Crystal structure and hydrogen bonding of magnesium ammonium sulfate hexahydrate*

By T. N. MARGULIS** and DAVID H. TEMPLETON

Department of Chemistry and Lawrence Radiation Laboratory University of California, Berkeley, California

With 3 figures

(Received July 9, 1962)

Auszug

Die Struktur von $Mg(NH_4)_2(SO_4)_2 \cdot 6H_2O$ wurde neu bestimmt mit dem Ziel, die Wasserstoffbindungen zu ermitteln. Die Kristalle sind monoklin; sie gehören der Raumgruppe $P2_1/a$ an, mit a = 9,324 Å, b = 12,597 Å, c = 6,211 Å, $\beta = 107,14^\circ$. Die von HOFMANN angegebenen Koordinaten für Mg, N und S wurden nahezu bestätigt, nicht jedoch die für die O-Atome. Die Struktur wurde, einschließlich der Lage der H-Atome aus dreidimensionalen Interferenzdaten mittels der Fourier-Methode und der Ausgleichsrechnung bestimmt. Das Mg-Atom ist von Wassermolekülen oktaedrisch umgeben, von denen jedes zwei Wasserstoffbindungen zu den O-Atomen der SO₄-Gruppen aufweist. Mit diesen Atomen sind auch drei H-Atome gleichweit entfernt ist (gegabelte Bindung). Die mittleren Atomabstände sind ohne Berücksichtigung der Wärmebewegung: Mg-O 2,07 Å, S-O 1,47 Å, O-O (Wasserstoffbindung) 2,77 Å, N-O (Wasserstoffbindung) 2,90 Å, N-O (gegabelte Bindung) 3,08 Å. Der mittlere, auf Wärmebewegung korrigierte Abstand S-O ist 1,49 Å.

Abstract

The structure of $Mg(NH_4)_2(SO_4)_2 \cdot 6H_2O$ has been redetermined in order to assign the hydrogen bonds. The crystals are monoclinic, space group $P2_1/a$, with a = 9.324, b = 12.597, c = 6.211 Å, and $\beta = 107.14^{\circ}$. The structure previously reported by HOFMANN has nearly correct coordinates for the Mg, S, and N atoms, but incorrect coordinates for the oxygen atoms. Three-dimensional x-ray diffraction data were taken with the General Electric goniostat. The structure, including hydrogen atoms, was determined by Fourier and least-squares methods. The magnesium atom is surrounded by an octahedron of water mole-

^{*} This work was done under the auspices of the U.S. Atomic Energy Commission.

^{**} Present Address: Department of Chemistry, Brandeis University, Waltham, Massachusetts.

cules, each forming two hydrogen bonds to oxygen atoms of the sulfate ions. Three hydrogen atoms of each ammonium ion are bonded to sulfate-oxygen atoms, but the fourth is equidistant from two sulfate-oxygen atoms with the geometry which previous authors have called a "bifurcated hydrogen bond". Average interatomic distances (uncorrected for thermal motion) are: Mg-O = 2.07 Å, S-O = 1.47 Å, O-O (hydrogen bonded) = 2.77 Å, N-O (hydrogen bonded) = 2.90 Å, and N-O (bifurcated bond) = 3.08 Å. The average S-O bond length after correction for thermal motion is 1.49 Å.

Introduction

Magnesium ammonium sulfate hexahydrate, $Mg(NH_4)_2(SO_4)_2 \cdot 6H_2O$, is one of a large number of isomorphous compounds¹ called TUTTON's salts². Due to the ease of crystallization these crystals have been studied extensively by paramagnetic resonance (BowERS and OWEN, 1955) and other techniques. The crystal structure has been reported by HOFMANN (1931) who studied a limited amount of x-ray diffraction data on a number of isomorphs. Upon examination of HOFMANN's structure we found it impossible to make a reasonable assignment of the hydrogen bonds. For this reason it was decided to attempt to refine the structure using accurate three-dimensional data. We selected $Mg(NH_4)_2(SO_4)_2 \cdot 6H_2O$ from among the many available isomorphous compounds since it contains relatively light atoms and therefore is well suited for the determination of the hydrogen atom positions.

We have found that HOFMANN's coordinates for the magnesium, nitrogen, and sulfur atoms are essentially correct, but that his oxygen positions (for which he claimed little accuracy) are quite poor. Our final structure for the oxygen atoms leads to a satisfactory assignment of hydrogen bonds which is confirmed by evidence of the hydrogen atom positions from the diffraction-intensity data. After these calculations were completed, we learned that MONTGOMERY and LINGA-FELTER (1962) had redetermined the structure of $Zn(NH_4)_2(SO_4)_2 \cdot 6H_2O$ with results in general agreement with ours³.

Experimental

A General Electric XRD-5 diffractometer equipped with singlecrystal orienter and scintillation counter was used for the collection of three-dimensional intensity data and for the measurement of the cell

¹ Among the divalent ions that can be substituted for Mg^{++} are Mn^{++} , Fe⁺⁺, Co⁺⁺, Ni⁺⁺, Cu⁺⁺, Zn⁺⁺, and Cd⁺⁺. The monovalent ions that can be substituted for NH_4^+ are K⁺, Rb⁺, Cs⁺, and Tl⁺. Many of the corresponding selenates are also known.

² The mineral $MgK_2(SO_4)_2 \cdot 6H_2O$ is known as schönite.

³ At this writing, the final refinement of the zinc salt has not been completed.

dimensions. All measurements were made on a crystal with dimensions of approximately $0.06 \times 0.06 \times 0.13$ mm. A total of 904 independent reflections, including about 120 too weak to be observed, were measured with MoKa x-rays ($\lambda = 0.7107$ Å). Weissenberg films were also taken in order to have a photographic record of the data. The measured intensities were converted to structure factors in the usual way on the IBM 7090 computer using a program written by Dr. ALLAN ZALKIN. The largest dimension of the crystal corresponds to $\mu R = 0.03$, and therefore absorption effects were neglected.

