Geologie. Von Dr. Ferdinand Löwl. (Teil XI von: Die Erdkunde. Eine Darstellung ihrer Wissensgebiete, ihrer Hilfswissenschaften und der Methode ihres Unterrichtes, herausgegeben von M. Klar.) Leipzig und Wien, F. Deuticke. VIII und 332 Seiten. 1906.

Das Buch des durch seine klare und plastische Darstellung rühmlich bekannten Verfassers ist zwar für Geographen geschrieben. Referent wüßte aber auch für Nichtgeographen, die sich über den gegenwärtigen Stand der Geologie unterrichten wollen, und zwar namentlich über die wichtigsten Fragen der allgemeinen Geologie, die sich auf dem Grenzgebiet gegen Geophysik einerseits, Petrographie andrerseits bewegen, keine bessere Einführung als das hier genannte Buch.

Ohne zu weit in Details zu gehen, gibt Kapitel I eine durchaus auf den neuesten Forschungsergebnissen basierende Darstellung der Petrographie, das II. einen Abriß der Stratigraphie. Das III. behandelt die Störungen der Erdrinde. Hier nimmt der Verfasser eine ganz selbständige Stellung ein, und die Abschnitte über Hebungen und Senkungen, Gebirgsbildung durch Faltung, Vulkanismus bringen die schwierigen Fragen der Tektonik in durchaus origineller Form. Das IV. Kapitel behandelt die Skulptur der Erdoberfläche (Wirkungen von Wasser, Atmosphäre, Gletscher, Sedimentbildung).

Neue Zeitschrift:

Eben erscheint das erste Heft der Zeitschrift für Gletscherkunde, Organ der Internationalen Gletschercommission, herausgegeben von Eduard Brückner, verlegt von Gebrüder Borntraeger in Berlin.

Die Zeitschrift wird Abhandlungen, kleinere Mitteilungen, Referate und eine vollständige Bibliographie der neuen Erscheinungen auf dem Gebiete der Gletscherkunde bringen. Sie ist international und gestattet die Anwendung der deutschen, englischen, französischen und italienischen Sprache. Bei der Herausgabe wirken die hervorragendsten Gletscherforscher aller Staaten mit. Sie will als Sammelstelle der reichen, zerstreuten Literatur über Gletscher wirken und zwischen dem Glacialgeologen und dem Gletscherforscher vermitteln.

XIII. Beiträge zur Petrographie des Böhmischen Mittelgebirges.

I. Hibschit, ein neues Kontaktmineral.

Von F. Cornu.

Vorgetragen in der Wiener Mineralogischen Gesellschaft am 3. April 1905.

(Mit 1 Textfigur.)

I. Hibschit vom Marienberge bei Aussig.

Gelegentlich der Untersuchung der enallogenen Einschlüsse des durch seinen Reichtum an Zeolithmineralen bekannten Phonoliths von Aussig in Böhmen, deren Ergebnis in einer Monographie des Marienberg-Steinberglakkolithen zur Mitteilung gelangen wird, ließen sich zweierlei Haupttypen der Enklaven deutlich auseinanderhalten, die beide dem gleichen Ursprungsmaterial, nämlich dem oberturonen Tonmergel aus der Stufe des Inoceramus Cuvieri ihre Entstehung verdanken. Die einen, die sich vorzüglich in den randlichen Partien des Lakkolithen vorfinden, sind charakterisiert durch das Auftreten von Wollastonitmikrolithen und einem tonerdereichen Glas als ihren wesentlichen Bestandteilen, die anderen, deren Heimat der zentrale Teil des Lakkolithen darstellt, setzen sich aus viel Kalkspat, Apophyllit, Natrolith und sehr zahlreichen winzigen Granaten, die von den ersterwähnten Mineralen umhüllt werden, zusammen. In seltenen Fällen können die zeolithischen Bestandteile auch ausbleiben und die Einschlüsse bestehen dann bloß aus grobkörnigem Calcit und Granat. Auf die Unterschiede im Chemismus dieser beiden Typen der Einschlüsse einzugehen wäre hier nicht am Platze, da eine genauere Beschreibung derselben ohnehin an anderer Stelle zur Mitteilung gelangen wird.

werden, den einen der beiden Bestandteile der Verwachsung zu isolieren, um ihn einer analytischen Bestimmung zuzuführen.

Eine direkte Untersuchung der farblosen Hülle, die am sichersten zum Ziele geführt hätte, erwies sich als undurchführbar, da eine auf die Verschiedenheit im spezifischen Gewicht beruhende Trennungsmethode nicht in Anwendung gebracht werden konnte infolge der allzu großen Reibung zwischen den winzigen Körnchen der Substanz und der angewendeten schweren Flüssigkeit.

Es wurde nun versucht, eine Methode ausfindig zu machen um genügendes Material des von der farblosen Hülle umgebenen Granats zur Analyse zu erhalten.

Ein auf das experimentell festgestellte Verhalten des Minerals gegenüber HCl basiertes Verfahren erwies sich als praktisch undurchführbar: die Substanz wurde in der Wärme mit verdünnter Salzsäure längere Zeit hindurch digeriert und es wurde der Versuch gemacht, die bei diesem Prozesse zurückbleibende Kieselsäure der Hülle mittelst Kalilauge zu entfernen. Es zeigt sich aber, daß der Vorgang nicht derart verläuft, daß hiedurch eine quantitative Trennung ermöglicht werden könnte. Bei Anwendung von konzentrierter Säure (rauchender HCl) ergab sich, daß auch der Melanit merklich angegriffen wurde.

