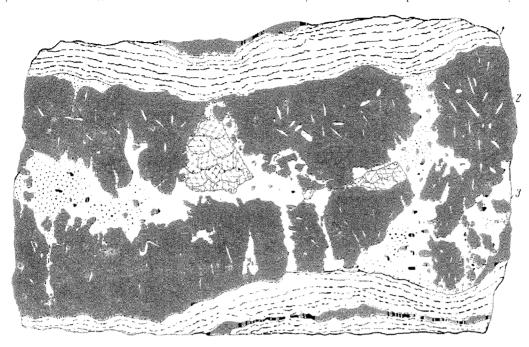
В процессе фенитизации вмещающих пород щелочному метасоматозу подвергались также тела гранитных пегматитов, заключенные в породах ильменогорской свиты. В них уменьшалось количество кварца (до полного его исчезновения и превращения жил в полевошпатовые), появлялись альбит, эгирин-авгит и акцессорные минералы — сфен, чевкинит и бетафит, отсутствующие в неизмененных гранитных пегматитах.

Нефелин-полевошпатовые (мнаскитовые) пегматиты, пересекающие фениты и гнейсы, взаимодействуют с вмещающими породами, и в них возникают силицифицированные безнефелиновые эндоконтактовые оторочки с типоморфным парагенезисом мусковита, корунда и эшинита. При более интенсивной силицификации миаскитовых пегматитов возникают полевошпатовые «спенитовые» жилы с корундом, мусковитом и эшинитом.

Метасоматическая пневматолито-гидротермальная альбитизация накладывается и на различные фенитизированные породы, и на тела фенитизированных гранитных пегматитов и силицифицированных (полевошпатовых) шелочных пегматитов. При развитии альбитизации в разных типах породы в альбититах возникают соответствению различные парагенезисы минералов редких элементов. Так, при альбитизации фенитов для образующихся альбититов характерны пирохлор, циркон и ильменит. При наложении альбитизации на тела гранитных пегматитов в них появляются такие акцессорные минералы, как монацит, торианит, торогуммит, циркон и пирохлор; при этом монацит и торианит встречены лишь в связи с этой ассоциацией. При наложении альбитизации

Парагенетические ассоциации минералов в пределах экзоконтактового фенитового ореола миаскитовой интрузии Вишневых гор

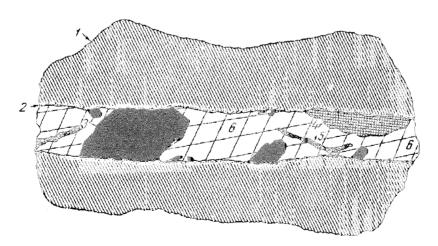
Этапы, стадии	и фазы минералообразования	Вмещающие породы	Типоморфиые парагенетические ассоциации минералов ¹			
1. Этап впедрения	Стадия образования эгирин- авгито-микроклиновых	Породы пльменогорской свиты	Микроклин-пертит + эгирин-авгит + альбит + сфеи + ильме- инт + апатит + [бастиезит] + титаномагнетит + кварц Альбит + [эгирин-авгит] + кварц			
интрузии миа- скитов и возник- повения вокруг	фенитов	Жилы гранитных пегматитов	Эгирин-авгит + сфеи + чевкинит + торит + [эгирин-авгит] + бетафит-менделеевит + энинит			
нее фенитового ореола	Стадня образования эги- рин-авгитовых и эгирин- авгито-микроклиновых жил	Феннты	1. Эгирин-авгит + апатит + сфеп + пирохлор 2. Микроклии + ильменит + [пирохлор]			
И. Пегматитовый этап. Внедрение нефелин-полево- шпатовых пегма-	<u></u>	Фениты	1. Микроклии + нефелии + биотит + пирохлор + циркон + ильменит 2. Альбит + биотит + пирохлор + циркон 3. Канкринит + вишиевит + содалит + сульфиды 4. Цеолиты + гидроокислы А1 + кальцит + гипс В силицифицированных эндоконтактах жил — мусковит + биотит + коруид + эшинит + магиетит			
		Гнейсы	1. Микроклии + альбит + нефелии + ипрохлор 2. Мусковит + [биотит] + корунд + эшинит			
	Стадия альбитизации	Эгирин-авгито-микроклино- вые фениты	Альбит + [микроклии] + циркои + пирохлор + [биотит] + ильменит + сканолит * + кальцит + сульфиды Fe Альбит + циркои + сфен Альбит + эшинит + ферсмит (?)			
		Фенитизированные амфи- болиты	Альбит + биотит + амфибол + сфен			


Этапы, стадии	и фазы минерало	ообразования	В мещающие породы	Типоморфные парагенетические ассоциации минералов ^с			
			Эгирин-авгито-микроклино- вые жилы	Альбит — эгирин-авгит — микроклин (реликт) — нирохлор — биотит — циркон			
	Стадия г	альбитизации	Фенитизированные гранит-	Альбит — пирохлор — циркон — монацит (← торианит) — торит Альбит — пирохлор (← ферсмит-колумбит) — ортит — апатит — — кальцит Альбит — ильменорутил — пирохлор — циркон			
			Мнаскитовые пегматиты	Альбит + пирохлор - циркон + биотит			
			Миаскиты эндокоптакта интрузни	Кальцит + биотит + апатит + инрохлор + циркон Кальцит + арфведсонит (или гастингсит) + апатит + сфен			
III. Постмагмати- ческий (пневма- толито-гидротер- мальный) этап		А. Главная фаза карбона- тизации	Эгирин-авгито-микроклино- вые фениты	Кальцит + эгирин-авгит + апатит + ипрохлор* + сульфиды Fe + - [молибденит] Кальцит + [биотит] - апатит + ильменит + сульфиды Fe + [молибденит]			
	Стадня		Фенитизированные амфибо- литы	Кальцит + биотит + апатит + сфен + ортит * сульфиды Fe + + [молибденит]			
	карбона- тизации	·	Миаскиты эндоконтакта интрузии	Кальцит + [апатит] + ильменит Кальцит + флюорит + эгирии + ортит + бетафит + торит			
•		Б. Фаза каль- цитовых про- жилков с ми- нералами	Миаскиты и фениты кон- тактной зоны	Кальцит + манганофиялит + катафорит + [апатит] + сульфиды Fe Анкерит + кальцит + рутил + брукит + сфалерит			
		редких эле- ментов	Эгирин авгито-микроклино- вые фениты	1. Альбит + [микроклии] + эгирин-авгит + анкерит + [муско- вит] + торит + бастиезит + рутил-брукит + анатаз Альбит + микроклии + сфеи + кварц + ринидолит			

