Verfeinerung der Kristallstruktur von Tellurit, dem rhombischen TeO₂

Von HERMANN BEYER

Mineralogisch-Kristallographisches Institut der Universität Göttingen

(Eingegangen am 22. März 1966)

Abstract

In the orthorhombic modification of TeO_2 (tellurite) each tellurium atom is surrounded by four oxygen atoms at an average distance of 2.0 Å, similar to the tetragonal TeO_2 (paratellurite). The coordination polyhedron is a slightly distorted trigonal dipyramid, with both axial positions and only two of the three equatorial ones being occupied by oxygen atoms. Pairs of these TeO_4 groups are connected by a common edge to form Te_2O_6 units and these are furthermore linked by the four "free" oxygen corners to ${}^2_{\infty}\text{Te}^{[40]}\text{O}_2^{[2\text{Te}]}$ sheets parallel to the perfect cleavage.

Auszug

In der rhombischen Modifikation des TeO₂, dem Tellurit, ist jedes Telluratom wie im tetragonalen TeO₂ (Paratellurit) von vier Sauerstoffatomen umgeben in einem mittleren Abstand von 2,0 Å. Koordinationsfigur ist eine etwas verzerrte trigonale Dipyramide, bei der die beiden axialen, aber nur zwei der insgesamt drei möglichen äquatorialen Lagen mit Sauerstoffatomen besetzt sind. Je zwei solcher TeO₄-Gruppen verknüpfen sich über eine Kante zu Te₂O₆-Baueinheiten und diese über die vier "freien" Sauerstoffecken zu $^2_{\infty}$ Te^[40]O₂^[2Te]. Schichten parallel zur vollkommenen Spaltbarkeit.

Einleitung

Vor kurzem haben BEYER, SAHL und ZEMANN¹ die Ergebnisse einer zweidimensionalen Neubestimmung der Kristallstruktur von Tellurit veröffentlicht. Demnach stellt die Atomanordnung nicht wie von ITO und SAWADA² angegeben, eine verzerrte Brookit-Struktur

¹ H. BEYER, K. SAHL und J. ZEMANN, Neubestimmung der Kristallstruktur von Tellurit (= rhombisches TeO₂). Naturwissenschaften 7 (1965) 155.

² T. Ito and H. SAWADA, The crystal structure of tellurite (TeO₂). Z. Kristallogr. 102 (1939) 13–25.

dar, sondern eine kovalente Schichtenstruktur. Zur genaueren Festlegung der interatomaren Abstände und Bindungswinkel erfolgte eine dreidimensionale Verfeinerung. Die Kristalle dieser Untersuchung stammen aus Moctezuma, Mexiko. Mit einem Einkristall der Größe $0.11 \times 0.16 \times 0.50$ mm wurden um die Zonen [001] und [010] photographische Daten gesammelt, jeweils vom Äquator und der 1. und 2. Schichtlinie. Die Intensitäten wurden durch Photometrierung ermittelt und in der üblichen Weise in relative $|F_{o}|$ überführt. Zur Berechnung der Strukturamplituden wurde die Streukurve für Tellur von PAULING und SHERMAN³ und für Sauerstoff von BERGHUIS, HAAN-APPEL, POTTERS et al.⁴ verwendet. Die Bestimmung der Gitterkonstanten erfolgte auf einer asymmetrischen Weissenberg-Kamera. Die von Ito und Sawada angegebene Raumgruppe konnte bestätigt werden, jedoch wurde mit Pbca in Übereinstimmung zu den International Tables for X-Ray Crystallography eine andere Aufstellung gewählt. Die Elementarzelle enthält 8 Formeleinheiten, die asymmetrische Einheit umfaßt ein Telluratom und zwei Sauerstoffatome jeweils auf allgemeinen Punktlagen. Raumgruppe: Pbca. Gitterkonstanten: $a = 12,035 \pm 0,006$ Å, $b = 5,464 \pm 0,003$ Å, $c = 5,607 \pm 0,003$ Å.