Auch die von Lemberg angegebene Methode der Trennung von Silikaten, beruhend auf der verschiedenen Angreifbarkeit derselben durch Alkalien, zeigte sich in unserem Falle als nicht verwendbar.¹)

Nach einer Reihe langwieriger Versuche wurde schließlich ein Verfahren aufgefunden, das sich als anwendbar erwies.

Es wurden etwa 8 g des Minerals mehrere Stunden lang mit sehr verdünnter Salzsäure, die ungefähr alle 15 Minuten abgegossen und durch einen frischen Aufguß ersetzt wurde, behandelt. Hierauf wurde das Pulver mit destilliertem Wasser ausgewaschen und auf dem Wasserbade getrocknet. Die getrocknete Substanz wurde in einer Platinschale mit verdünnter Flußsäure behandelt, wobei die Kieselsäure momentan unter Aufzischen in Lösung ging und das Granatmineral nebst spärlichen Mengen der bei der Einwirkung von HF gebildeten Fluoride als ein stark glänzendes Pulver von olivbrauner Farbe zurückblieb.

Es stellte sich nun die Schwierigkeit ein, den Granat von den Nebenprodukten der Reaktion zu trennen. Der Versuch, mit Wasser zu schlemmen, zeigte sich praktisch unanwendbar, da ein zu großer Substanzverlust hiebei eintrat, dagegen gelang es mittelst der Methode der schweren Flüssigkeiten (unter Anwendung von Methylenjodid und Benzol), die in Gestalt von Häutchen abgeschiedenen Nebenprodukte quantitativ zu entfernen und ein hinreichend reines Analysenmaterial zu erhalten.

Die chemische Zusammensetzung des Granats, der u. d. M. auf seine Reinheit geprüft worden war, wurde wie folgt gefunden:

					A:	n a	ly	se	II.			
$\mathrm{Si}\mathrm{O}_2$												32.15
${ m Ti}{ m O}_2$												6.08
$\mathrm{Fe_2O_3}$	1)											20.99
$\text{Al}_2 \text{O}_3$												6.65
CaO												32.45
MgO												0.68
MnO												Spur
H_2O	(G]	lüh	vei	rlus	st)							0.95
												99.95

Belegzahlen zu der voranstehenden Analyse:

0.4946 g Substanz, Glühverlust = 0.0047 g

 $\mathrm{Si}\,\mathrm{O_2}+\mathrm{Ti}\,\mathrm{O_2}=0.1891\,g,\;\;\mathrm{Gesamte}\;\;\mathrm{Si}\,\mathrm{O_2}=0.1590\,g,\;\;\mathrm{Ti}\,\mathrm{O_2}=0.0301\,g$

 $Al_2O_3 + Fe_2O_3 + kleine SiO_2 = 13.52 g$

 $Fe_2O_3 = 0.1038 g$

 $Al_2O_3 = 0.0329 g$

CaO = 0.1605 g

 $Mg_2 P_2 O_7 = 0.0093 g$

daraus MgO = 0.00337 g

Aus der angeführten Analyse des olivgrünen Minerals, das den Kern der Hibschitkryställchen bildet, geht hervor, daß der Hauptsache nach ein stark titansäurehaltiger Kalkeisengranat vorliegt, wie solche in den Phonolithen des Kaiserstuhls gefunden werden. Knop bezeichnet diese Varietät als "Titanmelanit".

¹) J. Lemberg: Zur Kenntnis der Bildung und Umwandlung von Silikaten. Z. d. deutsch. geol. Ges. XXXV, pag. 557-618.

¹⁾ Eine FeO-Bestimmung konnte wegen der geringen Substanzmenge nicht vorgenommen werden.

Die Formel des Hibschit.

Die Berechnung der Formel des farblosen oktaedrischen Minerales geschah auf Grund der beiden getrennten Analysen, der Bauschanalyse der Verwachsung von Hibschit und Titanmelanit (I) und der Analyse des Granats (II).

Eine derartige indirekte Ermittlung der chemischen Zusammensetzung eines Körpers hat stets etwas Hypothetisches an sich.

Man wird kaum darauf rechnen dürfen, auf diesem Wege sehr genaue Zahlen für das Molekularverhältnis der einzelnen Bestandteile zu erlangen.

Immerhin ist die Übereinstimmung der berechneten und der von der Formel geforderten Zahlen in Anbetracht der außerordentlichen Schwierigkeiten, die überwunden werden mußten um ein einigermaßen brauchbares Analysenmaterial zu erhalten, und der Häufung der Fehlerquellen noch eine leidliche.

In der folgenden Tabelle werden die Zahlen angeführt, auf Grund derer die Formel des Minerals H_4 Ca Al_2 Si $_2$ O $_{10}$ aufgestellt wurde.

Vergleichen wir die Formeln der bis jetzt bekannten Silikate mit der für den Hibschit angenommenen, so zeigt sich eine Übereinstimmung mit der von Ransome und Palache¹) für den Lawsonit angenommenen Zusammensetzung und eine Analogie mit der Formel des Karpholiths H_4 Mn Al_2 Si $_2$ O $_{10}$, der mit dem Lawsonit isomorph sein dürfte.

Auf die Ähnlichkeiten und Unterschiede im physikalischen und chemischen Verhalten der beiden Körper wird weiter unten eingegangen.