Этапы, стадии	и фазы минерал	ообразовання	Вмещающие породы	Типоморфиые парагелетические ассоциации минералов
			Эгирин-авгито-микроклино- повые фениты	2. Кварц + кальцит + флюорит + барит + пирит + молибденит Кварц + кальцит + ильменит + барилит * 3. Стильбит + гармотом + строицианит
			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Кварц - кальцит - серебряно-висмутовый галенит - тетрадимит * + сфалерит - халькопирит * + пирит
	Стадия кар- бонатиза- ции	Б. Фаза каль- цитовых про- жилков с ми- нералами ред- ких элемен тов	Фенитизированные амфи- болиты	1. Биотит + [амфибол] + ортит Биотит (- клинохлор) + шорломит + магнетит + сфеи + ортит Биотит + [амфибол] + чевкинит + титаномагнетит Эпидот + амфибол + [биотит] + флюорит 2. Кальцит + сульфиды Fe + [молибденит]
III. Постмагматиче- ский (пневмато- лито-гидротер- мальный) этап			Кальцито-скаполито-дионен- довые породы	1. Микроклин + ортит Диопсид + ортит + [сканолит] - чевкинит Амфибол + ортит + [кварц] 2. Кальцит + барит + сульфиды Fe + флюорит 3. Гейландит - шабазит + [стильбит] "
	Стадия арфведсоцито-квар- цевых прожилков		Эгирин-авгито-микроклино- вые фециты	Арфведсонит (← крокидолит) + сфен + ниобо-эшинит + кварц + + [кальцит] Кварц + [чевкинит]
ı			Эгирин-авгитовые жилы	Арфведсовит + кварц + чевкишт + бритолит + катаплент * + + циркон + флюорит (вокруг прожилков — ферсмитизация пи- рохлора ранних парагенезисов)
ļ		,	Гнейсы	Крокидолит-асбест + кварц + сульфиды Fe

¹ Пелужирным шрифтом выделены жильные или породообразующие минералы. В квадратных скобках — характерные, по не обязательные минералы парагенезиса. Стрелкой показано направление замещения, звездочкой — редкие минералы, цифрами — последовательные ассоциации в данном парагенезисе

на щелочные негматиты в последних возникает особая генерация шир-кона и пирохлора.


Гидротермальный этап минералообразования пачинается с формирования метасоматических силикатно-карбонатных пород главной фазы

Фиг. 1. Замещение эгирин-авгито-микроклиновой жилы карбонатной породой. (Уменьшение 20).

 $J \leftarrow$ эгирин-автито-микроклиновый фенит; $2 \sim$ эгирин-авгит с включениями апатита; $\beta \leftarrow$ кальцитовая порода; $4 \leftarrow$ реликты микроклина.

стадии карбонатизации, развивающихся обычно вдоль эгирин-авгитомикооклиновых жил (фиг. 1) либо вдоль контактов различных фенитизированных пород. Широко проявлены процессы метасоматической

Фиг. 2. Қальцатовый прожилок второй фазы сталии карбонатизации в фенитизированных (биотитизированных) амфиболитах. (Нат. вел.). I =амфиболит; 2 =альбит; 3 =чевкинит; 4 =татаномагнетит; 5 = парротин; 6 =вальшат.

переработки фенитов, эгирин-авгито-микроклиновых и альбититовых жил. Акцессорными минералами силикатно-карбонатных пород являются сфен, ильменит и пирохлор.

Кальцитовые и кварцево-кальцитовые прожилки второй фазы стадии карбонатизации выполняют сколовые и разрывные трещины и пересекают различные фенитизированные породы, альбититы и тела силикатно-карбонатных пород главной фазы. Для этих прожилков характерны друзовые структуры минеральных агрегатов, четкая последовательность кристаллизации отдельных ассоциаций (фиг. 2) и зависимость состава прожилков от состава вмещающих пород. Типичными акцессорными минералами являются чевкинит, ортит, бастнезит; редко встречаются ториевые, стронциевые и бериллиево-бариевые минералы.

Таким образом, для главной фазы стадии карбонатизации характерны акцессорные титановые и инобиевые минералы, а для второй фазы— редкоземельные, стронциевые, ториевые, бериллиево-барие-

вые и др.

В заключительную стадию гидротермального этапа образуется сеть арфведсонито-кварцевых прожилков, с которыми связаны акцессорные силикаты редких земель — чевкинит и бритолит, а также катаплент,

циркон и первично анизотропный эшинит.

Сложность изучения относительной последовательности образования различных парагенезисов, связана с большим числом фациальных разновидностей парагенезисов, относящихся к одной стадии минералообразования. Поэтому одним из основных методических приемов изучения парагенезисов было прослеживание характера изменения состава жильного выполнения и соответствующих акцессорных минералов в зависимости от состава вмещающих пород.

ПАРАГЕНЕТИЧЕСКИЕ АССОЦИАЦИИ ОТДЕЛЬНЫХ АКЦЕССОРНЫХ МИНЕРАЛОВ РЕДКИХ ЭЛЕМЕНТОВ

Ортит — один из наиболее типичных акцессорных минералов экзоконтактового фенитового ореола. Обнаружены следующие парагенетические ассоциации ортита.

- 1. В фенитах, фенитизированных гнейсах и кальцито-скаполитодиопсидовых породах ортит встречен в виде вкрапленности. Эти породы залегают в виде выдержанных по простиранию и по мощности горизонтов среди пород ильменогорской свиты, подвергшихся воздействию интрузии мнаскитов. Вне этого ореола породы с акцессорным ортитом не встречены. Региональное распространение фенитизированных гнейсовых пород с акцессорным ортитом подтверждается также данными В. А. Зильберминца (1930), который упоминает для района Увильдинской щелочной полосы распространение «чевкинитовых и ортитовых гнейсов», и Н. В. Свяжина (1956).
- 2. В полевошнатовых жилах, представляющих собой силицифицированные щелочные пегматиты, а частично феннтизированные гранитные пегматиты, ортит ассоциирует с эшинитом и бетафитом и является более поздним, чем полевошнатовые агрегаты жил. В последующие стадии минералообразования происходят дробление кристаллов ортита, цементация и замещение его альбитом, бнотитом и кальцитом. Характерны плоско-параллельные, цепочковидные и прожилковидные агрегаты ортита. В гранитных пегматитах, удаленных от контактовой зоны интрузии, он не встречен. К этому типу парагенетических ассоциаций относится замечательное местонахождение акцессорных редкоземельных минералов в Мочалином Логу церита, тернебомита, ортита, лессингита и бастнезита (Зильберминц, 1930; Свяжин, 1956).

3. В ортитовых и ортито-диопсидовых жилках, пересекающих прослои ортитсодержащих фенитизированных пород, ортит ассоциирует с более поздними шабазитом, гейландитом и стильбитом.

4. В кальцитовых прожилках второй фазы стадии карбонатизации

ортит ассоциирует с биотитом и амфиболами.

5. В арфведсонито-кварцевых прожилках ортит ассоциирует с чев-

кинитом и бритолитом.

Физические и химические свойства ортитов из различных парагенетических ассоциаций близки. Цвет черный, блеск стеклянный, на просвет — грязно-бурый или зеленовато-бурый. Хорошо образованные кристаллы встречены лишь в кальцитовых прожилках второй фазы стадии карбонатизации. У ортита из фенитизированных гранитных пегматитов Ng=1,767, Np=1,749, Ng-Np=0,018; плеохроизм — от бурого до черного, удельный вес 3,88. Состав редких земель различных ортитов весьма близок: La=41,%, Ce=44,9%, Pr=3,4%, Nd=9,6% и Sm=1% (при Σ TR=100%) 3 .