Gang der Verfeinerung

Mit den Lagenparametern der Atome aus der zweidimensionalen Bestimmung und geeigneten isotropen Temperaturfaktoren ($B_{\rm Te} = 1,065$, $B_0 = 0,70$) ergab sich ein *R*-Wert ($R = \Sigma ||F_0| - |F_c||/\Sigma |F_c|$) von 5,9% für die 474 beobachteten Reflexe. Für die nicht beobachteten Intensitäten wurden die für eine zentrische Struktur wahrscheinlichen Werte

 Tabelle 1. Lagenparameter der Atome in Tellurit

a)	zweidimensionale	Neubestimmung	nach	Beyer,	SAHL	und	ZEMAI	NΝ
b)	dreidimensionale	Verfeinerung						

	x		2	/	z		
	a	b	a	b	a	b	
Те	0,1181	0,1182	0,0252	0,0255	0,3778	0,3781	
O ₍₁₎ O ₍₂₎	$\begin{array}{c}0,028\\0,168\end{array}$	$0,027 \\ 0,174$	$\begin{array}{c} 0,634\\ 0,221 \end{array}$	$\substack{0,637\\0,222}$	$\begin{array}{c} 0,171\\ 0,081 \end{array}$	$\begin{array}{c} 0,178\\ 0,086 \end{array}$	

³ L. PAULING and J. SHERMAN, Screening constants for many-electron atoms. The calculation and interpretation of x-ray term values, and the calculation of atomic scattering factors. Z. Kristallogr. 81 (1932) 1–29.

⁴ J. BERGHUIS, IJ. M. HAANAPPEL, M. POTTERS, B. O. LOOPSTRA, C. H. MAC-GILLAVRY and A. L. VEENENDAHL, New calculations of atomic scattering factors. Acta Crystallogr. 8 (1955) 478–483.