Unit cell and space group

The cell dimensions of the monoclinic unit cell at room temperature are: $a = 9.324 \pm .007$ Å, $b = 12.597 \pm .009$ Å, $c = 6.211 \pm .005$ Å, $\beta = 107.14^{\circ} \pm .02^{\circ}$. These values are in good agreement with those of HOFMANN which are⁴:

 $a = 9.30 \pm .02$ Å, $b = 12.60 \pm .025$ Å, $c = 6.21 \pm .015$ Å, $\beta = 107.10^{\circ}$. With two molecules in the unit cell the calculated density is 1.718 g/cm³ which agrees well with the observed value of 1.72 g/cm³ (LANGE, 1949). Systematic absences of reflections indicate a probable space group of $P2_1/a$ in agreement with HOFMANN's choice. The successful determination of the structure confirms this choice.

Structure determination

The space group requires that the magnesium atom be located on a center of symmetry which was chosen at $0\ 0\ 0$; $\frac{1}{2}\ \frac{1}{2}\ 0$. All other atoms are in general positions with coordinates $\pm\ (x\ y\ z;\ x+\frac{1}{2},\ -y+\frac{1}{2},\ z)$.

After several attempts to refine HOFMANN's structure by the method of least squares proved fruitless it was decided to attack the problem from the beginning. A two-dimensional Fourier synthesis was calculated using 16 hk0 reflections whose signs were determined by HOFMANN by the isomorphous replacement method. The first Fourier map showed the sulfur atom and magnesium atom with coordinates about the same as HOFMANN's. Two more cycles of two-dimensional Fourier refinement led to a trial structure which had the magnesium, sulfur, and nitrogen atoms with about the same x and y coordinates as HOFMANN's, but with quite different values for the coordinates of the oxygen atoms. From the two-dimensional structure and HOFMANN's

⁴ Converted from kX units to Ångströms.