Чевкинит, титаносиликат редких земель, является одним из типоморфиых акцессорных минералов в фенитизированных породах.

Обнаружены следующие парагенетические ассоциации чевкинита.

1. В гранитных пегматитах, находящихся в пределах фенитового ореола и подвергшихся фенитизации и альбитизации, чевкинит ассоциирует с эгирин-авгитом, сфеном, монацитом, торианитом, пирохлором и цирконом. Амазонитовые гранитные пегматиты Ильменского заповедника, находящиеся вблизи контактового ореола интрузии, также постоянно содержат ассоциацию эгирин-авгита, сфена и чевкинита, которая отсутствует в этих же пегматитах, удаленных от миаскитовой интрузии. Отмечениая ассоциация обусловлена привносом редких элементов в ранние гранитные пегматиты при их фенитизации.

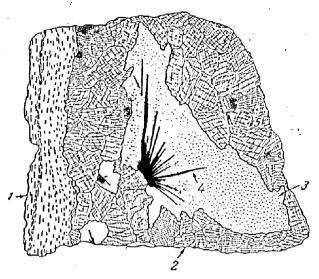
2. В кальцитовых прожилках второй фазы стадии карбонатизации чевкинит ассоциирует с титаномагиетитом и ортитом. Предпочтительная приуроченность чевкинита к местам пересечения карбонатиыми прожилками амфиболитов объясняется, по-видимому, необходимостью для его образования среды, богатой титаном, железом и кальци-

ем (см. фиг. 2).

3. В арфведсонито-кварцевых прожилках наиболее обильные выделения чевкинита приурочены к местам пересечения этими прожилками

эгирин-авгито-микроклиновых жил, залегающих в фенитах.

Чевкинит образует изометричные или пластинчато-призматические кристаллы. Цвет черный, излом раковистый, блеск смоляной. Состав редких земель в чевкинитах различных парагенетических ассоциаций сходный: La — 34%, Ce — 51,5%, Pr — 4%, Nd — 10%, Sm — 0,1%, Gd — 0,5% и Lu — 0,3% (при Σ TR = 100%). Чевкинит чаще является рентгеноаморфным и лишь после прокаливания обнаруживает типичную диффракционную картину. Кривые нагревания аналогичны эталонным. При гидротермальном изменении по чевкиниту образуются бурые или белесые корочки, сложенные в основном сфеном.


Бритолит, фосфатосиликат редких земель, обнаружен нами в Вишневых горах впервые. Образует длиннопризматические, гексагонального облика, кристаллы или радиально-лучистые пучки, заключенные в кварцевых и арфведсонито-кварцевых прожилках (фиг. 3). Цвет красный или светло-розовый; цвет порошка слабый — розовато-кремовый. Большинство кристаллов прозрачны. Блеск стеклянный.

³ Химические анализы минералов, определение удельного веса (Г. Г. Прохорова), рентгено-структурное изучение (Ю. А. Пятенко и Н. Г. Пиневич), расшифровка составов редких земель (Р. Л. Баринский) и спектральные анализы (Н. В. Лизунов) выполнены в соответствующих лабораториях ИМГРЭ АН СССР.

Минерал оптически одноосный; Ng = 1,752, Np = 1,748, Ng = Np = 0,004. Некоторые зерна оптически изотронны. Минерал рентгеноаморфный; лишь после прокаливания до 800° он дает диффракционную картину, близкую к беккелиту (табл. 4). М. Е. Казакова частными химически-

ми определениями в минерале установила содержание 50,5% TR₂O₃ и 18,3% SiO₂.

Исследования редкоземельных силикатов, проведенные в 1956 г. Е. И. Семеновым и американскими минералогами (Gay, 1957), показали идентичность бритолита, лессингита и беккелита; поэтому названия «беккелит» и «лессингит» должны быть сняты в соответствии с правилом приоритета описания. Ранее бритолит («лессингит») был известен в дан-HOM моньоган комплексе лишь в районе Мочалина Лога, и находка этого минерала в Вишневых горах указывает на его более широкое распространение.

Фиг. 3. Бритолит в кварцевом прожилке, перссе-кающем эгирин-авгитовую жилу с молибденитом. I — фенит; 2 — эгирин-авгит; 3 — кварц; 4 — бритолит; 5 — молибденит.

В бритолите из Вишневых гор З. В. Васильевой определено (в весовых процентах): SiO_2 —19,85; P_2O_5 —4,86; CaO—12,69; SrO—0,69; MnO—0,06; MgO—0,31; Σ TR_2O_3 —59,36; Al_2O_3 —0,60; Fe_2O_3 —0,19; K_2O —не опред.; Na_2O —не опред.; H_2O —2,84; F—2,05 (Σ =99,34).

T а блица 4 Межилоскостные расстояния бритолита $(B \ \hat{A})^{1}$.

(Map	желит' нуполь, ранва)	"Бритолит" (Вишневые горы)			келит* уполь), ранна)	Бритолит (Вишневые горы)		
I	ď	1	d		d	I	d	
		<u>.</u>	4,43	5	1,852	4	1,80	
1	3,46	2,5	3,48	5	1,793	2,5	1,78	
		5	3,20	_		6	1,68	
		7,5	3,11	1	1,636	6	1,273	
:9	2,879	10	2,84	3	1,276	2	1,247	
l	2,59	5	2,61	3	1,255	2		
-8	1,984	7,5	1,96					

 $^{^4}$ Условия съемки: прокаден при 800° ; Си-излучение; Ni- фильтр; D=57,3 мм; d=0,6 мм.

Катаплент $Na_2ZrSi_3O_9 \cdot H_2O$ упоминается для щелочного комплекса Вишневых — Ильменских гор впервые. Он найден в северной части Вишневых гор в арфведсонито-кварцевых прожилках, которые пересекают эгирин-авгитовые жилы, возникшие в результате фенитизации вмещающих пород. Появление катаплента обусловлено растворением и замещением арфедсонито-кварцевым агрегатом эгирин-авгита,

содержащего 0,11% ZrO₂. Цирконий, освобождающийся при разложении эгирин-авгита, в состав арфведсонита не входит, и в результате возникают силикаты циркония— катаплент и циркон. Генерация циркона в этих прожилках является самой поздней в щелочном комплексе. Радиально-пластинчатые сферолиты катаплента— золотисторозового или буровато-красного цвета; размер их в диаметре— до 15 мм.