Be- stand- teile	a Bausch- analyse (I)	b Melanit- analyse (II)	Anteil von Me-	d berechnet. Anteil von Hib- schit in I	e = d auf 100 be- rechnet	Mole- kular- zahlen	H ₄ Ca Al ₂ Si ₂ O ₁₀ ent- sprechende Werte
$ ule{H_2 O}$	8.59	0.95	0.38	8.24	13.70	0.76	11.45
SiO_2	37.701)	38.23	15.40	22.30	37.12	0.62	38.09
		(inkl.	1				!
E o	0.40	6.08% Ti O2)				!	1
Fe ₂ O ₃	ıı'ı	20.99	8.46^{2}				
$\mathrm{Al}_2\mathrm{O}_3$	22.38	6.65	2.67	19.71	32.82	0.35	32.69
Ca O	21:31	32.45	13.07	8.24	13.72	$_{0.31}$	17.77
MgO	1.86	0.68	0.27	1.59	2.64^{3}	0.91	_
Summe	100.30	99.95	40.25	60.08	100.00		100.00
			100	0.33			

Die folgende Tabelle gibt das Mittel der Analysen des Lawsonits von Ransome und Palache und die auf 100 berechnete Zusammensetzung des Hibschitanteiles der Verwachsung wieder

				Lawsonit	Hibschit (l)
SiO_2				37.71	37.12
$\mathrm{Al}_2\mathrm{O}_3$				32.43	32.82
CaO				18.15	13.72
MgO					2.64
$\mathrm{H_2O}$			٠	11.31	13.70
	St	ımn	пe	99.60	100.00

¹) Inklusive ${\rm Ti\,O_2}$, die nicht getrennt bestimmt wurde. Bei einer zweiten am gleichen Material vorgenommenen (unvollständigen) Analyse betrug der ${\rm Ti\,O_2}$ -Gehalt $1.76^{\circ}/_{0}$.

¹⁾ Über Lawsonit, ein neues gesteinsbildendes Mineral aus Kalifornien. Zeitschr. f. Kryst. XXV, 1896, S. 531—537. On Lawsonite, a new rock forming Mineral from the Tiburn Peninsula, Marin Co., California. Bull. of Dept. Geol. Univ. of Cal. Vol. I, No. 10, S. 301—312.

S. Franchi: Atti R. Accad, Torino 32, 1896, S. 182,

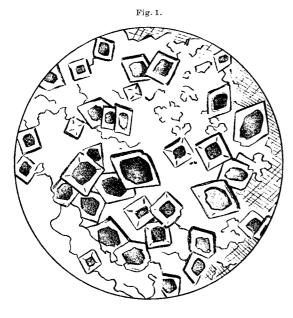
C. Viola: Zeitschr. f. Kryst. 28, 1897, S. 553.

A. Lacroix: Bull. Soc. min. de Fr. 20, 1897, S. 309.

W. T. Schaller und W. F. Hillebrand: Amer. Journ. 17, 1904, S. 195.

P. Termier: Bull. Soc. Min. de Fr. 27, 1904, S. 265.

Der Lawsonit ist besonders charakteristisch für dynamometamorphe Diabasund Gabbrogesteine.


 $^{^2)}$ Durch die qualitative Analyse der salzsauren Solution des Hibschit war nachgewiesen worden, daß Fe $_2\,{\rm O}_3$ nur in äußerst geringer Menge in dem Minerale enthalten sein kann; dies berechtigt zu der Verrechnung des gesamten Eisengehaltes auf den Titanmelanit.

³⁾ Das Mg vertritt das Ca. Es liegt daher vielleicht in dem Hibschit eine isomorphe Mischung der Verbindungen H₄ Ca Al₂ Si₂ O₁₀ und H₄ Mg Al₂ Si₂ O₁₀ vor.

Physiographie.

Morphologisches: Im Dünnschliff zeigt der Hibschit dreiseitig oder quadratisch gestaltete Umrisse, die dem Oktaeder entsprechen. Um die Gestalt der Kryställehen mit Sicherheit zu ermitteln, wurden diese durch Säure von dem umhüllenden Kalkspat getrennt und das erhaltene Pulver in Kanadabalsam eingebettet der Untersuchung unterworfen.

Beim Heben und Senken des Tubus kommen die einzelnen Krystallflächen nacheinander zum Einspiegeln und es konnte so

die Form des Oktaeders mit Bestimmtheit erkannt werden. Die Kryställehen sind fast stets modellscharf umrissen und Verzerrungen nur in geringem Grade unterworfen. Höchst charakteristisch für unser Mineral ist sein Auftreten in orientierter Verwachsung¹) mit Melanit. Rhombendodekaeder des Granats werden von den farblosen oktaedrischen Hibschithüllen umgeben. (Vgl. die Fig. 1.) In

manchen Fällen zeigen die Granaten keine krystallographische Begrenzung, dann folgt die farblose Hülle der Umgrenzung der Körner. Sehr schmale Hibschithüllen besitzen bisweilen auf die Form (110) zurückzuführende Umrisse. Manchmal lassen die Hibschitindividuen einen schaligen Aufbau erkennen; zwischen den einzelnen Schalen sind oft Melanitkörnehen eingeschaltet, so daß die zentralen Melanitindividuen im Dünnschliff von mehreren aus den Körnehen gebildeten Rahmen gleichsam eingefaßt erscheinen.

Die Größendimensionen der Kryställchen mögen durch folgende Angaben charakterisiert werden:

	Durchmesser	Durchmesser
	des gesamten	des Kerns
	Krystalls	von Melanit
I. 1)	70μ	25μ
	70μ	25μ
	80μ	25μ
II. ²)	85 μ.	$50~\mu$
	65μ	50μ
	70μ	50 µ.
III. 3)	35μ	30μ
ŕ	45μ	30μ
	40μ	30μ

Selbständige Kryställchen von Hibschit gehören zu den Seltenheiten; sie wurden nur in einem Falle in einem Einschluß, der fast völlig aus Apophyllit zusammengesetzt war, aufgefunden.