HERMANN BEYER

Tabelle 2. Beobachtete und berechnete Strukturamplituden

h k l	F	F.	b k 1	F	Fc	b k 1	F.	F	h k l	F	۲,
004	268,1	-265,4	026	26,6	- 14,0	12 4 0	80,4	- 88,2	751	32.2	- 34.3
006	19,6	- 16,4	027	29,3	26,1	5	51,5	- 53,5	6	72,8	- 75,3
008	104,2	114,4	028	113,8	111,4	6	57,8	- 58,3	7	16,7	- 19,2
102	217,3	183,2	124	18,3	22,3	7	38,1	- 41,9	8	54,0	56,5
100	114,0	-113.3	125	25,0	- 29,3	8	20,0	- 20,7	10	42,4	- 40,4
201	18.7	- 20.9	224	18.8	- 20.3	14 0 0	100.7	-101.6	2	49.0	- 48.9
206	19.7	11.9	3 2 3	28.7	- 27.9	1	18.1	23.1	3	33.7	31.3
304	24,3	29,4	324	15,3	9,4	2	69,2	- 69.7	á	72,5	- 71,0
306	135,7	-130,4	3 2 5	43,8	- 39,2	3	54,7	57.9	5	20,4	18,1
404	241,4	221,7	326	120,6	-116,2	4	51,6	- 55,2	6	68,7	- 67,4
406	35.6	28,5	423	61,1	62,6	2	56,7	61,1	7	20,3	20,6
4 U B	109,0	-119,8	424	195,8	189,0	7	51,2	- 52,8	10	57,0	- 02,9
506	87.2	78.9	427	36.5	- 38.0	á	49.0	50.6	911	149.6	-149.1
604	43.5	41.5	4 2 8	104,3	-103.8	16 Ó O	85.7	92.0	3	102.9	-104.5
608	33,9	- 31,8	523	45,3	43,2	1	20,4	21,0	4	32,4	27,8
706	135,9	124,9	524	16,4	- 16,3	2	93,5	90,9	5	75,7	- 73,6
804	177,4	-170,5	526	77.5	76,5	?	28,3	31,4	<u>è</u>	34,6	35,1
605	18 8	99.1	7 9 3	59,0	55,0	4	11,9	/4,1	é	27,2	- 27,5
906	52.0	- 54.3	725	33.1	27.0	6	33.6	33.8	10	18.0	17.5
10 0 4	68,6	- 65,5	726	115,4	116,1	7	40.8	39.9	10 1 1	113.9	-113.9
10 0 6	12.4	- 7,1	823	43,6	- 38,7	18 0 0	74,7	71,5	3	113,7	-110,9
10 0 8	38,5	40.0	824	161,8	-154,9	1	14,3	15,0	4	29,6	- 27,9
11 0 4	27,8	24,2	825	35,5	33,0	2	61,8	69,1	5	59,3	- 60,8
11 0 6	111,4	-121,1	828	85,5	88,2	,	52,8	- 30,9	5	28,9	- 28,3
19.0 4	117 6	121 0	925	48 2	- 48 5	5	44.9	- 45 6	8	20,9	- 29,9
12 0 8	61.5	73.5	10 2 4	66.5	- 62.7	6	28.4	27.4	10	17.9	- 16.0
1306	30,9	23,1	10 2 8	31,5	37,2	7	40,3	- 40,1	11 1 1	44.5	43,6
14 0 4	74,1	74,2	11 2 1	34,5	33,4	20 0 0	71,3	- 70,7	2	34,6	33,4
1506	90,0	95.8	11 2 3	23,9	- 21,0	1	16,2	- 12,6	3	26,7	26,6
16 0 4	72,1	- 82,6	11 2 5	36,5	- 37,3	2	47,5	- 51,3	2	57,3	58,7
10 0 2	00,1	- 00,2	11 2 0	26.0	-103,9	5	30,0	- 29,3	2	21,0	23,0
113	172.0	159.0	12 2 4	112.9	115.9	-	41.1	- 35.7	Ř	49.5	51.8
114	22.3	- 23.8	12 2 5	28.4	- 24.9	6	22.9	- 22.4	12 1 1	51.7	- 50.3
115	111,1	101,8	13 2 5	24,6	3,3	22 0 0	72,9	- 66,4	2	36,3	35.4
117	70,2	- 62,1	1326	29,0	21,5	2	63,9	- 56,4	3	55,2	- 53,7
119	52,4	- 58,7	14 2 0	65,9	- 69,7	3	20,5	16,2	4	51,7	51,9
212	28,2	- 24,4	14 2 3	24,9	16,3		44,5	- 36,5	2	31.7	- 33,9
213	219,0	-212,6	14 2 4	19 0	- 12.0	24 0 0	39,2	20,7	9	47,4	49,8
215	127.5	118.2	15 2 6	82.5	85.2	021	136.0	-120.7	13 1 1	115.5	112.1
217	114,8	112,5	16 2 4	71,1	- 78,3	4	90,4	- 82.7	- 3	82,8	86,6
219	52,4	- 57,4	18 2 4	53,3	- 58,4	6	89,1	- 86,0	5	58,8	57,3
312	30,1	27,2				8	72,4	- 72,9	7	24,0	29,5
313	94,4	- 92,0	020	266,9	262,5	10	49.3	- 56,4	14 1 1	84,1	87,3
313	9/,9	- 94,0	Å	210,1	187,0	111	103,5	-212,1	2	21,1	25,1
319	50.0	51.9	8	37.2	38.6	ŝ	135.7	-126.9	, L	26.5	25.1
4 13	30.2	- 32.3	200	71.7	59.9	4	87.4	80.4	5	39.3	39.8
415	21,8	17,4	1	90,4	- 95,4	5	67,6	- 62,4	6	29,8	28,7
417	22,8	21,6	2	53,1	46,1	6	59,9	54,6	7	26,0	24,3
513	133,6	-124,7	3	113,1	- 99,1	7	39,4	- 38,1	8	29,4	26,4
212	120,1	-120,5	4	161 9	- 17,4	10	55,4	57,1	15 2 1	30,9	- 31,0
519	65.9	67.7	6	19.0	16.0	2 1 1	209.3	-242 8	6	49,1	49,7
611	166.8	163.0	7	117.9	-117.2	- 1 - 2	40.4	- 19.8	8	45.9	47.3
614	36,0	- 33,6	9	80,7	- 88,7	3	184,7	-170,4	16 1 1	58,6	57,9
615	120,3	-109,1	400	239,3	-322,8	5	105,4	- 96,1	3	42,8	41,5
617	90,2	- 95,1	1	48,6	61,6	_ 7	33,8	- 32,6	4	38,2	- 36,9
619	47,2	49,5	2	281,6	-271,7	311	126,4	127,2	2	32,1	30,3
715	60 3	56 1	5	207 2	- 35,4	23	132 3	120.0	8	30.6	- 42,0
717	36.3	- 35.5	5	25.0	- 20.6	á	80.5	74.7	17 1 1	77.7	- 80.4
813	47,2	46,2	6	84,1	- 80,7	5	50,9	47,4	3	71,9	- 73,2
815	42,9	- 37,7	7	24,5	23,8	6	77,4	74,3	_ 5	44,9	- 43,6
817	29,0	- 27.7	8	20,3	- 26,2	7	27,8	29,5	18 1 1	51,8	- 52,8
913	104.8	107.5	600	19,1 62.8	60.8	10	30.1	41 3) 1	26 7	- 43,2
917	64.0	- 64.1	2	89.5	- 96.0	4 1 1	15.1	- 15.6	5	28.8	- 28.5
10 1 3	117,2	-118,9	3	124,2	123,9	2	47.9	39.2	6	37.5	- 33,7
10 1 5	73.7	78.4	4	41,1	- 37,6	3	46,5	- 48,5	19 4 1	38,4	37,5
10 1 7	79,6	84,4	5	109,2	104,5	4	93,2	88,5	6	38,1	37,2
11 1 2	19,6	- 19,2	0	25,7	- 24,5	5	13,0	- 13,1	20 1 1	53.7	- 48,4
11 1 5	39 6	- 30,5	á	79 7	84 4	8	93,4 61 T	92,9 66 6	2	20,9	19,3
11 1 7	24.8	18.7	8 o o	222.3	229.5	10	44.3	47.3	í.	17 7	19.3
12 1 1	51,8	- 50,3	2	229.3	222,3	5 1 1	169.5	176.4	5	29.8	- 25.5
12 1 3	58,2	- 58,3	3	50,3	50,1	2	36,8	- 38,0	ő	22,0	20,1
12 1 5	36,6	35,7	4	135,3	123,0	3	132.7	131,5	21 1 1	64,0	60,0
12 1 7	38,4	43,0	5	22,5	22,6	4	56,0	- 53,6	2	50,6	46,4
13 1 9	23.3	- 28 1	7	13,9	10,2 33 4	5	18,5 38 7	- 38 1	22 1 1	32,8	29,4
13 1 3	93.3	- 96.3	8	21.0	25.4	7	27.3	26.5	1 1	28.5	26,1
13 1 5	85,3	- 88,2	9	27,9	31,4	8	42,7	45,0	á	18,0	19,7
1317	50,9	54,8	10 Ó O	79,9	84,5	10	21,9	24,6	5	17,9	16,7
14 1 1	80,1	87,3	2	90,0	78,6	611	198,9	207,1			
14 1 3	72,6	80,6	3	75,3	- 77,4	3	124,7	121,4	042	29,0	26,2
14 1 5	57,0	- 01,0	4	92,0	- 95 A	4	29,0	27,4	112	24,0	4/,2
16 1 1	53.9	57.9	6	27.7	29.5	6	16.6	20.0	ŝ	121.4	111.9
16 1 3	49,8	55,7	7	85,9	- 91,0	7	41,0	40,7	Á	120,4	106,5
16 1 5	35,0	- 40,6	8	13,7	12,1	. 8	18,1	19,2	5	86,8	80,7
17 1 3	59,0	66,1		54,0	- 62,2	7 1 1	87,6	- 91,1	6	65,4	62,0
1813	48,8	- 52,7	12 0 0	152,5	-151,8	2 3	67,8	- 68,5	7	84,1	84,9
024	50 1	-190,5	ž	22.5	-144,1) L	63.5	- 50 0	е 0	63 0	68 1
~ - J	2011	-,,-	,	,)			~,,,	- 2212	,	~,,,	•••,•