Table 1. Observed and calculated structure factors each multiplied by 10

h k f F F	h k 4 F F	h k 4 F F	n k i F F	h k é F F
0 0 1 267 235	1 2 -7 779 777		2 6 2 149 167	
0 0 2 301 -312	1 2 -3 24 -20	1 11 0 255 255	2 6 3 229 222	3 3 -1 781 794
0 0 3 598 591	1 2 -4 98 -95		2 6 4 102 -102	3 3 -2 46 52
0 0 5 203 216	1 2 -6 145 137	1 11 3 174 171	2 6 -1 375 379	3 3 -4 220 201
0 0 6 0 -40	1 3 0 860 898	1 11 -1 151 149	2 6 -2 329 325	3 3 -5 290 284
0 1 2 248 -238	1 3 2 0 6	1 11 -2 120 -123	2 6 - 4 214 218	3 4 0 542 535
0 1 3 156 -164	1 3 3 296 299	1 12 0 122 118	2 6 -5 285 287	3 4 1 182 191
0 1 5 283 278	1 3 5 114 -115	1 12 2 52 -76	2 7 1 0 -4	3 4 3 68 72
0 1 6 36 -12	1 3 6 101 -95	1 12 -1 112 -103	2 7 2 83 -89	3 4 4 89 90
0 2 1 245 235	1 3 -2 138 -148	1 12 -3 170 158	27406	3 4 -1 205 -200
0 2 2 176 -165	1 3 -3 322 324	1 13 0 74 -60	2 7 -1 302 291	3 4 -2 167 165
0 2 4 108 102	1 3 -5 217 229	1 13 -1 0 -14	2 7 -3 112 -103	3 4 - 4 0 - 10
0 2 6 157 159	1 3 -6 0 -27	2 0 0 434 412 2 0 1 790 -814	2 7 -4 56 -65	3 4 -5 202 200
0 3 1 432 430	1 4 1 426 425	2 0 2 0 13	2 8 0 90 90	3 5 0 450 458
0 3 2 266 - 263	1 4 2 0 -16	2 0 3 111 103 2 0 4 322 320	2 8 1 228 - 218 2 8 2 165 163	3 5 1 507 509
0 3 4 118 118	1 4 4 370 375	2 0 5 110 -101	2 8 3 298 288	3 5 3 143 158
0 3 6 37 -58	1 4 -1 220 211	2 0 -11033 1045 2 0 -2 698 ~697	2 8 -1 225 217	3 5 4 49 59
0 4 0 946 -971	1 4 -2 276 274	2 0 -3 196 193	2 8 -2 42 51	3 5 -1 416 411
0 4 2 552 554	1 4 -4 0 23	2 0 -4 391 382	2 8 -4 68 -69	3 5 -2 324 327 3 5 -3 165 -156
0 4 3 46 30	1 4 -5 157 -163	2 0 -6 0 -16	2 8 -5 143 132	3 5 -4 174 168
0 4 5 83 83	1 5 0 106 -100	2 1 1 591 591	2 9 1 31 -35	3 5 - 5 207 206
0 4 6 93 94	1 5 1 139 141	2 1 2 201 184	2 9 2 317 - 323	3 6 0 108 110
0 5 2 382 -370	1 5 3 28 35	2 1 4 238 234	2 9 4 160 156	3 6 2 434 -443
0 5 3 338 339	1 5 4 55 57		2 9 - 1 0 - 31 2 9 - 2 320 - 314	3 6 3 0 34
0 5 5 255 -257	1 5 -1 49 -53	2 1 -2 193 177	2 9 -3 93 -98	3 6 -1 0 19
0 6 0 184 198 0 6 1 260 260	1 5 -2 302 -291	2 1 -3 410 398	2 9 -4 166 166	3 6 -2 98 -84
0 6 2 213 212	1 5 -4 265 265	2 1 -5 55 -68	2 10 0 32 -31	3 6 -4 131 119
0 6 3 164 168 0 6 4 230 225	1 5 -5 118 122	2 1 -6 186 -179 2 2 0 105 98	2 10 1 221 217 2 10 2 0 0	3 6 -5 0 -11
0 6 5 0 -17	1 6 0 109 -97	2 2 1 513 504	2 10 3 36 -29	3 7 1 508 509
0 7 2 237 244	1 6 1 285 285	2 2 2 88 - 82 2 2 3 180 192	2 10 -1 161 -154 2 10 -2 253 254	3 7 2 0 -1
0 7 3 117 117	1 6 3 467 -462	2 2 4 200 192	2 10 -3 159 151	3 7 4 137 141
0 7 5 0 -2	1 6 5 36 55	2 2 -1 0 -28	2 11 0 34 -16	3 7 -1 208 -210
0 8 0 156 157	1 6 -1 226 -224	2 2 - 2 88 8,5	2 11 1 0 2	3 7 -3 248 246
0 8 2 0 19	1 6 -3 103 94	2 2 -4 202 203	2 11 3 126 122	3 7 -4 46 59 3 7 -5 36 14
0 8 3 0 -2	1 6 -4 44 38	2 2 -5 106 -127	2 11 -1 59 65	3 8 0 156 -156
0 8 5 75 78	1 7 0 115 -114	2 3 0 205 -195	2 11 -3 36 -43	3 8 1 165 -169 3 8 2 183 174
0917364 0923133	1 7 1 288 289	2 3 1 537 528	2 12 0 71 72 2 12 1 141 152	3 8 3 69 -71
0 9 3 189 -191	1 7 3 255 -252	2 3 3 68 -76	2 12 2 53 49	3 8 -1 51 -41
0 10 0 0 -44	1 7 4 59 -63	2 3 4 217 224 2 3 5 0 -4	2 12 -1 0 22 2 12 -2 36 54	3 8 -2 177 180
0 10 1 304 309	1 7 -1 26 33	2 3 -1 276 -279	2 12 -3 162 156	3 8 -4 178 -186
0 10 2 288 284	1 7 -2 311 305	2 3 -2 236 -226 2 3 -3 568 561	2 13 0 100 -108	3 8 - 5 0 - 33
0 10 4 0 9	1 7 -4 131 -135	2 3 -4 175 169	3 1 0 226 229	3 9 1 0 33
0 11 2 0 4	1 8 0 19 -4	2 3 -6 0 4	3 1 2 56 56	3920-8
0 11 3 0 16 0 12 0 70 90	1 8 1 142 -139	2 4 0 193 190	3 1 3 229 230	3 9 -1 44 -43
0 12 1 79 54	1 8 3 108 92	2 4 2 382 384	3 1 5 126 109	3 9 -3 67 -87
0 12 2 97 93	1 8 4 276 -278	2 4 3 173 -170 2 4 4 32 -11	3 1 -1 456 -460 3 1 -2 30 -32	3 9 -4 124 125
1 1 0 112 -123	1 8 -2 0 24	2 4 5 161 157	3 1 -3 590 600	3 10 1 112 114
1 1 2 47 -43	1 8 -3 244 -247	2 4 -1 219 -211 2 4 -2 375 376	3 1 - 4 63 - 60	3 10 2 213 215
1 1 3 306 309	1 8 -5 153 145	2 4 -3 467 461	3 1 -6 61 60	3 10 -1 147 152
1 1 5 111 103	1 9 1 139 149	2 4 -5 105 107	3 2 1 178 189	3 10 -2 89 93 3 10 -3 0 23
1 1 6 244 233	1 9 2 165 166	2 4 -6 184 179	3 2 2 258 268	3 10 -4 37 50
1 1 -2 792 797	1 9 4 73 75	2 5 1 362 -351	3 2 4 170 -162	3 11 1 123 -124
1 1 -3 95 102 1 1 -4 168 -168	1 9 -1 384 397	2 5 2 236 233 2 5 3 0 -37	3 2 5 127 127 3 2 -1 547 -539	3 11 2 203 204
1 1 -5 101 -104	1 9 -3 81 77	2 5 4 332 - 329	3 2 -2 89 -47	3 11 -2 50 52
1 2 0 435 -423	1 9 ~4 79 76 1 10 0 38 6	2 5 5 52 46 2 5 -1 387 -370	3 2 -3 75 -83 3 2 -4 470 -469	3 11 -3 63 -72
1 2 1 418 -417	1 10 1 107 -102	2 5 -2 187 192	3 2 -5 32 12	3 12 1 53 -51
1 2 3 266 262	1 10 2 235 230	2 5 - 4 370 - 381	3 3 0 89 102	3 12 -1 0 2
1 2 4 42 48	1 10 4 54 -63	2 5 -5 117 111	3 3 1 243 -241	4 0 0 358 -367
1 2 6 0 14	1 10 -2 0 22	2 6 0 156 161	3 3 3 142 137	+ 0 1 0 -1 + 0 2 110 103
1 2 -1 577 553	1 10 -3 0 4	2 6 1 26 -11	3 3 4 0 -12	4 0 3 115 109

Table 1. (Continued)