Physikalische Eigenschaften. Härte. Der Hibschit besitzt eine bedeutende Härte. Splitter des ihn einschließenden Kalkspates ritzen Glas mit Leichtigkeit. Eine genauere Härtebestimmung an dem gewöhnlichen Vorkommen der Verwachsung vorzunehmen erlaubt die Beschaffenheit des Materiales nicht, da z. B. beim Zerreiben des Staubes zwischen zwei Mineralplatten man nicht sicher sein kann, ob die auf der Platte entstandenen Ritzer durch das Mineral selbst oder den eingeschlossenen Granat hervorgerufen worden sind. Um diese Schwierigkeit zu umgehen wurde eine geringe Quantität

¹) Das Vorhandensein einer Isomorphie zwischen Granat und Hibschit ist dem Autor aus gewissen Gründen wahrscheinlich, kann aber bisher nicht als erwiesen gelten.

¹⁾ I. Analysenmaterial, Steinbruch an der Straße nach Doppitz.

²) II. Hibschit aus Einschlüssen aus dem Steinbruch an der Schönpriesner Straße.

³⁾ III. Hibschit aus Einschlüssen aus dem Steinbruch am Steinberg.

ganz reiner Hibschitkryställchen aus dem bereits erwähnten zu Apophyllit umgewandelten Mergeleinschluß isoliert. Die Trennung fand durch Behandlung des Einschlusses mit konzentrierter Essigsäure statt. 1)

Es zeigte sich, daß das auf diesem Wege erhaltene Material den Apatit deutlich ritzte, während der Orthoklas keine Spur einer merklichen mechanischen Inanspruchnahme zeigte.

Die Härte des Hibschit mag daher an 6 nach der Mohsschen Härteskala betragen.

Daß das Mineral von außerordentlich spröder Beschaffenheit sein muß, ergibt sich bei Betrachtung des in der Achatschale verriebenen Pulvers u. d. M. Während die eingeschlossenen Körner von Melanit beim Zerreiben des Pulvers zumeist gar keine Zertrümmerung erfahren haben und sich aus der umgebenden Hülle leicht herausschälen, ist die letztere in unzählige kleine Splitter zerfallen.

Dafür, daß sich die Kryställehen in einem Zustand hoher Spannung befinden, spricht außer dem noch zu schildernden optischen Verhalten auch das Auftreten radiär angeordneter Sprünge, was in den Hüllkrystallen mehrfach im Dünnschliffe bemerkt wurde. Andeutungen von Spaltrissen sind nie zu erkennen Das Mineral ist charakterisiert durch einen vollkommenen Mangel der Spaltbarkeit.

Spezifisches Gewicht. Zur Ermittlung des spez. Gewichtes wurde eine geringe Quantität des Minerales durch Behandlung eines bloß aus Apophyllit und granatfreien Hibschitkryställchen bestehenden Einschlusses mit konzentrierter Essigsäure dargestellt. Das Eigengewicht wurde nach der Methode der Indikatoren (unter Anwendung von, mittelst Benzol verdünntem Methylenjodid als schwerer Flüssigkeit) ermittelt. Als solche wurden Prehnit mit dem spez. Gew. 2·950 und Thulit mit dem spez. Gew. von 3·09 als geeignet befunden. Das spez. Gew. des Hibschits liegt zwischen dem der beiden genannten Minerale und steht dem des Thulits näher; es dürfte an 3·05 betragen.

Optische Eigenschaften. Bei gekreuzten Nicols erweisen sich die Mehrzahl der Kryställchen als isotrop; diese Beobachtung findet bei Einschaltung des empfindlichen Gipsblättehens ihre Bestätigung.

In einzelnen Fällen wurde eine deutliche Doppelbrechung beobachtet, die verbunden ist mit einem Zerfall der Oktaeder in acht Anwachskegel. Diese letztere Erscheinung ist völlig analog der sogenannten Oktaederstruktur gewisser Granaten.¹)

Die einzelnen Sektoren löschen vollkommen parallel zu den Begrenzungselementen der Oktaederdurchschnitte aus; die Schwingungsrichtung γ' verlauft parallel den Flächennormalen des Oktaeders.

An den anomalen Krystallen tritt der Schichtenbau durch das Auftreten von abwechselnden schwächer und stärker doppelbrechenden Schichten deutlich hervor.

Manche Individuen sind bloß an einzelnen Stellen doppelbrechend, im übrigen isotrop; öfters zeigt sich die Doppelbrechung nur in der unmittelbaren Umgebung der Granatkerne.

Die Stärke der Doppelbrechung ist bei verschiedenen Krystallen ungleich. Alle diese Erscheinungen sprechen dafür, daß die optischen Anomalien des Hibschits durch Spannungen hervorgerufen sind.

Die Lichtbrechung des Hibschit ist eine ziemlich hohe, wie sie sich sehon an dem ausgeprägten Relief des Minerals im Dünnschliff erwarten läßt.

Der Brechungsindex wurde mittelst der Immersionsmethode mit 1.67 gefunden. Als stark lichtbrechende Flüssigkeit wurde ein Gemisch von z-Monobromnaphthalin und Methylenjodid verwendet.

In Übereinstimmung mit dem beobachteten Brechungsexponenten steht der von dem Gladstoneschen Gesetz geforderte Brechungsindex des Körpers.

Diesen erhält man bekanntlich nach der Formel $\frac{n-1}{d}$ = const., in welcher n den zu berechnenden Brechungsquotienten, d die Dichte und die Konstante das spezifische Brechungsvermögen bedeutet. Dieses ergibt sich hinwiederum nach der Formel $\frac{\Sigma(r_1+r_2...r_n)}{\Sigma(m_1+m_2...m_n)}$ = c.

In dieser Formel steht r für das spezifische Brechungsvermögen, m für das Molekulargewicht der einzelnen Bestandteile des Körpers.