Tabelle 2. (Fortsetzung)

b k 1	۳.	P.,	h k l	۶,	7 .	h k l	۶.	F.	h k l	P	P _c
212	24,0	- 24,4	572	88,3	- 90,3	952	101,1	96,9	1352	73,1	- 76,1
302	222,3	234,5	8	18,3	- 16,9	6	27,0	21,7	7	73,6	- 76,3
- 1	27.4	27.2	9	62,8	- 68,1	7	83,5	86,1	9	58,8	- 58,1
2	218.7	212.7	702	264.2	-270,2	9	63,4	67,2	1502	136,1	-134,8
3	82,6	- 81.7	1	30.8	19,9	11 0 2	171,5	166,0	2	117,2	-122,0
Â.	154.3	139,8	2	179.4	-171,6	1	20,5	- 19,2	4	85,2	- 82,8
5	62,3	- 77,0	3	52.7	50,2	2	147,3	149,3	5	21,3	17,2
6	66.7	64.4	4	130.9	-124.1	3	20,4	- 18,6	6	51,0	- 52,9
7	70.5	- 73.1	5	52,6	47.8	4	121,2	119,2	8	20,5	- 18,8
8	18,0	22,8	6	67,6	- 66.9	5	30,4	- 31,0	17 3 2	49,4	47,9
9	43.0	- 49.4	7	45.5	47.9	6	56,5	57,9	5	64,9	64,4
402	34.9	- 35.8	8	29.6	- 29.1	7	26,4	- 25,6	7	62,2	60,3
502	147.5	-155.3	9	36.3	38.6	8	18,3	19.5	1902	105,8	95.0
1	38.8	- 41.4	812	17.3	- 14.6	9	16,6	- 21,8	2	89,7	90,9
2	147.5	148.3	902	65.3	71.0	13 0 2	52,3	- 50,0	4	64,5	63,2
3	76.7	- 70,7	1	45.8	44.3	1	33,1	- 28,1	6	39,9	37,7
i.	69.1	- 66.3	2	75.3	70,1	2	27,1	- 23,6	21 3 2	42,6	- 36,9
5	114,2	-110,2	3	65,9	67.2	3	62,1	- 64,1	2302	72,0	- 61,1
ő	50,9	- 48,7	4	62,3	60,2	4	25,0	- 20,7	2	69,8	- 58,8