Физические свойства катаплента из Вишневых гор и Хибин следующие:

Вишневыегоры	Хибины
Одноосный	Одноосный
Оптически положительный	Оптически положительный
Ng = 1,627	Ng = 1,6245
Np = 1,596	Np = 1,5961
Ng-Np = 0.031	Ng-Np = 0.0284
Уд. вес 2,77	Уд. вес 2,73
Твердость 5,5	Твердость 5—6

Результаты рентгено-структурного изучения катаплента приведены в табл. 5. Спектральным анализом в нем, помимо больших количеств Na, Zr и Si, отмечены также небольшие содержания Sr, Ba, Ca. Химическим анализом в катапленте 3. Т. Капитоновой определено (в весовых процентах): $SiO_2-42,32$; $TiO_2-0,20$; $ZrO_2-29,93$; TR_2O_3- ие обн.; $AI_2O_3-0,73$; $Fe_2O_3-2,84$; MnO-0,02; MgO-следы; CaO-5,70; $Na_2O-7,05$; $K_2O-0,65$; $H_2O^2-10,19$; $H_2O^2-0,25$ ($\Sigma=99,88$).

Барилит, весьма редкий диортосиликат бериллия и бария ВаВе2 $[Si_2O_7]$, описывается впервые для СССР. До этого он был найден лишь на двух месторождениях с уникальными парагенезисами минералов — Лонгбан, Швеция (Aminoff, 1923) и Франклин, Нью-Джерси, США (Palache, Bauer, 1930). Барилит встречен А. Г. Жабиным и Ю. П. Диковым в Вишневых горах в кварцево-кальцитовых прожилках второй фазы стадии карбонатизации, пересекающих эгирин-авгито-микроклиновые фениты, где он ассоциирует с ильменитом. Барилит образует призматические, квадратного сечения, кристаллы размером до 2×5 мм. Цвет его голубоватый. Прозрачен. Отчетливо наблюдается спайность по (001) и (100). Твердость 6,5; удельный вес 4,02. Минерал двуосный; оптически отрицательный; Ng=1,695, Np=1,690, Ng-Np=0,005. Спектральным анализом, номимо бериллия, бария и кремния, обнаружены небольшие количества кальция и стронция. По данным рентгено-структурного изучения (см. табл. 5) барилит из Вишиевых гор оказался идентичным барилиту из Лонгбана, Швеция (Ygberg, 1941; Smith 1956).

В барилите из Вишневых гор М. Е. Казаковой из навески 0,06 мг определено (в весовых процентах): $SiO_2 - 35,44$; BaO - 42,90; CaO - 1,80; BeO - 16,54; $Fe_2O_3 - 0,05$; $H_2O - 0,00$; п. п. п. – 1,96 ($\Sigma = 98,69$).

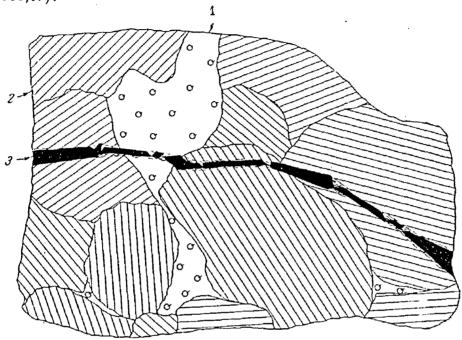
Минерал из группы торогуммита (торит) описывается впервые для щелочного комплекса Вишневых гор. Обнаружен в кварцево-кальцитовых прожилках второй фазы стадии карбонатизации и в фенитизированных гранитных пегматитах. Образует призматические кристаллы с квадратным сечением, чаще — неправильные зерна. Бесцветный и прозрачный, но чаще окрашен в коричневый цвет. Блеск стеклянный, излом раковистый. Минерал одноосный, оптически положительный; Ng=1,709, Np=1,690, Ng—Np=0,019 (для бурой разновидности) и Ng=1,711—1,717, Np=1,682 (для бесцветной разновид-

. Таблица Межплоскостные расстояния катаплента и барилита (в А)

Ката (Вишнег	плент вые горы) ¹	Ката (Хиб	плент нкы)²	Бар (Вишнев	нлит нле горы) ³	Барилит, Лоні (Ygberg,	бан, Швеция 1941)
I	d	,	đ	1	d	1	d
6	7,01	_	_	10	3,39	Сильи.	3,40
7,5	6,45	3	6,36	5	3,05	Cл.	3,05
4	5,85	<u> </u>	_	10	2,93	Сильн,	2,91
6	5,42	3	5,41	10	2,47	»	2,48
6	4, 15		,	8	2,35	»	2,41
10	3,95	8	3,96	6	2,22	С.т.	2,26
2	3,71	1	3,72	6	2,08	»	3
10	3,07	8	3,06	6	1,893	"	2,08
9	2,98	9	2,98	6	1,861	Среди.	1,895
$^{''}_{1,\bar{5}}$	2,77	•,,	-,50	4	1,747	Среди. Сл.	1,845
8,5	2,71	8	2,70	6	1,690		1,742
1,5	$\frac{2,52}{2}$	i	2,51	6	1	Среди.	1,689
	2,43	$\frac{2}{3}$	1	3	1,630	»	1,620
1,5	2,49		2,43	5	1,569	» '	1,580
1	$\frac{2,13}{2,07}$	4	2,19	3	1,532	Сл.	1,532
1	1	1	2,07	L Company	1,494	Средн.	1,487
10	1,97	10	1,976	4	1,450	»	1,453
5	1,85	8	1,859	4	1,426	Сильи.	1,429
8,5	1,74	9	1,752	5	1,220		-
1,5	1,68	4	1,656	3	1,183		
1,5	1,62	3	1,629	4	1,168		
<1	1,57			3	1,147		
2 -	1,525	6	1,533	5	1,134		
3,5	1,484	7	1,492	5	1,103		
1,5	1,454	5	1,459	4	1,083		1
2,5	1,412	6	1,420	4	1,010		,
3,5	1,349	7	1,357	4	1,015		
2	1,316	3	1,325	4 .	0,954		
<1	1,288			5	0,934		1
1	1,256	4	1,261	5	0,909		
1,5	1,232	3	1,240	5	0,891		
1,5	1,215	2	1,225	4	0,877		
1,5	1,177	4	1,181	6	0,865		
1,5	1,156	2	1,162	6	0,854		
1,5	1, 142	$\frac{2}{4}$	1,148	5	0,844		
1,5	1, 105	3	1,121	6	0,833		J
1	1,048	1	1,050	6	0,796		
1	1,038	4	1,042		1		
1	1,006		•		, ,		
1,5	0,980						-
1	0,970		:				
1	0,959]			
1	0,909						
1	0,899			[1
2	0,875				1		
1,5	0,829	-	1	1	1		

^{1, 2, 3} Условия съемки; Сп-излучение; Ni-фильтр; D=57,3 мм; d=0,6 мм.