¹) Apophyllit ist durch Essigsäure nicht allzuschwer zersetzbar, besonders wenn diese in heißem Zustande angewendet wird. Zur Gewinnung größerer Mengen des Minerales (etwa zu Analysenzwecken) erwies sich die genannte Trennungsmethode infolge der äußerst geringen Ausbeute und durch ihre Langwierigkeit nicht anwendbar.

¹⁾ Vergl. C. Klein: Optische Studien am Granat. Nachr. d. kön. Ges. der Wiss. von Göttingen 1882, Nr. 16, pag. 457—564. — N. J. f. Min. 1883, I, pag. 87 bis 163.

Berechnet man nach dieser Gleichung das spezifische Brechungsvermögen des Hibschit (unter Anwendung der in der Physiographie von Rosenbusch aufgeführten Zahlen für die Refraktionsäquivalente), so ergibt sieh die Zahl 0.220.

Mittelst dieser Zahl findet sich unter Annahme der Dichte des Hibschit zu 3.05 der berechnete Brechungsindex zu 1.671.

Farbe. Im Dünnschliff ist der Hibschit farblos; in selteneren Fällen blaßgelb gefärbt. Dem freien Auge zeigt sich der reine Hibschit im isolierten Zustand als ein glitzerndes Pulver von graulichweißer Farbe, der Hibschit in Verwachsung mit Melanit als ein glänzender Staub von graugelber Färbung. Ein an den getrennten Kryställchen makroskopisch beobachteter halbmetallischer Oberflächenschiller dürfte auf eine äußerliche Zersetzung bei der Isolation zurückzuführen sein.

Chemisches Verhalten.

Sehr bezeichnend ist das Verhalten des Hibschit gegenüber der Einwirkung von Reagenzien, indem die Widerstandsfähigkeit des Minerales eine außerordentlich geringe ist. Durch diese leichte Angreifbarkeit ist ein gutes Unterscheidungsmerkmal gegenüber dem ziemlich widerstandsfähigen Kalktongranat, mit dem unser Mineral unter Umständen verwechselt werden könnte, gegeben.

Das Verhalten gegenüber HCl kann am besten durch die Angabe dreier (unvollständiger) Analysen charakterisiert werden, die unter der Voraussetzung, es läge ein Kalktongranat vor, an dem mittelst Salzsäure von dem umhüllenden Kalkspat befreiten Material angestellt worden sind.

Bei dem Material der Analyse III wurde die Trennung mittelst konzentrierterer Säure vorgenommen und die Substanz überdies einige Zeit auf dem Wasserbade in Berührung mit verdünnter Säure erwärmt.¹) Die Analysen IV und V waren an, mit verdünnter Säure in der Kälte getrennter Substanz ausgeführt worden.

Analyse III Analyse IV Analyse V $SiO_{2}(+TiO_{2})$ 75.95 48:58 50:01 $Al_2O_3 + Fe_2O_3$ 12.04 33.9333.33 CaO 4.229.339.30H₂O nicht bestimmt Summe. . . 92.21 91.84 92.64

Nachdem erkannt worden war, daß unser Mineral mit dem Kalktongranat nicht identisch sein könne, wurden weitere qualitative Versuche über das Verhalten gegenüber der Salzsäure angestellt, die ergeben haben, daß sich die Substanz bereits durch äußerst verdünnte Salzsäure in der Kälte zersetzen läßt.

In der erhaltenen Auflösung ist viel Tonerde und Kalk enthalten, die nach den gewöhnlichen Methoden der qualitativen Analyse leicht nachgewiesen werden können.

Die zurückbleibende Kieselsäure behält, wie u. d. M. erkannt wurde, die oktaedrische Gestalt des ursprünglichen Minerales bei.

Auch von anderen Säuren wird der Hibschit sehr stark angegriffen. Geprüft wurde das Verhalten gegenüber $\mathrm{H_2SO_4}$ und $\mathrm{HNO_3}$, die beide bereits in der Kälte ziemlich heftig einwirken und gleich der Salzsäure die basischen Bestandteile des Minerals in Lösung bringen.

Selbst Essigsäure vermochte, in der Wärme angewendet, das Mineral oberflächlich zu verändern, wie aus der Korrosion der Oktaederflächen, die sich nach Behandlung des Minerals mit der Säure u. d. M. zeigte, zuerst erschlossen wurde und wie auch die analytische Untersuchung ergab.¹) Nach dem Glühen ist das Mineral durch die

¹⁾ Eine an mit ziemlich konzentrierter Essigsäure in der Warme behandeltem Material vorgenommene Analyse (VI) ergab die Werte:

		A	n	a l	уs	e	VI			
Si O									. 40.0	Ç
${\rm\bf Ti} {\rm O}_2$. 1.79	į
$\mathrm{Fe_2O_3}$. 9.70	Ć
FeO.									. 0.60	ĺ
$\mathrm{Al}_2\mathrm{O}_3$. 25.8	1
CaO .							. •		. 13.4	1
Mg O									. 1.2	1
MnO.									. Spu	
$\mathrm{H_2O}$.									. 8.9	
					St	m	me		101.6	

¹) Das Erwärmen geschah zu dem Zwecke, um die der Substanz etwa noch anhaftenden Spuren von Eisenhydroxyd und Wad, deren Anwesenheit sich auf den Kluftflächen des Einschlusses gezeigt hatte, zu entfernen. Das Erhitzen auf dem Wasserbade wurde so lange fortgesetzt, bis sich beim Wechseln der Säure keine Gelbfärbung derselben mehr zeigte.

erwähnten Säuren etwas schwerer angreifbar, als im ungeglühten Zustande.