N K A F F	h k f F F	h k € F F	.	
4 0 4 164 -161	4 8 -2 235 224	5 7 0 309 289	6 5 -5 170 -177	7 8 0 36 53
4 0 5 194 -193 4 0 -1 190 -174	4 8 -3 57 -58 4 8 -4 49 52	5717981 57207	6 6 0 101 -101 6 6 1 58 44	7815372 78-100
4 0 -2 128 -110 4 0 -3 0 5	4 8 -5 150 150 4 9 0 224 225	573012 57-18174	6 6 2 118 122 6 6 3 66 73	7 8 -2 140 -130 7 8 -3 0 0
4 0 -4 129 125 4 0 -5 281 275	4 9 1 233 -237 4'9 2 93 -83	5 7 -2 230 -220 5 7 -3 253 246	6 6 -1 100 -102 6 6 -2 297 292	7 9 0 85 85
4 0 -6 148 143	4 9 3 184 184	5 7 -4 237 231	6 6 -3 46 -20	7 9 -2 106 105
4 1 1 136 -142	4 9 -2 221 -227	5 8 0 65 -53	6 6 -5 117 116	8 0 0 159 155
4 1 3 0 18	4 9 -4 102 102	5 8 2 189 194	6 7 1 49 60	8 0 2 0 -8
4 1 5 170 -164	4 10 1 127 119	5 8 -1 112 -92	6 7 2 0 -12 6 7 -1 202 -203	8 0 -1 275 -270 8 0 -2 211 210
4 1 -1 105 -95 4 1 -2 103 -104	4 10 2 0 -10 4 10 -1 163 -153	5 8 -2 32 36 5 8 -3 233 233	6 7 -2 109 -108 6 7 -3 0 -27	8 0 -3 367 365 8 0 -4 0 4
4 1 -3 73 -81 4 1 -4 41 22	4 10 -2 91 -98 4 10 -3 227 205	5 8 -4 0 -6 5 8 -5 93 -103	6 7 -4 0 10 6 7 -5 0 13	8 0 -5 261 -252 8 1 0 278 -266
4 1 -5 238 235 4 1 -6 113 -101	4 10 -4 155 153 4 11 0 36 18	5 9 0 108 116 5 9 1 70 61	6 8 0 49 -31 6 8 1 212 222	8 1 1 112 95 8 1 2 196 199
4 2 0 647 644 4 2 1 277 283	4 11 1 64 -80 4 11 -1 0 6	5 9 2 111 105 5 9 -1 0 -15	6 8 2 113 120 6 8 -1 90 88	8 1 -1 57 57 8 1 -2 172 164
4 2 2 0 8 4 2 3 229 230	4 11 -2 162 -152 4 11 -3 65 -56	5 9 -2 76 82 5 9 -3 0 26	6 8 -2 420 412	8 1 -3 33 -6
4 2 4 0 20	4 12 0 130 133 4 12 -1 53 -48	5 9 -4 0 32	6 8 - 4 0 - 30	8 1 -5 83 -85
4 2 -1 273 -265	4 12 -2 0 -33	5 10 1 0 30	6 9 1 117 -103	8 2 1 0 17
4 2 -3 276 289	5 1 1 176 195	5 10 -2 62 67	6 9 -2 0 -6	8 2 -1 33 45
4 2 -5 103 98	5 1 3 124 113	5 11 0 74 -80	6 9 -4 0 21	8 2 -2 33 42 8 2 -3 102 89
4 2 -6 0 -17	5 1 -1 275 275	5 11 -2 245 240	6 10 0 240 230 6 10 -1 181 179	8 2 -4 50 50 8 2 -5 37 56
4 3 1 332 338 4 3 2 264 -262	5 1 -2 57 -57 5 1 -3 205 214	6 0 0 49 38 6 0 1 477 482	6 10 -2 0 -42 6 10 -3 0 12	8 3 0 147 -148 8 3 1 62 73
4 3 3 44 40 4 3 4 49 58	5 1 -4 409 405 5 1 -5 94 72	6 0 2 283 281 6 0 3 0 -24	7 1 0 391 396 7 1 1 161 -157	832175168 83-108
4 3 -1 287 -272 4 3 -2 0 -11	5 1 -6 63 60 5 2 0 58 -51	6 0 -1 83 85 6 0 -2 216 216	7 1 2 35 -55 7 1 3 207 206	8 3 -2 255 258 8 3 -3 91 86
4 3 -3 382 -371 4 3 -4 0 10	5 2 1 305 319 5 2 2 132 -130	6 0 -3 230 229 6 0 -4 63 -59	7 1 -1 388 373 7 1 -2 0 -18	8 3 -4 80 -68 8 3 -5 0 25
4 3 -5 46 -35 4 3 -6 36 -53	5 2 3 434 -428 5 2 4 97 88	6 0 -5 113 -108 6 0 -6 279 268	7 1 -3 31 24 7 1 -4 110 101	8 4 0 50 62 8 4 1 0 -43
4 4 0 448 457 4 4 1 280 283	5 2 -1 145 -149 5 2 -2 148 -138	6 1 0 239 -205 6 1 1 385 -393	7 1 -5 113 119 7 2 0 305 305	8 4 -1 280 278
4 4 2 29 -27	5 2 -3 28 12	6 1 2 32 28	7 2 1 273 276	8 4 -3 192 -201
4 4 4 315 311	5 2 -5 294 -298	6 1 -1 162 155	7 2 3 0 -21	8 5 0 95 90 8 5 1 53 56
4 4 -2 36 -14	5 3 0 387 -377	6 1 -3 0 4	7 2 -2 111 117	8 5 -1 0 7
4 4 -4 86 86	5 3 2 193 188	6 1 -5 124 124	7 2 -4 226 235	8 5 -3 0 -1
4 4 -6 37 49	53408	6 2 0 314 320	7 3 0 45 42	8 6 0 142 142
4 5 1 274 271	5 3 -2 321 321	6 2 2 113 123	7 3 2 118 115	8 6 -1 36 104
4 5 3 232 -225	5 3 -4 175 -180	6 2 -1 176 167	7 3 -2 188 189	8 6 -3 172 169
4 5 -1 258 -265	5 3 -6 123 114	6 2 -2 40 -41 6 2 -3 280 285	7 3 - 3 269 264 7 3 - 4 90 - 99	8 7 0 0 19
4 5 -2 238 243 4 5 -3 241 233	5 4 0 55 30 5 4 1 152 -158	6 2 -4 183 185 6 2 -5 84 81	7 3 -5 63 -70 7 4 0 86 -80	8 7 -1 37 -48
4 5 -4 246 -249 4 5 -5 138 -147	5 4 2 137 -147 5 4 3 142 -153	62-66571 6300-18	7 4 1 34 45 7 4 2 0 -23	8 7 -3 75 -79 8 8 -1 38 -46
4 5 -6 125 115 4 6 0 246 -240	544024 54-1136119	6 3 1 236 -239 6 3 2 0 -14	7 4 -1 132 -121 7 4 -2 71 65	8 8 -2 0 39 9 1 0 104 -77
4 6 1 137 -118 4 6 2 208 190	5 4 -2 157 -156 5 4 -3 29 -36	6 3 3 130 121 6 3 -1 0 0	7 4 -3 33 -18 7 4 -4 109 -113	9 1 -1 134 123 9 1 -2 0 27
4 6 3 68 63 4 6 4 0 32	5 4 -4 44 -45 5 4 -5 109 114	6 3 -2 330 335 6 3 -3 0 62	7 4 -5 52 45 7 5 0 111 -132	9 1 -3 95 -94 9 1 -4 37 33
4 6 -1 410 417 4 6 -2 361 356	5 4 -6 113 108 5 5 0 0 30	6 3 -4 205 -205 6 3 -5 60 66	7 5 1 121 123 7 5 2 128 123	9 2 0 222 208 9 2 -1 0 0
4 6 -3 241 -250	5 5 1 42 37 5 5 2 236 238	6 3 -6 85 82	7 5 -1 118 -125	9 2 -2 227 -234
4 6 -5 137 140	5 5 3 78 78	6 4 1 95 -110 6 4 2 127 -118	7 5 -3 179 168	9 2 -4 135 132 9 3 0 248 244
4 7 1 68 77	5 5 -1 75 76	6 4 3 190 169	7 5 -5 106 97	9 3 -1 51 24
4 7 3 35 27	5 5 -3 151 158	6 4 -2 164 -177	7 6 1 0 -36	9 3 -3 252 258
4 7 -1 109 110	5 5 -5 61 71	6 4 -4 305 313	7 6 -1 0 -2	9 4 0 0 -18
4 7 -3 154 155	5 6 1 31 -43	6 5 0 88 95	7 6 -3 170 -164	9 4 -2 0 -30
4 7 -5 63 47	5 6 3 260 257	6 5 2 0 -10	7 0 -4 177 -171	9 5 -1 37 45
• 8 U 217 ~228 4 8 1 32 18	5 6 -2 67 60	6 5 -1 205 -197	7 7 -1 294 284	y 5 -2 53 51 9 5 -3 126 114
4 8 2 338 336 4 8 3 63 58	5 6 -3 125 -121 5 6 -4 94 91	6 5 -2 30 -37 6 5 -3 331 327	7 7 -2 0 16	10 0 +2 179 -173 10 1 -2 76 81
4 8 -1 411 419	5 6 -5 108 108	6 5 -4 33 -30	7 7 -4 279 274	