 $I = \frac{1}{3} I_{\min}$ eingesetzt⁵; unter Einschluß aller Reflexe, einschließlich der 316 nicht beobachteten, beträgt der *R*-Wert 9,6⁰/₀. Da somit die prinzipielle Richtigkeit der Struktur gesichert war, wurden, ausgehend von diesen Koordinaten, drei least-squares-Zyklen gerechnet, wobei eine Umwandlung in anisotrope Temperaturfaktoren vorgenommen wurde. Alle Reflexe erhielten das gleiche Gewicht. Der gewichtete *R*-Wert,

$$R_w = \sqrt{rac{\Sigma w \left(\left|F_{
m o}
ight| - \left|F_{
m c}
ight|
ight)^2}{\Sigma w \left|F_{
m o}
ight|^2}}$$
 ,

der in diesem Programm minimalisiert wird, erniedrigte sich ein wenig, der übliche *R*-Wert erhöhte sich auf $6,3^{0}/_{0}$. Da aber in diesem Programm nicht $\Sigma |F_{c}|$ an $\Sigma |F_{o}|$ angeglichen wird, sondern $\Sigma |F_{c}|^{2}$ an $\Sigma |F_{o}|^{2}$, ist es durchaus möglich, daß sich der übliche *R*-Wert erhöht. Tab. 1 gibt die endgültigen Lagenparameter, Tab. 2 einen Vergleich zwischen F_{o} und F_{c} .

Zum besseren Vergleich wurden, ebenfalls ausgehend von den zweidimensionalen Lagenparametern, noch fünf least-squares-Zyklen mit anderen Streukurven gerechnet. Dabei wurde für Te⁴⁺ die von THOMAS und UMEDA⁶ angegebene Streukurve verwendet und für O²⁻ die von JAMES und BRINDLEY⁷. Der gewichtete *R*-Wert erniedrigte sich auf $5,6^{0}/_{0}$. Nennenswerte Anisotropie der Temperaturfaktoren ergab sich nicht. Die Unterschiede in den Lagenparametern gegenüber den Ergebnissen der zweidimensionalen Neubestimmung¹ liegen innerhalb der

⁵ W. C. HAMILTON, On the treatment of unobserved reflexions in the leastsquares adjustment of crystal structures. Acta Crystallogr. 8 (1955) 185-186.

⁶ L. H. THOMAS and K. UMEDA, Atomic scattering factors calculated from the TFD atomic model. J. Chem. Physics 26 (1957) 293-303.

 $^{^7}$ R. W. JAMES and G. W. BRINDLEY, Some numerical values of the atomic scattering factor. Z. Kristallogr. 78 (1931) 470-476.

Hermann Beyer

zu erwartenden Fehlergrenzen, so daß die dreidimensionale Verfeinerung sehr schön die Ergebnisse der zweidimensionalen Arbeit bestätigt.