Beim Einwirkenlassen von Alkalien (NaOH, KOH) wird der Hibschit ebenfalls zersetzt. In der Auflösung ist Tonerde (neben Si $\rm O_2)$ nachweisbar.

In sehr feingepulvertem Zustand auf feuchtes Lackmuspapier gebracht, gibt das Analysenmaterial des Hibschit deutlich eine saure Reaktion. In geglühtem Zustand zeigt das Pulver alkalische Reaktion. 1) Behandelt man das Mineral mit Fuchsinlösung nach dem von Suida angegebenen Verfahren, so tritt eine starke Anfärbung ein. Bei Verwendung von Eosin zeigte sich diese Anfärbung nicht.

Nach den Versuchen von Suida 2) tritt eine Färbung durch basische Anilinfarbstoffe nur bei denjenigen Silikaten ein, die (OH) Gruppen enthalten; neutrale und krystallwasserhaltige Silikate werden im allgemeinen nicht angefärbt.

Vor der Lötrohrflamme zerknistert die Substanz; das Mineral scheint sehr schwer schmelzbar oder unschmelzbar zu sein. Kryställchen, die viertelstundenlang der Bunsenflamme ausgesetzt worden waren, zeigten sich u. d. M. nur trübe, ihre Umrisse ließen keinerlei Rundung durch Anschmelzung erkennen. Sogar die Erscheinung der optischen Anomalien war teilweise erhalten geblieben. Der Melanitkern war bei dem Erhitzen zu einem dunklen Glase geschmolzen.

Im Glaskölbchen geglüht, gibt der Hibschit reichlich Wasser ab 3); dieses Wasser zeigt, auf Lackmuspapier gebracht, neutrale Reaktion.

Berechnet man hieraus nach Abzug des Melanits die Molekularzahlen, so erhält man Werte, welche recht genau der Formel des Kaolins $(H_4\,Al_2\,Si_2\,O_9)$ entsprechen würden.

Bereits bei der Behandlung des Minerals mit verdünnter Essigsäure in der Wärme werden durch oxalsaures Ammon nachweisbare Mengen von Ca O extrahiert. Die Anfärbung des Minerales durch Fuchsinlösung spricht für die Anwesenheit des Wassers in Gestalt von Hydroxylgruppen. Ein weiterer Beweis hiefür wurde durch die Untersuchung des Wassergehaltes bei höherer Temperatur erbracht. $1\cdot1417\,g$ wurden mehrere Stunden hindurch in einem Platintiegel im Rammelsbergschen Kästchen bei 250° C erhalten. Es fand keine bedeutende Wasserabgabe statt; der Verlust wurde mit $0\cdot0027\,g$ gefunden, entsprechend $0\cdot23^{\circ}/_{\circ}$ $H_{2}O$.

Beim Erhitzen nimmt das graugelbe Pulver des Minerals zuerst eine schwarzgraue (bei ca. 250°), später bei starkem Glühen eine zimmtrote Färbung an.

In der Phosphorsalzperle gibt der Hibschit ein Kieselsäureskelett. Geglüht, mit Kobaltsolution befeuchtet und abermals erhitzt, zeigt er die Tonerdereaktion.

Pseudomorphose von Kalkspat nach Hibschit.

In einigen Einschlüssen von graugelber Farbe, die aus sehr grobkörnigem Kalkspat bestanden und außerdem nur noch Natrolith als Gemengteil erkennen ließen, wurden u. d. M. Pseudomorphosen von Kalkspat nach Hibschit beobachtet. Die Granatkerne dieser Pseudomorphosen erscheinen völlig unverändert, während die oktaedrischen Hibschithüllen sich gewöhnlich aus einem, seltener aus mehreren Calcitindividuen zusammengesetzt erweisen.

Die Pseudomorphosen sind in den großen Calcitindividuen, welche die Hauptmasse der Einschlüsse bilden, eingebettet.

Der Fundort der ausgezeichnetsten Beispiele dieses Vorkommens ist der Steinbruch in der Dulce.

Die Entstehung der Gebilde ist sicher noch in die eruptive oder eine der postvulkanischen Phasen zu versetzen und nicht auf Verwitterungsprozesse zurückzuführen. Hiefür spricht die große Frische der Einschlüsse.

Vergleich zwischen Lawsonit und Hibschit.

In der folgenden Tabelle werden die chemischen und physikalischen Eigenschaften der beiden Minerale Hibschit und Lawsonit (nach Ransome und Palache) miteinander verglichen.

¹) Die Ursachen der Erscheinung wurden in einer kleinen, bereits früher mitgeteilten Abhandlung erläutert. Min. Petr. Mitt., XXIV, pag. 417.

²) W. Suida: Über das Verhalten von Teerfarbstoffen gegenüber Stärke, Kieselsäure und Silikaten. Sitzungsber. d. kais. Ak. der Wiss., math.-nat. Kl., Bd. CXIII, Abt. IIb. Juli 1904.

³⁾ Bringt man Kalkspatfragmente, die reichlich Hibschit eingewachsen enthalten (am besten in einem Platintiegel), vor das Gebläsefeuer, so zerspringen sie unter einem sehr starken Knall.