values for the z coordinates of the sulfur and nitrogen atoms, it was possible to deduce z coordinates for the oxygen atoms which subsequently proved to be nearly correct.

Refinement of the structure

The trial structure was refined by full-matrix least-squares calculations on the IBM 7090 computer using a program written by GANT-ZEL, SPARKS, and TRUEBLOOD. Atomic scattering factors obtained from IBERS (1962) were used for neutral nitrogen, oxygen, sulfur, and

Atom	x	y	z	$\sigma(x)$	$\sigma(y)$	$\sigma(z)$
Mg ₁	0	0	0		_	
S.	.0953	3605	.2575	.0002	.0001	.0002
0,	0469	4174	.2116	.0005	.0004	.0008
04	.2185	4328	.3718	.0004	.0003	.0007
0,	.1185	3211	.0456	.0005	.0003	.0007
06	.0951	2702	.4089	.0005	.0003	.0007
0,	.1603	1094	0307	.0005	.0004	.0007
08	.1685	.1042	.1656	.0005	.0004	.0008
0,	0017	0687	.2986	.0005	.0003	.0007
N ₁₀	.1321	.3509	.3611	.0007	.0005	.0011
H ₁₁	.21	.100	.30	.01	.008	.02
H_{12}	.02	131	.32	.01	.008	.02
H_{13}	.26	090	.05	.01	.007	.01
H_{14}	.06	.333	.21	.01	.007	.02
H_{15}	.15	178	01	.01	.008	.01
H_{16}	.21	.305	.40	.01	.008	.01
H_{17}	.17	.422	.36	.01	.008	.01
H_{18}	.40		.31	.01	.007	.01
H_{19}	.23	.120	.10	.01	.008	.02
H_{20}	.09	.346	.45	.01	.008	.02

Table 2. Atomic coordinates and their standard deviations

hydrogen, and divalent magnesium. All reflections, including those too weak to be observed, were given equal weighting factors. The function minimized was $\Sigma (|F_o| - |F_c|)^2 / \Sigma |F_o|^2$. After about four cycles of refinement of the sulfur, nitrogen, and oxygen coordinates and isotropic temperature factors, the conventional R factor was 0.088.