Таблица \ddot{b} Межплоскостные расстояния торогуммита, шорломита, ниобоэшинита, торианита и бастисянта (в \mathring{A})¹


Торогуммят (Чу ров, 1955)	торс	ол на группы огуминта невые горы)	1 444	орломит ссв, 1957)	Шо (Виш	рломит цевые горы)		боэшнинт евые горы)		ит синтети- й (Frondel, 1956)	То (Вишя	рианит евые горы)	цитові ков (ит из каль- ых прэжил- Вишневые горы		тисзит ова, 1959)
Į.		2		3	1	-1		5		6		7		8		9 .
I d	1	l d	1	d	1	d	1	d	1	d	1	d	1	d	1	d
9 4,695 10 3,537 4 2,821 6 2,653 3 2,499 4 2,203 4 2,000 3 1,869 6 1,818 1 1,740 1 1,653 1 1,582 2 1,469 3 1,431 1 1,379 1 1,326 1 1,267	3 10 10 3 8 2 6 4 3 8 3 4 4 4 4 2 5 4	6,31 4,69 3,55 2,84 2,68 2,51 2,21 2,01 4,881 1,823 4,746 1,660 4,583 1,480 1,480 1,430 4,386 1,332 1,274		2,690 2,451 2,359 1,951 — 1,667 1,666 4,315 1,281 1,214 — 1,097	<pre></pre>	4,32 3,02 2,69 2,46 2,36 2,19 1,95 1,91 1,74 1,67 1,60 4,505 1,345 1,345 1,280 1,214 1,116 1,098	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4,43 3,79 3,37 3,13 3,03 2,96 2,67 2,27 2,23 2,03 4,74 1,71 1,59 1,55 1,513 1,482 4,211 4,178	10 4 8 9 2 2 4 4 4 3 6 3 7 8	3,21 2,78 4,971 1,682 1,611 1,396 1,248 1,41 1,076 0,988 0,945 0,932 0,884 0,853 0,808 0,784 0,776	10 4 8 10 2 6 5 5 4 3 3	3,16 2,81 1,96 1,68 1,61 — 1,281 1,246 1,140 1,075 0,987 0,946 0,931 0,886	5 9 10 2,5 9 9 3 6 5 4 4 4 6 2,5 2,5 1,5 5	4,90 3,60 2,65 2,46 2,07 2,03 1,910 1,790 1,680 1,578 1,486 1,444 1,350 1,303 1,285 1,206 1,192 1,184	2 9 40 3 9 8 8 8 3 5 3 - 2 5 - 1	1,4,86 3,56 2,86 2,43 2,05 2,00 1,89 1,78 1,67 1,57 1,47

Ş

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{bmatrix} 2,5\\2 \end{bmatrix}$	d 0,973 0,896 0,825 0,817	3	5 d 0,896	1	6 d	1	7 d	2 2,5 1,5 2,5	8 d 1,055 1,043 1,032 1,012 0,993		9 d d - 1,035 1,004 0,986
2 1,112 5 1,1 1 1,021 3 1,0 3 0,976 3 0,9 2 0,952 2 0,9 3 0,908 4 0,9 3 0,8 2 0,8	$\begin{bmatrix} 2,5\\2 \end{bmatrix}$	0,973 0,896 0,825	3		1	d	1	d	2,5 1,5 2,5 2	1,055 1,043 1,032 1,012	2 2	1,004
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{bmatrix} 2,5\\2 \end{bmatrix}$	0,896 0,825	3	0,896					2,5 1,5 2,5 2	1,043 1,032 1,012	2 2	1,00
									2.5 2.2.2.3.3.2.3.3 2.3.3.3.3.3.3.3	0,972 0,965 0,952 0,946 0,919 0,908 0,848 0,819 0,809 0,794	1 1 1 1 1	0,966 0,956 0,944 0,912 0,902

 $^{^{1}}$ Условия съемки: Си-излучение; N1-фильтр; D=57.3 мм; d=0.6 мм. Образцы 2 и 5 прокалены до 800° , образец 7-до 1000° .

ности). Удельный вес от 4,31 до 4,80. Минерал рентреноаморфный и лишь после прокаливания дает диффракционную картину, близкую к торогуммиту (табл. 6). Люминесцирует в ярких светло-зеленых тонах и сильно радиоактивен. Спектральным анализом обнаружены большие количества тория, кремния, кальция. Химическим анализом в торите М. Е. Казаковой определено (в весовых процентах): SiO_2 —16,86; Al_2O_3 —1,44; ThO_2 —61,04; TiO_2 —следы; Fe_2O_3 —4,55; FeO—1,46; MnO—0,40; MgO—0,09; CaO—2,20; BaO—0,77: PbO—0,54; TR_2O_3 —0,25; Nb_2O_5 —ие обн.; H_2O^2 —2,14; H_2O^4 —8,47; F—0,80 (Σ =100,67).

Фиг. 4. Прожилковидное выделение эшинита, пересекающее агрегат микроклина и кварца. (Нат. вел.).

1 — кварц; 2 — микроклин; 3 — эшинит.

Шорломит наблюдается в карбонатных прожилках второй фазы стадии карбонатизации, пересекающих фенитизированные амфиболиты, и ассоциирует с магнетитом и титаномагнетитом. Найдены монокристаллические выделения шорломита неправильной формы, размером до 5×6 см; реже встречаются друзы ромбододэкаэдров. Цвет бурый, в осколках просвечивает темно-бурым. В прозрачных шлифах обнаруживает аномальное двупреломление и четкую псевдодвойниковую структуру. Удельный вес 3,79.

Химический состав шорломита из карбонатных прожидков следующий (в весовых процентах): $SiO_2 - 35,20$; $TiO_2 - 1,64$; $Al_2O_3 - 4,73$; $Fe_2O_3 - 24,55$; CaO - 32,25; MgO - 0,27; п. п. п. — 1,27; $H_2O - 0,04$. Данные рентгено-структурного изучения приведены в табл. 6.

Эшинит, титано-инобат редких земель, обнаружен во многих участках эндо- и экзоконтактового пояса массива миаскитов; внутри центральной интрузии мнаскитов он не был встречен. Наиболее характерны следующие типы парагенетических ассоциаций эшинита:

1. В мнаскитовых пегматитах и дайках мнаскитов, пересекающих фениты и гнейсы, эшинит ассоциирует с мусковитом и корундом. Эшинит приурочен к эндоконтаковым силицифицированным безнефелиновым зальбандам, а также к экзоконтактовым оторочкам эгирин-авги-

Прі хим

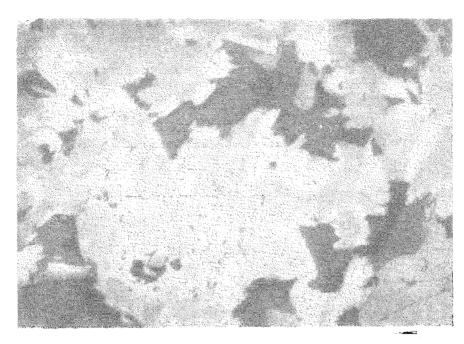
Се -Dy -= 10 цери Эши вые. инта Nb/T то-микроклиновых фенитов, которые возникают за счет гранито-гнейсов на контакте их с пегматитом. Определение содержания редких элементов подтверждает привнос во вмещающие породы инобия, титана и редких земель, связанный с внедрением нефелии-полевошпатового пегматита.

2. В фенитизированных гранитных пегматитах, превращенных в полевошпатовые жилы, эшинит ассоциирует с бетафитом, менделеевитом, ортитом, магнетитом, реже—с цирконом. Встречены плоско-параллельные и цепочковидные агрегаты кристаллов эшинита (фиг. 4). Эшинит этого и предыдущего парагенезиса по составу близок к типичным цериевым эшинитам описанным для Ильменских гор.