	Hibschit	Lawsonit
Krystallform	tesseral	rhombisch
Spaltbarkeit	nicht wahrnehmbar	// (010), (001), (110)
Härte	6	>8
S.	3.05	3.084
optisches Verhalten a) Lichtbrechung (n)	n == 1·67	$\frac{\alpha + \beta + \gamma}{3} = 1.672$
b) optische Klasse	isotrop, zuweilen anomal	zweiachsig (2 Va=84°6′) positiv, Dispersion ρ>υ
c) Farbe	farblos	grauweiß, im Dünnschliff farblos, in dieken Schichten pleochroitisch α = blau, β = gelblich, γ = farblos
chem. Verhalt. a) gegen Säuren	leicht durch H ₂ SO ₄ , HNO ₃ , HCl, CH ₃ -COOH zersetzbar	von Säuren wenig an- greifbar
b) vor dem Lötrohr	unschmelzbar?	leicht zu blasigem Glase schmelzbar
	Wasserabgabe im Kölb- chen, Tonerdereaktion mit Kobaltsolution. Kie- selskelett in der Phos- phorsalzperle	Wasserabgabe im Kölb- chen, Tonerdereaktion mit Kobaltsolution, Kie- selskelett in der Phos- phorsalzperle (Cornu)
c) alkalische und saure Reaktion	das mit CH ₃ -COOH getrennte Material reagiert sauer. geglühtes Pulver reagiert mittelstark alkalisch	mittelstark alkalische Reaktion (Cornu)
d) Anfärbung durch Farb- lösung (Verfahren von Suida)	wird angefärbt	wird angefärbt (Cornu)

Im Falle sich durch weitere Untersuchungen, die ich, sobald einwandfreies reines Hibschitmaterial in meine Hände gelangt 1), ausführen werde, die Dimorphie zwischen Hibschit und Lawsonit bestätigen sollte, würde im Lawsonit die Modifikation mit dem kleineren Molekularvolum vorliegen, was mit dem Vorkommen des Minerals in krystallinen Schiefern übereinstimmt.

II. Hibschit von Aubenas im Vivarais.

Lacroix beschreibt in seiner ausgezeichneten Monographie der Einschlüsse der Eruptivgesteine einen Kalkeinschluß aus dem Basalte von Aubenas (Ardeche), der durch das Auftreten eines von ihm als Granat angesprochenen Minerales charakterisiert ist, dessen Identität mit unserem Hibschit ganz unzweifelhaft erscheint.²) Wir zitieren die betreffende Stelle aus Lacroix' Werk hier wörtlich: "Elle (der Einschluß) est criblée de dodécaèdres b' (110) de grenat ayant environ 0 mm 10 diamètre; absolument incolores en lames minces, ces cristaux ont tous un centre brun foncé, sans doute constitué par du mélanite."

Lacroix redet zwar von einer rhombendodekaedrischen Begrenzung des Granats, doch aus der beigegebenen Abbildung des betreffenden Dünnschliffes geht mit Sicherheit hervor, daß die Umrisse der farblosen, den dunklen Granat umgebenden Hülle nur auf das Oktaeder zurückgeführt werden können. Durch die liebenswürdige Vermittlung von Herrn Professor Becke erhielt ich von Herrn Lacroix, dem ich hier meinen innigsten Dank abstatte, einen Dünnschliff und ein Handstück des Vorkommens von Aubenas zugesandt.

Die sehon zu Ende des 18. Jahrhunderts bekannt gewordenen Einschlüsse³), die höchstens einen Durchmesser von einigen Zentimetern erreichen, finden sich in bedeutender Menge in einem an porphyrischen Ausscheidlingen von Pyroxen und Olivin reichen

¹) Es ist durchaus nicht unwahrscheinlich daß sich unter den Hibschitführenden Einschlüssen einmal einer findet, der sich frei erweist von Granat und keinen Apophyllit enthält. Selbständige Hibschitkrystalle sind bisher nur in Apophyllit eingebettet gefunden worden, von welchen dieselben zwecks einer quantitativen Analyse auf keine Weise getrennt werden konnten.

²) Les enclaves des roches volcaniques. Macon 1893, pag. 149.

³⁾ Zufolge Lacroix erwähnt sie schon der Graf Faujas de Saint-Fond in seinen beiden Werken: "Recherches sur les volcans êteints du Vivarais et du Velay, Paris 1778" und "Minéralogie des Volcans, Paris 1784".

Basaltgestein, dessen Grundmasse sich aus Augit und Labrador-mikrolithen zusammensetzt, vor.

Äußerlich zeigen sie eine recht große Übereinstimmung mit gewissen Varietäten der Hibschit-führenden Einschlüsse vom Marienberge; sie sind von ziemlich dichter Beschaffenheit und besitzen eine graugelbe Farbe.

Unter dem Mikroskope lassen sie eine sehr interessante Zonarstruktur erkennen, die besonders durch die verschiedenen Mengenverhältnisse der sich an der Zusammensetzung der Einschlüsse beteiligenden Kontaktminerale in den verschiedenen Zonen zum Ausdrucke gelangt: unmittelbar an der Grenze gegenüber dem Basalt erscheint eine schmale Zone von Pyroxenmikrolithen, hierauf folgt ein etwas breiteres Band, das durch das Auftreten von wenig grünem schwach pleochroitischen Pyroxen 1), zahlreichen größeren skelettartig gewachsenen Wollastonitindividuen und sehr spärlichem olivgrünen Granat mit Hibschithüllen charakterisiert ist, alle Gemengteile werden von faserigen Zeolithen (Thomsonit und Natrolith) umhüllt; in der folgenden Zone ist der eigentliche Entwicklungsbereich des Hibschit, der in kleinen Kryställehen recht reichlich vorhanden ist und von viel grünem Pyroxen und von Wollastonitmikrolithen begleitet wird. Der zentrale Teil des Einschlusses besteht aus einer Unzahl winziger Pyroxenmikrolithen, die den Dünnschliff bei schwacher Vergrößerung fast undurchsichtig erscheinen lassen und die von einer Menge von größeren Wollastonitnestern durchsetzt werden. Diese Nester sind in ihrem Inneren von zeolithischer Substanz erfüllt und erinnern lebhaft an die bereits von Hibsch erwähnten, von Wollastonit erfüllten Foraminiferengehäuse eines von mir näher studierten Einschlusses des Marienbergphonoliths. 2)

Ich halte es für wahrscheinlich, daß hier gleichfalls der Wollastonit an Stelle des Kalkspats von Petrefakten getreten ist. Gewisse regelmäßige Umrißformen der "Nester" sprechen auch hierfür. In der zentralen Partie des Einschlusses fehlt der Hibschit völlig; an seine Stelle treten von den Rhombendodekaederflächen begrenzte Granaten von beträchtlicher Größe.