Beschreibung der Struktur und Diskussion

Die Fig. 1 — eine Projektion parallel [001] — zeigt, daß in der Struktur, senkrecht zur *a*-Achse, parallele Schichten ausgebildet sind, einmal entlang den Endflächen (100) der Elementarzelle und dann jeweils in ihrer Mitte. Eine einzelne solche Schicht ist in Fig. 2 räumlich dargestellt. Das Telluratom ist ganz ähnlich wie in der tetragonalen

Fig. 1. Tellurit. Projektion parallel [001]. Dargestellt im Bereich $-0.5 \le z \le 1.5$. Doppelte Kreise stellen Überlagerung zweier Atome dar

Modifikation⁸ des TeO₂, dem Paratellurit, von vier Sauerstoffen als nächsten Nachbarn umgeben. Koordinationsfigur ist eine trigonale Dipyramide, bei der die beiden axialen, aber nur zwei der insgesamt drei möglichen äquatorialen Ecken mit Sauerstoffatomen besetzt sind. Innerhalb dieser vier Nachbarn erfolgt eine deutliche Aufspaltung (siehe Fig. 2 und 3) in zwei nähere, O(1) und O(2), auf den beiden äquatorialen Lagen mit einem mittleren Abstand von 1,90 Å und zwei weiteren, O(2') und O(1'), mit den signifikant verschiedenen Bindungslängen von 2,07 Å bzw. 2,19 Å. Das nächst weitere Sauerstoffatom

⁸ J. LECIEJEWICZ, The crystal structure of tellurium dioxide. A redetermination by neutron diffraction. Z. Kristallogr. **116** (1961) 345–353.

O(1'') hat einen Abstand von 2,64 Å und wird nicht mehr zur Koordinationsfigur hinzugerechnet. Im Denningit (Mn, Zn, Ca) Te₂O₅^{9,10} ist die Koordinationsfigur um das Tellur ebenfalls recht ähnlich, innerhalb der beiden weiteren Sauerstoffnachbarn erfolgt mit 2,08 bzw. 2,36 Å eine noch deutlichere Aufspaltung. In Tab. 3 und Tab. 4 sind die interatomaren Abstände und Bindungswinkel im Tellurit und Paratellurit zusammengestellt.

Fig. 2. Tellurit. Schrägriß einer TeO₂-Schicht

Die Verknüpfung der Koordinationsfiguren erfolgt aber nicht wie beim Paratellurit ausschließlich über Ecken, sondern jeweils zwei solcher TeO₄-Gruppen verknüpfen sich über eine Kante ähnlich wie im Denningit zu Te₂^[4O]O₆^[2Te]-Baueinheiten und diese über die vier freien Sauerstoffecken zu $^{2}_{\infty}$ Te^[4]O₂^[2]-Schichten parallel zur vollkommenen Spaltbarkeit (100).

Eine einzelne Te_2O_6 -Baueinheit zeigt Fig. 3. Die Verknüpfungskante verläuft von O(1') nach O(1); auf ihrer Mitte liegt ein Symmetriezentrum, so daß die Sauerstoffatome O(1) und O(1') jeweils bei einer

 9 E. M. WALITZI, Die Kristallstruktur von Denningit, (Mn,Ca,Zn)Te_2O_5. Naturwissenschaften 51 (1964) 334.

¹⁰ E. M. WALITZI, Die Kristallstruktur von Denningit, (Mn,Ca,Zn) Te_2O_5 . Ein Beispiel für die Koordination um vierwertiges Tellur. TSCHERMAK's Mineralog. Petrogr. Mitt. **10** (1965) 241–255.

Tell	Paratellurit*			
Te-O(1)	1,88 Å	\pm 0,02 Å	TeO(IV)	1,91 Å
Te-O(2)	1,93	0,02	TeO(III)	1,91
Te-O(2')	2,07	0,02	TeO(V)	2,08
Te-O(1')	2,19	0,02	TeO(II)	2,08
Te-O(1")	2,64	0,02		
Te-O(2'''')	3,07	0,02		
Te-O(2'''')	3,42	0,02		
O(1) - O(2)	2,94	0,03	O(III)-O(IV)	2,90 Å
O(2) - O(2')	2,82	0,04	O(III)-O(V)	2,74
O(2') - O(1')	4,24	0,03	O(II) - O(V)	4,11
O(2') - O(1)	2,80	0,03	O(IV)–O(V)	2,65
O(1')—O(1)	2,58	0,04	O(II)-O(IV)	2,74
O(1')—O(2)	2,92	0,03	O(II)-O(III)	2,65
Te-Te'	3,17	0,003	Te(II)— $Te(I)$	3,76

Tabelle 3. Interatomare Abstände im Tellurit und Paratellurit

* Neu berechnet auf Grund von Lagenparametern und Gitterkonstanten von LECIEJEWICZ⁸.