3. В кварцево-арфведсонитовых прожилках, пересекающих фениты, эшинит является самой поздней генерацией инобатов в щелочном комплексе и представляет собой новую разновидность с высокими содержаниями ннобия и инзкими — тория (табл. 7).

Таблица 7

Химический состав ниобоэшинита
из арфведсонито-квариевых прожидков


Bec. %	Атомиые ко- личества	Группировки атемов
28, 17	0,1720	l
4,82	0,0859	
2,52	0,0095	,
Следы	_	A = 0.267
>	_	ŀ
Не оби.		}
41,41	0,3116	-
Не оби.)
18,73	0,2344	
2,75	0,0345	$B_2 = 0.593$
0,35	0,0035	
0,35	0,0069	•)
0,41	0,0456	
0,04	-	
99,55	_	
	28, 17 4,82 2,52 Следы * Не обн. 41,41 Не обн. 18,73 2,75 0,35 0,35 0,41 0,04	28,17 0,1720 4,82 0,0859 2,52 0,0095 Следы — Не обн. — 41,41 0,3116 He обн. — 18,73 0,2344 2,75 0,0345 0,35 0,0069 0,41 0,0456 0,04 —

Анализ рассчитан на типовую формулу AB_2X_6 по группе B. При пересчете учтены данные расшифровки редких земель. Кристалло-химическая формула ниобоэшинита следующая:

$$(TR_{0,53}Ca_{0,29}Th_{0,03}OH_{0,15})_{1,05}(Nb_{1,05}Ti_{0,79}Fe_{0,12}Si_{0,02}Al_{0,02})_{2,00}O_{6}$$

Состав редких земель в нем следующий (в процентах): La — 14; Ce — 42; Pr — 9; Nd — 25; Sm — 3,1; Eu — 0,4; Gd — 1,3; Tb — 0,2; Dy — 1,2; Ho — 0,2; Er — 0,3; Tu — 0; Yb — 0,2; Lu — 0; Y \sim 3 (Σ TR = \pm 100%). Для инобоэшинита характерны редкие земли селективного церневого состава с иссколько повышенными содержаниями инобия. Эшинит с такими высокими содержаниями инобия описывается впервые. Эшиниты, у которых Nb/Ti>1, предлагается называть инобоэшинитами. Весьма вероятно существование и титаноэшинитов, у которых Nb/Ti<0,5.

Ниобоэщинит образует призматические кристаллы, нарастающие на стенках трещинных полостей. Цвет черный, в тонких осколках просвечивает тусто-красным. Излом раковистый. Блеск смоляной, Удельный вес 5,1323. Микротвердость равна 593-683 кг/мм², что соответствует 5,3-5,6 по шкале Мооса. Минерал оптически изотропный и рептгеноаморфный (N=2,26). После прокаливания восстанавливает первичную структуру. Данные рептгено-структурного анализа инобоминита приведены в табл. 6.

Фнг. 5. Участок псевдоморфозы ферсмита и колумбита по пярохлору, образующему реликтовые зерна, Хорошо видна друзовая структура псевдоморфоз. Аншлиф. Николи скрещены,

 $I = \phi$ ерсмит; $2 = \kappa$ олумбит; $3 = \kappa$ пироклор; теми $\alpha = \kappa$ прегат кальцита и апатита.

Феремит и колумбит встречаются совместно и образуются в результате гипогенного разложения пирохлора, вероятно, после стадии карбонатизации в связи с кварцево-кальцитовыми брекчиевыми жилами в зонах разломов. Замещение пирохлора ферсмитом и колумбитом, впервые установленное Э. М. Бонштедт-Куплетской (1946), оказалось характерным для экзо- и эндоконтактовых участков интрузии миаскитов. По нашим данным, разложение пирохлора происходит стадийно (фиг. 5); сначала возникает ферсмит, а лишь по нему — колумбит:

$$NaCaNb_5O_6$$
 \overrightarrow{F} $\xrightarrow{\text{вынос Na, F, }}$ $\xrightarrow{\text{феремит}}$ $\xrightarrow{\text{привнос Ma}}$ $\xrightarrow{\text{привнос Ma}}$ (Fe, Mn) Nb_2O_6 вынос Ca колумовт

Возможно, что важную роль при разрушении пирохлора играет фосфорная кнелота, фиксирующая в виде фторапатита внутря частичных и полных исевдоморфоз ферсмита и колумбита по нирохлору. Вынос кальция и фтора обусловливает частое присутствие в исевдоморфозах флюорита.

Бастнезит впервые для щелочного комплекса был обнаружен в Моладином Логу в Потананых горах: в Вишневых горах он впервые

описан Е. Б. Халезовой (1959). Бастнезит образует пластинчатые по (0001) кристаллы размером до 3×5 см, буро-желтого или светло-коричневого цвета; иногда прозрачен. Весьма характерна спайность по (0001); Ng=1,788—1,792; Np=1,718. Удельный вес 5,01—5,025. Данные рентгено-структурного изучения бастнезитов приведены в табл. 6. Были изучены также гипергенные порошковатые светло-желтые продукты, развивающиеся по бастнезиту из Мочалина Лога и бастнезиту из кальцитовых прожилков. По данным рентгено-структурного изучения, они также сложены бастнезитом.

Нами бастнезит найден в следующих парагенетических ассоцианиях:

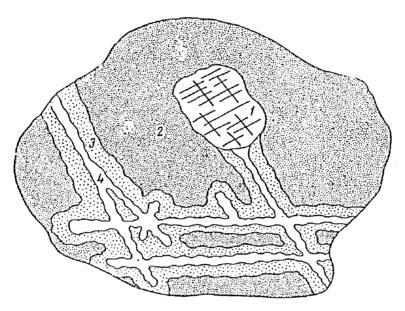
- 1) в ортитсодержащих фенитах совместно с ортитом и титаномагнетитом;
- 2) в кальцитовых прожилках второй фазы стадии карбонатизации совместно с минералом группы торогуммита, брукитом, анатазом и др. (см. фиг. 2).

Стронцианит для щелочного комплекса описывается впервые. Оп обнаружен в кальцитовых прожилках второй фазы стадии карбонатизации. Строицианит образует радиальнолучистые пучки, нарастающие на зальбандах прожилков, либо одиночные игольчатые кристаллы на кальците. Размер выделений — до 3×6 см. Цвет белый, иногда слегка желтоватый; тоиконгольчатые кристаллики водянопрозрачны. Наблюдалась спайность по (110); минерал двуосный, оптически отрицательный. Ng= =1,665—1,669; Np=1,516—1,520; Ng—Np=0,149. Рентгенограмма вишневогорского стронцианита аналогична эталонной. Спектральным анализом в нем обнаружено присутствие значительных количеств кальция и небольших количеств бария и марганца.