Der Hibschit selbst zeigt in seiner Ausbildung eine vollkommene Übereinstimmung mit dem Vorkommen von Aussig. Olivengrüne Granaten von rhombendodekaedrischer Gestalt werden von den farblosen Hibschitoktaedern umhüllt. Die einzeln auftretenden oder zu kleinen Gruppen vereinigten Kryställchen besitzen in dem mir vorliegenden Dünnschliff eine minder scharfe Umgrenzung wie der Hibschit von Aussig und lassen öfters wie geflossen erscheinende Umrisse erkennen. Diese mangelhafte morphologische Ausbildung macht die Verwechslung der oktaedrischen Durchschnitte mit denen von (110) leicht erklärlich.

Auch die anomale Doppelbrechung und den Zerfall der Individuen in einzelne Sektoren finden wir bei dem französischen Vorkommen, wenngleich nicht in sehr ausgeprägter Weise, wieder. Es erscheint übrigens bemerkenswert, daß die Lage der Schwingungsrichtungen in den Sektoren sich hier anders verhält als bei dem Hibschit von Aussig; während bei dem letzteren die Schwingungsrichtung γ' normal zu den Umrissen der Oktaederdurchschnitte gelagert erscheint, schwingt in den Hibschithüllen des Granats von Aubenas der Strahl α' den Flächennormalen des Oktaeders.

Ähnliche Erscheinungen bezüglich des Wechsels der Lage der Schwingungsrichtungen hat man auch beim Granat beobachtet.

Zusammenfassung.

Es möge hier zum Schluß das Ergebnis unserer Beobachtungen am Hibschit zusammengefaßt werden.

Krystallform: tesseral. Es wurde bisher bloß die Gestalt des Oktaeders und Rhombendodekaeders angetroffen. Charakteristisch ist das Auftreten des Minerales als Umwachsungshülle von Melanit-Rhombendodekaedern, das an beiden Vorkommen des Minerales beobachtet wurde. Selbständige Krystalle sind äußerst selten. Die Größe der Hibschitkrystalle beträgt im Durchschnitt 70—80 μ .

Das Mineral ist für gewöhnlich isotrop, im Einklange mit der tesseralen äußeren Gestalt, zeigt jedoch in einigen Fällen anomale Doppelbrechung, hervorgerufen durch Spannung und eine Felderteilung analog der des oktaedrischen Granats. Der Brechungsindex beträgt an 167. Spaltbarkeit scheint zu fehlen. H=6, s=305.

Das Mineral ist äußerst spröde. Vor dem Lötrohre ist der Hibschit

¹⁾ Durch sehr starke Bisektrizendispersion ausgezeichnet.

²) Erläuterungen zu Blatt Aussig der geologischen Karte des Böhmischen Mittelgebirges. Diese Mitt., XXIII, pag. 332.

unschmelzbar. Von Säuren und Alkalien wird er leicht gelöst, etwas sehwerer im geglühten als im ungeglühten Zustand.

Beim Glühen tritt Wasserabgabe ein.

268

Die chemische Zusammensetzung entspricht der Formel $H_4Ca\,Al_2Si_2O_{10}.$

Es ist mir eine augenehme Pflicht, am Schluß dieser kleinen Arbeit meinen hochverehrten Lehrern Herrn Prof. F. Becke und Hofrat E. Ludwig für die im Laufe der Untersuchung mir zuteil gewordene Hilfe und Unterstützung auf das herzlichste zu danken.

XIV. Beiträge zur petrographischen Kenntnis einiger foyaitisch-theralithischer Gesteine aus Tasmanien.

Von Frederick Parnell Paul aus Sydney.

(Mit Tafel IV und 2 Textfiguren.)

Einleitung.

In der zweiten Auflage seiner mikroskopischen Physiographie der massigen Gesteine ¹) vertritt Rosenbusch bereits die Ansicht, daß es wünschenswert sei, die großen Familien der Eruptivgesteine in mehrere nach ihrem chemisch-mineralogischen Charakter und ihrer geologischen Verwandtschaft gesonderte Typen zu gliedern. Die verschiedensten geologischen und petrographischen Untersuchungen haben in der Folge dazu gedient, diese Anschauung zu unterstützen.

In der dritten Auflage des genannten Werkes ging Rosenbusch dazu über, vier große Reihen von Gesteinen aufzustellen, einerseits die granitodioritische und gabbro-peridotitische, andrerseits die foyaitische und theralithische Reihe. Dank der zahlreichen mikroskopischen und chemischen Untersuchungen sind die foyaitischen Gesteine, die bis vor zwanzig Jahren nur von einigen wenigen Lokalitäten bekannt waren, zu einer beträchtlichen Anzahl angewachsen, deren Vertreter heute allgemein über die Erde verbreitet erscheinen. Vorliegende Arbeit beschränkt sich auf die Untersuchung einer Anzahl von Gesteinen dieser Reihe, die Regierungsgeologe W. H. Twelvetrees in Tasmanien Herrn Geheimrat Rosenbusch

¹⁾ Rosenbusch, Physiographie, 3. Auflage, pag. 384.