A difference Fourier synthesis calculated at this point indicated that a refinement using anisotropic temperature factors would be necessary in order to locate the hydrogen atoms. Four more cycles of least squares using individual anisotropic-temperature factors in the

			Table 3.	An isotropic	s temperat	wre parame	sters and ti	heir standa	rd deviatic	suc		
	β_{11}	β_{22}	β_{33}	$2\beta_{12}$	$2\beta_{13}$	$2\beta_{23}$	$\sigma(\beta_{11})$	$\sigma(\beta_{22})$	$\sigma(eta_{33})$	$\sigma(2\beta_{12})$	$\sigma(2\beta_{13})$	$\sigma(2\beta_{23})$
$\mathrm{Mg_1}$	0.0056	.0032	.0129	-0.0008	.0043	0002	.0004	.0002	.0008	.0004	.0008	0000.
\mathbf{S}_{2}	.0056	.0036	.0160	7000.	.0056	6000.	.0002	.0001	.0005	.0002	.0005	.0003
°.	.0077	.0071	.033	0015	.005	.005	0000.	.0004	.002	.0008	.002	.001
04	.0071	.0040	.022	.0037	.006	.003	.0006	.0003	.001	000.	.001	.001
05	.0105	.0043	.016	.0018	.010	.003	0000.	.0003	.001	.0007	.001	.001
°,	.0130	.0043	.020	.0024	.010	002	.0007	.0003	.001	0008	.002	.001
o,	.0059	.0035	.024	.0011	.006	.002	0000.	.0003	.001	.0007	.001	.001
°,	.0079	.0049	.016	0031	.004	002	0000.	.0003	.001	7000.	.001	.001
°°	.0080	.0034	.017	.0006	.008	.002	9000.	.0003	.001	0007	.001	.001
N_{10}	.0100	.0054	.022	9000	.012	001	6000.	.0005	.002	.001	.002	.002

 $\text{form} \ \ \exp{[\,-\,(\beta_{11}h^2 \ + \ \beta_{22}k^2 \ + \ \beta_{33}l^2 \,}$ $+ 2\beta_{12}hk + 2\beta_{13}hl + 2\beta_{23}kl)$] improved R slightly to a value of 0.075. A difference Fourier calculated after the anisotropy had been accounted for had its eight largest peaks in reasonable positions for hydrogen atoms. Peaks corresponding to the two other hydrogen atoms were found but were not as large as the other eight peaks. A possible reason for this is discussed below.

The structure, including all ten hydrogen atoms (with isotropic temperature parameters arbitrarily fixed at 4.0 Å^2), was then refined to a final R factor of 0.061. The final R factor of the non-zero reflections is about 0.04. The observed and calculated structure factors are listed in Table 1. The final atomic coordinates and their standard deviations are given in Table 2, and the final anisotropic temperature parameters are in Table 3.

Results and discussion

Accuracy

The standard deviations given in the tables are calculated by the least-squares method with the assumption of random errors in the intensity data. They are probably reasonable for the atomic coordinates and for bond distances and angles. The temperature parameters are subject to many non-random errors and should therefore be looked upon with caution. For a discussion of the uncertainties in

.

anisotropic temperature parameters see LONSDALE and MILLEDGE (1961).

Description of the structure

Interatomic distances and angles are listed in Tables 4 and 5. All water molecules are coordinated to magnesium ions, six to each one. The crystal structure (Fig. 1) consists of a packing of these octahedrally hydrated magnesium ions and unhydrated ammonium ions among the

Table 4. Interatomic distances* and their standard deviations in Å

 SO_4^{--} tetrahedron:

SO ₃	1.459 ± 0.005	$O_3 - O_5$	2.419 ± 0.006
SO4	1.474 ± 0.005	$O_3 - O_6$	2.396 ± 0.007
S-05	1.481 ± 0.005	$O_4 - O_5$	2.417 ± 0.006
S-O ₆	1.476 ± 0.005	$O_4 - O_6$	2.393 ± 0.006
$O_3 - O_4$	$\textbf{2.387} \pm 0.006$	$O_5 - O_6$	$\textbf{2.417} \pm \textbf{0.006}$
$Mg(H_2O)_6^{++}$ octahedro	n:		
Mg-O ₇	2.083 ± 0.005	$O_7 - O_9$	2.924 ± 0.007
Mg-O ₈	2.073 ± 0.005	O ₇ -O ₉ ′	2.922 ± 0.007
Mg-O ₉	2.051 ± 0.005	O ₈ -O ₉	2.953 ± 0.007
0708	2.945 ± 0.007	O ₈ –O ₉ ′	2.879 ± 0.007
$O_7 - O_8$	2.932 ± 0.007		
H ₂ O hydrogen bonding	g		
0 ₇ -0 ₃	2.722 ± 0.006	O_8 — H_{19}	0.8 ± 0.1
0,O ₅	2.756 ± 0.006	O_9-H_{12}	0.8 ± 0.1
$O_8 - O_4$	2.792 ± 0.006	O_9-H_{18}	0.9 ± 0.1
$O_8 - O_5$	2.844 ± 0.006	$O_3 - H_{13}$	1.8 ± 0.1
$O_9 - O_4$	2.777 ± 0.006	$O_4 - H_{11}$	2.0 ± 0.1
$O_9 - O_6$	2.713 ± 0.006	$O_5 - H_{15}$	1.9 ± 0.1
$0_{7} - H_{13}$	1.0 ± 0.1	O_6-H_{12}	1.9 ± 0.1
$O_7 - H_{15}$	0.9 ± 0.1	$O_4 - H_{18}$	1.9 ± 0.1
$O_8 - H_{11}$	0.8 ± 0.1	O_5-H_{19}	2.0 ± 0.1
$\mathbf{NH_4^+}$ hydrogen bondi	ng		
	a (a a a a a a a b	N7 TT	10 101