Химическим анализом в стронцианите З. Г. Катаевой определено (в весовых процентах): SiO_2 —0,26; TiO_2 — не оби.; Al_2O_3 —0,20: Fe_2O_3 —0,06; MnO —0,02; MgO —0,04; SrO —59,15; BaO —0,23; CaO —7,66; Na_2O —0,64; K_2O —0,17; H_2O — не оби.; H_2O + —0,30; CO_2 —31,77 (Σ = 100,50).

Барит обнаружен в кварцево-карбонатных прожилках второй фазы стадии карбонатизации. Он образует бесцветные кристаллы размером 0.5×1.5 см, находящиеся в кальците. Оптически двуосный, положительный; Ng = 1,650; Np = 1,640; Ng = Np = 0,010. Спектральным анализом в барите обнаружено присутствие кальция и строиция.

Монацит встречен в альбитизированных микроклин-кварцевых негматитовых жилах гранитного типа с эгирин-авгитом, залегающих в эгирин-авгито-микроклиновых фенигах, в ассоциации с торианитом, торитом, чевкинитом, сфеном, пирохлором и цирконом. Он представлен мелкими красноватыми прозрачными зернами с хорошо выраженной спайностью, встречающимися в виде включений в неизвестном минерале, который образует непрозрачные белые матовые выделения с колломорфной структурой. По данным спектрального анализа, в монаците отмечаются высокие содержания тория и креминя. Неизвестный минерал оптически изотропен и рентгеноаморфен. Рентгенограмма порошка прокаленного минерала близка к рентгенограмме хюттонита.


Торианит развивается в виде прожилков по неизвестному минералу (фиг. 6). Торианит прозрачен, цвет желтый; N=1,777—1,781. Спектральным анализом, кроме больших количеств тория и редких земель, в нем установлены присутствие кальция, бария, стронция и следы кремния, свинца, никеля, меди и титана. Данные рентгено-структурного изучения торианита приведены в табл. 6. Торианит Вишневых гор отличается большим параметром элементарной ячейки (5,60 Å). Размеры элементарной ячейки природных торианитов колеблются в пределах 5,51—

5,66 Å и увеличиваются по мере уменьшения в них содержания редких земель.

Рутил является наиболее распространенным минералом двуокиси титана и встречается в двух парагенетических ассоциациях:

1) в микроклиновых жилах среди эгирин-авгито-микроклиновых фенитов в виде выделений неправильной формы до 3—5 см в поперечнике;

2) в карбонатных прожилках второй фазы стадии карбонатизации среди эгирин-авгито-микроклиновых фенитов совместно с альбитом, эгирин-авгитом, кварцем, анатазом и брукитом в виде хорошо образованных тетрагональных кристаллов и коленчатых двойников.

Фиг. 6. Взаимоотношение монацита и торианита (×20).

1 — первичный красный монацит; 2 — хюттонит?; 3 — прозрачный монацит; 4 — торианит.

Ильменорутил, разновидность рутила, обогащенная инобием, встречается обычно в пегматитовых жилах микроклин-альбитового состава совместно с пирохлором, в виде выделений неправильной формы, размером от нескольких миллиметров до нескольких сантиметров в поперечнике. Цвет черный, излом раковистый. В шлифах слабо просвечивает. Плеохроизм сильный от черного до темно-коричневого. Содержания Nb₂O₅ в ильменорутиле колеблются от 4,68 до 14,91%, TiO₂ — от 68,91 до 83,83%. Сравнение рентгенограмм порошка вишневогорского рутила и ильменорутила с эталонными рентгенограммами показывает их полную идентичность.

Анатаз встречается в карбонатных прожилках второй фазы стадии карбонатизации в эгирин-авгито-микроклиновых фенитах в ассоциации с рутилом, брукитом, альбитом и кварцем. Образует единичные бипирамидальные кристаллы. Цвет его черный, с внутрешими голубыми рефлексами. Анатаз слагает также существенную часть бурых лейкоксенов, развивающихся в гипергенных условиях по ильмениту. Межплоскостные расстояния анатаза и анатазового лейкоксена приведены в табл. 8.

Брукит обнаружен в карбонатных прожилках второй фазы стадии карбонатизации совместно с рутилом, анатазом, альбитом, эгирином и кварцем. Цвет его черный; центральные части некоторых кри-

сталлов прозрачны и бесцветны. Межплоскостные расстояния брукита приведены в табл. 8.

Таблица8 Межплоскостные расстояния анатаза и брукита (в Å)

	газ (Михе- в, 1957)		аз (Виш- пе горы) ¹	лейк (Вишн	азовый оксен евые го- ры) ²		иг (Ми- в, 1957)	Бруки невыс	горы) ³
1	ď	1	d	1	đ	1	d	<u> </u>	d
10	3,508	10	3,50	10	3,47	<u> </u>		$\frac{1}{2}$	4,09
1	2,425	0,7	2,44	10	, , , ,	6	3,46	10	3,58
5	2,372	1	2,38	2,5	2,36	10	3,22		
1	2,333	0,7	2,32			6	2,87	7,5	2,95
9	1,887	9	1,887	6	1,884				2,54
_	-	2,5	1,701		_	8	2,45	$\frac{2}{2}$	2,48
7	1,696		_	3	1,694	1	2,39		
7	1,662	3,5	1,664	4	1,658	1	2,29	. 2	2,28
7	1,447	5	1,478	2,5	1,478	1	2,24	_	— .
6	1,361	1,5	1,363	2	1,365	4	2,17	2	2,16
6	1,335	2	1,337	2,5	1,336	1	2,12		-
7	1,261	3	1,267	3	1,265	3	2,04		
2	1,247	1	1,252	 		_		2,5	1,99
6	1,163	2,5	1,164	2	1,166	3	1,953	3	1,94
1	1,158					4	1,881	4	1,90
1	1,054	_	_			2	1,842	3	1,86
5	4,0488	1	1,044	ĺ				2	1,72
5	1,0407	-				10	1,681	4	1,69
5	1,0155	0,7	1,016	ł		2	1,654	2,5	1,66
2	1,0043					2	1,619	2	1,62
1	0,9939	l .—	_	1		2	1,601		
7	0,9528	1,5	0,954	1		2	1,531		
- 6	0,9437	1	0,946			2	1,476	2	1,469
7	0,9167	1	0,919			4	1,450	_	
7	0,9114	1	0,913			2	1,429	2	1,438
		1,5	0,896						
		1	0,880]			

 1 , 2 , 3 Условия съемки; Си-излучение; Ni-фильтр для образцов 2 и 5; Fe-излучение, не отфильтрованное —для образца 3; D=57,3 мм; d=0,6 мм.

Серебряно-висмутовый галенит встречен в кальцитовых прожилках второй фазы стадии карбонатизации, где он ассоцирует со сфалеритом, пиритом, кальцитом и кварцем. Монокристаллы галенита достигают в днаметре 4—5 см. Обладает четко выраженной отдельностью по октаэдру, что является характерным свойством висмутсодержащих галенитов. Спайность по кубу появляется лишь после прокаливания. Удельный вес 7,55. Микротвердость, по сравнению с обычными галенитами, пониженная: она равна 42—53 кг/мм², что составляет 2,1—2,3 единиц по шкале Мооса. Химическим анализом в галените установлено (в процептах): Pb — 80,54; Bi — 2,70; S — 14,57; Ag — 1,15; Tl — 0,02; Fe — 0,62; Zn — 0,09. Рентгеновское изучение вишневогорского галенита показало (табл. 9), что размер его ячейки уменьшен в сравнении

с эталонным; это также является характерной чертой висмутсодержащих галенитов (Leutwein и др., 1954).