Tellurit		Paratellurit*				
O(1)— Te — $O(2)$	101,0°	$O(III) - T_{\Theta}(II) - O(IV)$	98,0°			
O(2')—Te— $O(1')$	168,9	O(II)— $Te(II)$ — $O(V)$	162,2			
O(1')—Te— $O(2)$	90,0	O(II)— $Te(II)$ — $O(IV)$	87,0			
O(1')TeO(1)	78,3	O(II)— $Te(II)$ — $O(III)$	83,1			
O(2')—Te— $O(2)$	89,6	O(V)— $Te(II)$ — $O(IV)$	83,1			
O(2')—Te— $O(1)$	90,2	O(V)— $Te(II)$ — $O(III)$	87,0			
Te-O(1')-Te'	102,0					
Te-O(2')-Te''	137,6	Te(II)— $O(II)$ — $Te(II)$	140,9			

Tabelle 4. Bindungswinkel im Tellurit und Paratellurit

* Neuberechnet auf Grund von Lagenparametern und Gitterkonstanten nach LECIEJEWICZ⁸.

der beiden TeO₄-Gruppen einen nahen Te-Nachbarn haben und bei der anderen einen weiten. Durch die gegenseitige Abstoßung der Telluratome wird der Sauerstoff-Sauerstoff-Abstand O(1')--O(1) auf 2,58 Å verkürzt und der Bindungswinkel O(1')-Te-O(1) gegenüber dem Paratellurit um 5° von 83° auf 78° verkleinert. Die Telluratome Te und Te' kommen sich innerhalb dieser Baueinheit mit 3,17 Å verhältnismäßig nahe; im Paratellurit beträgt der kürzeste Te-Te-Abstand 3,76 Å. Dieser kurze Abstand und die gelbe Farbe des Tellurits lassen die Vermutung gelten, daß hier schwache metallische Bindungskräfte vorliegen. Paratellurit ist farblos. Im wesentlichen ist die Bindung im Tellurit aber kovalent. Darauf deutet erstens die Differenz der Elektronegativitäten hin, aus der sich ein partieller Ionencharakter von nur $35^{0}/_{0}$ ergibt, zweitens die verhältnismäßig kurzen Te-O-Abstände.

Der zu erwartende Te–O-Abstand bei rein kovalenter Bindung wäre¹¹ $R_{\rm Te} + R_0 = 1.38 + 0.66 = 2.04$ Å. Man kann nun noch eine

Fig. 3. Tellurit. Te₂O₆-Baueinheit

empirische Korrektur für unterschiedliche Elektronegativitäten nach SCHOMAKER und STEVENSON¹² anbringen.

$$\begin{split} \varDelta = -0.09 \, (X_{\rm Te} - X_0) = 0.09 \, (3.5 - 2.1) = -0.126 \; {\rm \AA} \\ (X = {\rm Elektronegativitäten}) \, . \end{split}$$

Dann sollte demnach eine Te-O-Bindungslänge 1,91 Å betragen, was in sehr guter Übereinstimmung mit den gefundenen Werten steht.

Da dem Tellur im Grundzustand nur zwei 5p-Orbitale für Bindungen zur Verfügung stehen, dürfen wir annehmen, daß bei 4-wertigem Tellur eine sp^3d -Hybridisierung vorliegt, wobei das freie 5s-Elektronen-

¹¹ Kovalente Ionenradien nach PAULING und HUGGINS aus L. PAULING, The nature of the chemical bond, 3. ed.

¹² V. SCHOMAKER and D. P. STEVENSON, Some revisions of the covalent radii and the additivity rule for the length of partially ionic single covalent bonds. J. Amer. Chem. Soc. **63** (1941) 37-40.

HERMANN BEYER

paar eine Ecke der Koordinationsfigur besetzt und hier ein Bindungselektronenpaar vertritt.

Bei Molekeln wie TeCl_4 wird man deshalb vermuten, daß die vier Bindungen und das freie Elektronenpaar nach den fünf Ecken einer trigonalen Dipyramide weisen, wobei das freie Paar eine der äquatorialen Positionen besetzt.

Für Tellurtetrachlorid hat man in der Tat eine solche Anordnung gefunden¹³. Auch die kristallinen Verbindungen $Te(CH_3)_2Cl_2^{14}$ und $SeBr_2(C_6H_5)_2^{15}$ haben die gleiche Koordinationsfigur um das Tellur; von den Halogenatomen werden dabei jeweils die Spitzen der trigonalen Dipyramide besetzt.