N-O ₃	3.102 ± 0.009	$N-H_{17}$	1.0 ± 0.1
N-O ₄	2.837 ± 0.008	$N-H_{20}$	0.8 ± 0.1
$N-O_5$	2.916 ± 0.008	$O_5 - H_{14}$	2.0 \pm 0.1
N-O ₆	2.949 ± 0.008	$O_6 - H_{16}$	2.1 \pm 0.1
N-O ₆ '	3.057 ± 0.009	$O_4 - H_{17}$	1.9 ± 0.1
N-H14	1.0 ± 0.1	$O_3 - H_{20}$	$2.4 ext{ } \pm ext{ } 0.1 ext{ }$
N-H ₁₆	0.9 ± 0.1	O_6-H_{20}	2.3 ± 0.1

* Uncorrected for thermal motion.

tetrahedral sulfate ions. HOFMANN found these same features of the structure except that he had a different orientation for both the sulfate tetrahedron and the water octahedron. The orientations which we found permit satisfactory hydrogen bonding which is confirmed by the locations found for the hydrogen atoms.

Table 5. Bond angles in degrees*

$O_3 - S - O_4$	108.9 $O_4 - S - O_5$	109.7
$O_3 - S - O_5$	$110.7 O_4 - S - O_6$	108.4
O_3 S O_6	109.4 O ₅ -S-O ₆	109.6

O-Mg-O Angles

O-S-O Angles

O ₇ —Mg—O ₈	90.3	O ₈ -Mg-O ₉	91.5
O ₇ MgO ₉	90.0		

H₂O Hydrogen bond angles

$O_3 - O_7 - O_5$	101.2	$O_3 - O_7 - H_{13}$	8
$O_4 - O_8 - O_5$	115.3	$O_{5} - O_{7} - H_{15}$	2
$O_4 - O_9 - O_6$	102.9	$O_4 - O_8 - H_{11}$	7
$H_{13}-O_{7}-H_{15}$	110	$O_5 - O_8 - H_{19}$	5
$H_{11} - O_8 - H_{19}$	111	$O_4 - O_9 - H_{18}$	6
$H_{12}-O_9-H_{13}$	106	$O_6 - O_9 - H_{12}$	6

NH₄⁺ Hydrogen bond angles

$O_3 - N - O_4$	82.1	$O_6 - N - O_6'$	102.7
O_3 -N- O_5	115.7	H_{17} — N — O_4	6
O ₃ -N-O ₆	97.3	$H_{14} - N - O_5$	12
$O_3 - N - O_6'$	45.8	H_{16} -N-O ₆	14
O ₄ -N-O ₅	107.1	H_{20} -N- O_3	27
O_4 -N- O_6	106.7	H_{20} -N-O ₆ '	19
$O_4 - N - O_6'$	122.6	$S-H_{20}-N$	171
O ₅ -N-O ₆	135.2	$O_3 - H_{20} - O_6'$	60
O ₅ -N-O ₆ '	82.7		

* Standard deviations are 0.3° for bond angles not involving hydrogen atoms. For bond angles involving hydrogen, the standard deviations are 10° or less.

The sulfate ion

The shape of the sulfate ion is close to that of a regular tetrahedron. The O-S-O angles range from 108.4° to 110.7° with standard deviations of 0.3° . The S-O distances, before correction for thermal

352

motion, range from 1.459 to 1.481 Å with standard deviations of 0.005 Å; the average is 1.473 Å.

The thermal motion of the oxygen atoms exceeds that of the sulfur atom. As a result, the time average of an S-O distance is larger than the distance between the average positions which is determined by the x-ray method. The extent of this effect depends on the details of the motion which was analyzed by the program of

Fig. 1. Crystal structure of $Mg(NH_4)_2(SO_4)_2 \cdot 6H_2O$: The numbers at the sulfur and nitrogen atoms indicate their z coordinates. The numbers beside some of the oxygen atoms correspond to the numbering of Table 2.

BUSING and LEVY (1959). The rms amplitudes in the principal vibration directions calculated from the anisotropic thermal parameters are listed in Table 6. The sulfur atom moves almost isotropically with the amplitude 0.16 Å. The amplitudes of the oxygen atoms in the directions of minimum motion are very similar to this value. The directions of this minimum motion are at angles 21°, 10°, 17°, and 11° to the corresponding S-O bonds for atoms O_3 to O_6 . The larger amplitudes of these oxygen atoms are approximately perpendicular to the S-O bonds. Thus the thermal parameters are consistent with the model of a rigid sulfate ion which vibrates with some angular oscillation (libration). For this model of the motion, the correction to the distance is calculated with the two atoms moving in phase (oxygen "riding on" sulfur). The results (Table 7) show a spread in the four values of only 0.010 Å, compared with a spread of 0.022 Å in the uncorrected distances.

Atom	u_1	$\overline{u_2}$	<i>u</i> ₃
Mg1	.15 Å	.15 Å	.16 Å
S_2	.15	.17	.17
O ₃	.17	.22	.27
O ₄	.14	.20	.21
O ₅	.16	.18	.21
O_6	.17	.20	.24
07	.15	.17	.21
O_8	.15	.18	.21
0,	.16	.17	.19
N ₁₀	.18	.20	.21

Table 6. Principal rms amplitudes

 Table 7. Comparison of sulfur-oxygen bond lengths with and without thermal

 motion corrections*

Atoms	Uncorrected bond length	Bond length with in-phase correction	Bond length with random-phase correction
S-O ₃	1.459 Å	1.481 Å	$1.518~{ m \AA}$
S-O4	1.474	1.482	1.520
S-O ₅	1.481	1.490	1.525
S-O ₆	1.476	1.491	1.525

* Standard deviations are all 0.005 Å.