Таблица 9 Межилоскостные расстояния галенита (в Å)

Галенит из кварцево- кальцитовых прожил- ков Вишневых гор ¹		Галенит (Михе- ев, 1957)		Галенит из кварцево- кальцитовых прожил- ков Вишневых гор ¹		Галенит (Михе- ев, 1957)	
1	d	1	ď		d	1	d:
9	3,38	9	3,442	8	1,321	10	1,324.
10	2,95	10	2,965	8	1,206	8	1,209
8	2,08	10	2,093	6	1,138	7	1,141
8	1,70	8	1,707		<u> </u>	1.4 *	<u> </u>
4	1,477	5	1,480	Параметр			
4	1,355	6	1,359	ячейки (a_0)	5,908 Å	-	5,924 Å

 $^{^{1}}$ Условия съемки: Си-излучение; Ni-фильтр; $D{=}57.3$ мм; $d{=}0.6$ мм.

При микроскопическом изучении в галените были встречены пластинчатые выделения минерала, близкого по минераграфическим константам к тетрадимиту (?).

выводы

- 1. В пределах экзоконтактового ореола пород вокруг массивов нефелиновых спенитов проявлены различные процессы минералообразования, генетически тесно связанные с интрузней миаскитов (фенитизация, пегматиты, альбитизация и карбонатизация).
- 2. В связи с постмагматическими процессами в фенитах появляются акцессорные минералы редких элементов, которые являются типоморфными для соответствующих процессов минералообразования в экзоконтакте миаскитов и не встречаются внутри последних,— чевкинит, катаплент, стронцианит, бастнезит, барилит, торит и другие. Характерная геохимическая черта этих парагенезисов преобладание срединих минералов редких земель, а также появление самостоятельных минералов стронция, бария, бериллия, тория, свинца, цинка и молибдена.
- 3. Особенности составов парагенетических ассоциаций акцессорных минералов Sоны фенитов объясняются спецификой состава фенитов как среды минералообразования, проявлением различных, многократно наложенных процессов и тенденций к выносу редких элементов минералообразующими растворами в экзоконтактовые фенитизированные породы.
- 4. Вокруг интрузива мнаскитов в течение длительного времени происходило многостадийное формирование гипогенного ореола выноса редких элементов, пространственно совпадающего с ореолом фенитизированных пород. На ранних стадиях происходил вынос в фениты циркония, ннобия и—частично—редких земель, а в последующие постмагматические стадии минералообразования, помимо минералов редких земель, образовались самостоятельные минералы стронция, бария, тория, свинца, цинка и молибдена.

- Авдонии В. Н., Исаков М. Г., Чесноков Б. В. Чевкинит из Вишневых гор на Урале. Тр. Горно-геол. ин-та Уральск. фил. Акад. наук СССР. 1959, сб. 4.
- Алимарий И.П. Химический состав чевкинита. Доклады Акад. наук СССР, 1935, 1, № 9.
- Белянкин Д.С. К интерпретации Ильменского петрографического комплекса, Геол. вести., 1926, 5, № 1—3.
- Бонштедт-Куплетская Э.М. Минералогия щелочных пегматитов Вишневых-гор. Изд. Акад. наук СССР, 1951.
- Бонштедт-Куплетская Э.М., Бурова Т.А. Ферсмит— новый кальциевый ннобат из пегматитов Вишневых гор (Средиий Урал). Доклады Акад. наук СССР, 1946, 52, № 1.
- Еськова Е. М., Мухитдинов Г. Н., Халезова Е. Б. Некоторые особенностираспределения акцессорных минералов и редких элементов в щелочных породах Вишиевых гор. Тр. Ии-та минер., геохим. и кристаллохим. редких элементов Акад. наук СССР, 1959, вып. 3.
- Жабин А.Г., Мухитдинов Г.Н. О гипогенном ореоле выноса редких земель вокруг Вишневогорско-Ильменогорской интрузии миаскитов (Южный Урал). Доклады Акад. наук СССР, 1959, 126, № 5.
- Заварицкий А.Н. Геологический и петрографический очерк Ильменского минералогического заповедника и его копей. Изд. Гл. упр. по заповедникам, 1939.
- Зильберминц В.А. Месторождение церита в Кыштымском округе (Урал). В ки.: Редкометальные минералы Кыштымской Дачи. Гостехиздат, 1930. (Тр. Ин-та прикл. минер., вып. 44).
- Кауфман Л.Э. Химический состав чевкинита. Изв. Росс. Акад. наук, сер. 6, 1924, 18
- Михеев В.И. Рентгенометрический определитель минералов. Госгеолтехиздат, 1957. Роненсон Б. М. Основные черты геологического строения северной части Вишнезых: гор. Изв. выш. учебных завед. (геология и разведка), 1959, № 1.
- Свяжин Н.В. Коренные месторождения редкоземельных и редкометальных минералов-Мочалина Лога. Тр. Свердловского горного ин-та, 1956, вып. 28.
- Халезова Е. Б. О бастнезите из Вишневых гор. Тр. Ин-та минер., геохим. и кристаллохим. редких элементов Акад. наук СССР, 1959, вып. 2.
- Чухров Ф.В. Коллонды в земной коре. Изд. Акад. наук СССР, 1955.
- Aminoff G. Om en association med Barylit och Hedyfan vid Långban. Geol. För., Förh.,
- Stockholm, 1923, 45, H. 2.

 Brögger W. C. Die Eruptivgesteine des Kristiangebietes, 4. Das Fengebiet in Telemark.
- Vid. Selsk. skrift., Math.-Nat. kl., 1921, N 91.
 Frondel G., Riska D., Frondel J.W. X-ray powder data for uranium and thorium minerals. U.S. Geol. Surv. Bull., 1956, N 1036-G.
- Gay P. An X-ray investigation of some rare-earth silicates: cerite, lessingite, britholite and stillwellite. Min. Mag., 1957, 31, N 237.

 Leutwein F., Herrman A.G. Kristallochemische und geochemische Untersuchungen
- über Vorkommen und Verteilung des Wismuts im Bleigfanz der kiesig-blendigen
- Formation des Freiberger Gangreviers. Geologie, 1954, 3, N 8.

 Palache C., Bauer L.H. On the occurrence of beryllium in the zinc deposits of Franklin, New Jersey. Amer. Min. 1930, 15, N 1.

 Smith I.C. Unit cell and space group of barylite. Amer. Min., 1956, v. 41, N 5-6.

 Yaberg F.R. On the structure of barylite. Gool. For Fork Stockbolm, 1941, 62, II.
- Ygberg E.R. On the structure of barylite. Geol. För. Förh., Stockholm, 1941, 63, H. 4.