Diese Ergebnisse stehen alle in sehr guter Übereinstimmung mit den Bindungsrichtungen an beiden TeO_2 -Modifikationen. Sowohl beim Tellurit als auch beim Paratellurit kann man darüber hinaus die Aussage PAULINGS¹⁶ bestätigt finden, daß der Raumbedarf eines freien Elektronenpaares größer ist, als der eines Bindungselektronenpaares. Der Winkel O(1)—Te—O(2) beträgt beim Tellurit anstelle von 120° nur 101° und der Winkel O(2')—Te—O(1') anstelle von 180° nur 169°.

Die Bindungswinkel am Sauerstoff betragen beim Tellurit innerhalb einer Te_2O_6 -Baueinheit 102° und zwischen zwei Baueinheiten 138°; im Paratellurit tritt nur ein einziger Winkel von 141° auf.

Zum Schluß sei noch auf einige Details hingewiesen. Fig. 1 zeigt, daß die TeO_2 -Schichten stark gewellt sind; durch diese Wellung erhält jedes Telluratom außer der vier besprochenen mit 2,64 Å, noch einen weiteren, verhältnismäßig nahen Sauerstoffnachbarn. Wir dürfen hier deshalb eine schwache Wechselwirkung vermuten. Der große Abstand legt es jedoch nahe, dieses Atom nicht zur Koordinationsfigur hinzuzurechnen. Da diese Wechselwirkung innerhalb einer TeO_2 -Schicht liegt, bleibt der ausgeprägte Schichtencharakter erhalten. Zu den nächsten Sauerstoffatomen einer benachbarten Schicht sind die Te—O-Abstände mit 3,07 und 3,42 Å bedeutend größer.

Sowohl in den Lagen O(1) als auch O(2) haben die Sauerstoffatome zwei Telluratome als nächste Nachbarn. Auf den deutlich verschie-

¹⁴ G. D. CHRISTOFFERSON, R. A. SPARKS and J. D. MCCULLOUGH, The crystal structure of α -dimethyltellurium dichloride. Acta Crystallogr. **11** (1958) 782–788.

¹⁵ J. D. McCullough and G. HAMBURGER, The crystal structure of diphenylselenium dibromide. J. Amer. Chem. Soc. 63 (1941) 803-807.

¹⁶ L. PAULING, The nature of the chemical bond, 3. ed., 1960.

236

¹³ D. P. STEVENSON and V. SCHOMAKER, An electron diffraction investigation of the molecular structure of tellurium tetrachloride. J. Amer. Chem. Soc. 62 (1940) 1267–1270.

denen Abstand, den die beiden Tellurnachbarn von dem Sauerstoffatom O(1) bzw. O(1') innerhalb einer Te₂O₆-Baueinheit haben, wurde schon hingewiesen, auch die Verknüpfung der Te₂O₆-Baueinheiten über die vier "freien" Sauerstoffatome der Lage O(2) erfolgt so, daß jedes dieser vier Sauerstoffatome sowohl einen näheren als auch einen weiteren Tellurnachbarn besitzt mit 1,93 bzw. 2,07 Å Bindungslänge.

Im Paratellurit liegt die gleiche Koordination um das Tellur wie beim Tellurit vor, mit zwei näheren und zwei weiteren Sauerstoffnachbarn. Auch ein weiteres Bauprinzip finden wir hier wieder; die Sauerstoffatome haben ebenfalls zwei Tellurnachbarn, und zwar wiederum einen kürzeren mit 1,91 Å und einen weiteren mit 2,08 Å Bindungslänge.

Meinem sehr verehrten Lehrer, Herrn Professor Dr. J. ZEMANN, danke ich herzlich für die Überlassung des Themas dieser Arbeit und für seine stete Unterstützung während ihrer Durchführung, insbesondere für viele klärende Diskussionen. Weiterhin danke ich Herrn Dr. K. SAHL für die stete Unterstützung, die er mir zuteil werden ließ. Herrn Professor Dr. W. Hoppe danke ich für sein Entgegenkommen und Herrn Dr. R. HUBER für die überaus freundliche Hilfe bei der Durchführung der least-squares-Rechnungen. Herrn Dr. J. A. MANDA-RINO, Ontario, danke ich für die Überlassung des Untersuchungsmaterials.