The correction assuming in-phase motion is the smallest that can be applied. Any out-of-phase motion transverse to the bond increases the effect. With random phases, one calculates distances of about 1.52 Å (Table 7) for the S–O bonds. For a tightly bound ion such as sulfate it seems likely that the motion will be largely in-phase, and therefore we report 1.49 Å as the most likely interpretation of our results for the S–O bond distance in sulfate.

The hydrated magnesium ion

The Mg–O distances range from 2.051 to 2.083 Å, each \pm 0.005 Å (Table 8), before correction for thermal motion. The motion of the magnesium atom is practically isotropic with an amplitude equal to

the minimum amplitude for the water molecules. The water molecules have their largest motion approximately transverse to the bonds to magnesium, but the motion is not as anisotropic as that of the sulfate oxygen atoms. The directions of minimum motion are at angles 26° , 18° , and 18° to the corresponding Mg–O bonds. These parameters are approximately consistent with rigid-molecule libration. The ampli-

 Table 8. Comparison of magnesium-oxygen interatomic distances with and without thermal motion corrections*

Atoms	Uncorrected distance	Distance with in-phase correction	Distance with random-phase correction
Mg-O ₇	2.083 Å	2.089 Å	2.110 Å
Mg-O ₈	2.073	2.080	2.104
Mg-O ₉	2.051	2.055	2.078

* Standard deviations are all 0.005 Å.

tude of this libration is less than in the case of the sulfate ion. The correction of the Mg-O distance for thermal motion has been made with both in-phase and random-phase assumptions (Table 8). As in the case of the sulfate ion, we consider the in-phase correction to be the best interpretation of the data, but we have less basis for this choice here than for the sulfate.

The octahedron of water molecules is slightly distorted from regular. The Mg–O distances differ by up to 0.03 Å, independent of how the thermal correction is applied, while each has a standard deviation of 0.005 Å. One of the O–Mg–O angles is 91.5 \pm 0.3°. We attribute these small distortions to the lack of symmetry of the neighbors to which the water molecules are hydrogen bonded.

Hydrogen bonding

One can assign each hydrogen atom of the water molecules to a hydrogen bond on the basis that each near oxygen neighbor of the water molecule, unless it is coordinated to the same magnesium ion, is hydrogen bonded. This procedure gives a configuration (Fig. 2) in which the hydrogen bonds all involve oxygen atoms of neighboring sulfate ions. This configuration is confirmed by the hydrogen positions which were calculated in the refinement of the structure; the O-Hvectors make angles of 2° to 8° with the corresponding O-O vectors. Furthermore, the H-O-H angles and O-H distances are reasonable for water molecules when the experimental accuracy is considered. The O—H bonds of the water molecules make angles of 108° to 121° with the respective O—Mg vectors. It is of interest to note that H_{19} , the hydrogen atom in the longest of these hydrogen bonds, was one of the two hydrogen atoms that were difficult to locate in the difference Fourier. It is possible that this hydrogen bond is weaker than the others and thus H_{19} has more freedom of thermal motion.

Fig. 2. Hydrogen bonding of the water molecules: The central atom is Mg at $\frac{1}{2}$ $\frac{1}{2}$ 0. The numbering corresponds to that of Table 2. The projection is the same as that of Figure 1.

Fig. 3. Hydrogen bonding of the NH_4^+ ion: Projected along [100]

The hydrogen bonding of the $\rm NH_4^+$ ion is shown in Fig. 3. The nitrogen atom has five sulfate oxygen neighbors within 3.102 Å. The closest neighbor is O₄ at 2.837 Å. Atom H₁₇ is placed such that the H₁₇-N-O₄ angle is 6°, thus forming a fairly strong hydrogen bond.

356

Two other oxygen neighbors, O_5 and O_6 , are at 2.916 and 2.949 Å respectively from the nitrogen atom. The angles H_{14} –N– O_5 and H_{16} –N– O_6 are 12° and 14° respectively. These are still reasonable hydrogen bonds although somewhat longer and weaker than the N– O_4 bond.

Oxygen atoms O_3 and O_6' which belong to the same sulfate ion are still further away from the nitrogen atom at 3.102 and 3.057 Å respectively, forming a bifurcated hydrogen bond. The hydrogen atom, H_{20} , involved in this interaction is pointed almostly directly at the sulfur atom, with an $N-H_{20}-S$ angle of 171°. The least-squares refinement leads to an $N-H_{20}$ bond length of about 0.8 Å and $H_{20}-O$ distances of 2.4 and 2.3 Å for O_3 and O_6' respectively. It is interesting to note that H_{20} was the other hydrogen atom which was difficult to find in the difference map. Therefore this bifurcated configuration may involve little bonding and permit greater thermal motion. It is encouraging that all of the H-N-H bond angles are within 5° of the expected tetrahedral angles.

Acknowledgements

We are grateful to Dr. ALLAN ZALKIN for assistance in using the G. E. XRD-5 and with the calculations on the IBM 7090. We also thank Professor E. C. LINGAFELTER for communicating his unpublished results.

References

- K. D. BOWERS and F. OWEN (1955), Paramagnetic resonance II. Reports on Progress in Physics 18, 304-373.
- W. R. BUSING and H. A. LEVY (1959), A crystallographic function and error program for the IBM 704. Oak Ridge National Laboratory Report 59-12-3.
- W. HOFMANN (1931), Die Struktur der Tuttonschen Salze. Z. Kristallogr. 78, 279-333.
- J. A. IBERS (1962), Atomic scattering factors. International tables for x-ray crystallography, III. The Kynoch Press, Birmingham.

N. A. LANGE (1949), Handbook of chemistry. Handbook Publishers, Sandusky. K. LONSDALE and J. MILLEDGE (1961), Analysis of thermal vibrations in crystal: a warning. Acta Crystallogr. 14, 59-61.

H. W. MONTGOMERY and E. C. LINGAFELTER (1962), Private communication.