Zeitschrift für Kristallographie, Bd. 130, S. 427-437 (1969)

Refinement of the crystal structure of hardystonite, $Ca_2ZnSi_2O_7$

By S. JOHN LOUISNATHAN

Department of the Geophysical Sciences, University of Chicago, Chicago, Illinois

(Received 17 October 1968)

Auszug

Die Kristallstruktur von Hardystonit, Ca₂ZnSi₂O₇, wurde auf Grund von *hkl*-Interferenzen bis zum Wert $R = 5,3^{0}/_{0}$ verfeinert. Die Bindungen Zn--O und Si-O sind vorwiegend kovalent. Benachbarte [ZnSi₂O₇]⁴⁻Schichten werden durch Ca²⁺-Ionen zusammengehalten; hierbei herrscht Ionenbindung vor.

Abstract

The structure of hardystonite, $Ca_2ZnSi_2O_7$, was refined to $R = 5.3^{\circ}/_{0}$ from three-dimensional diffractometer data. The Zn-O and Si-O bonds are predominantly covalent, and the adjacent covalent sheets of $[ZnSi_2O_7]^{4-}$ are linked by Ca^{2+} ions, with the interlayer bonding being predominantly ionic in character.

1. Introduction

The crystal structure of hardystonite, Ca₂ZnSi₂O₇, was determined first by WARREN and TRAUTZ (1930). The reinvestigation was undertaken as part of a systematic structural study of various members of the melilite mineral group. Order-disorder of Mg, Al, Si among tetrahedral sites, and diadochy of Ca, Na, etc. in 8-coordination sites, are of principal interest in this group of minerals, as explained by SMITH (1953) when he reexamined the structure of a melilite. Reexamination of hardystonite structure was specifically chosen since each cation site is occupied by only one atomic species, and since an accurate determination of structural parameters of this crystal would assist in discussing problems concerning other chemically more complicated melilites.

S. John Louisnathan

2. Experiments

The specimen chosen for this study is from Franklin, N. J. Three chemical analyses of hardystonite from this locality are reported by PALACHE (1935). A mean of these three analyses yields the following formula when calculated on the basis of 7 oxygen atoms,

$(Ca_{1.93}Mn_{0.06}Na_{0.04}K_{0.01}Pb_{0.01}) \ [Zn_{0.93}Mg_{0.09}Al_{0.05}Fe_{0.04}Si_{1.93}]O_7.$

The ionic species within the parentheses tend to occur in the 8-coordination site, while those in square brackets tend to occur in the tetrahedral sites.

After collecting the intensity data for the crystal-structure analysis, the single crystal of hardystonite from which intensities were measured was chemically analyzed by the x-ray-emission microanalysis technique. Measurements were made at 15 kV and $0.5 \,\mu$ A. Standards used were Zn metal and ZnCO₃ for Zn, galena for Pb, and H 39 clinopyroxene (SMITH, 1966) for other elements. The results of this analysis, corrected according to the procedure of SMITH (1965), are compared with those reported by PALACHE in Table 1. The microprobe analysis shows slightly more CaO and slightly less MnO and

Oxides	X-ray-emission microanalysis, S. J. LOUISNATHAN, analyst	Wet chemical analyses quoted by PALACHE (1935)						
	1	2	3	4				
SiO ₂	36.80 %	38.10%/0	37.78º/o	36.59º/0				
Al ₂ O ₃	0.94	'	0.91	0.77				
$\rm Fe_2O_3$	0.20*	0.57	0.43	_				
\mathbf{FeO}	_	—	_	0.42				
ZnO	25.56	2 4 .30	25.38	22.47				
MnO	0.76	1.50	1.26	1.23				
CaO	34.61**	33.85	34.22	35.16				
MgO	0.39	1.62	0.26	1.47				
K ₂ O	_	<u> </u>	0.78	_				
Na ₂ O	0.29	_	1.10	· _				
PbO	0.56	_		1.99				
Ignition		0.52	0.34					
Total	100.11	100.46	102.46	100.00				

Table 1. Hardystonite analyses

* The microprobe analysis does not distinguish ferrous from ferric iron.

** About $1.5^{0}/_{0}$ random variation within the grain was observed, average value is given above.

 $\mathbf{428}$

MgO. The formula of hardystonite according to the x-ray-emission analysis is,

```
(Ca_{1.97}Mn_{0.03}Na_{0.02}Pb_{0.007}) [Zn<sub>1.00</sub>Al<sub>0.03</sub>Mg<sub>0.03</sub>Fe<sub>0.005</sub>Si<sub>1.96</sub>]O<sub>7</sub>.
```

This analysis also showed that the single crystal was chemically homogeneous within $1^{0}/_{0}$. The atomic factors of the cation sites were assumed to be those for pure Ca, Si and Zn because of the trivial effects of the substitution by other ions.

Method	a	c	Reference
Rotation photograph Mo radiation	7.83 Å	4.99 Å	WARREN and TRAUTZ (1930)
Diffractometer data $CuK\alpha$ radiation	7.823	5.01 3	L.G. BERRY (PDF Card No. 12-453)
Powder photograph synthetic sample	7.75 (5)	5.01	SEGNIT (1954)
Powder photograph $FeK\alpha$ radiation	$\begin{array}{c} 7.8287 \\ \pm 0.0016 \end{array}$	$5.0140 \\ \pm 0.0004$	This work
Diffractometer data $CuK\alpha$ radiation	7.8279 ± 0.0010	5.0138 ± 0.0006	This work

Table 2. Lattice parameters of hardystonite

The lattice parameters of hardystonite as measured by different workers are given in Table 2. In the present study they were obtained from powder patterns using a diffractometer and a 114.6 mm Buergertype camera, with a spectroscopically pure silicon as internal standard. Ni-filtered CuK α radiation was used for the diffractometer pattern, and Mn-filtered Fe $K\alpha$ radiation for the powder pattern. Measured 2θ values were corrected using the known positions of the silicon lines. Of the 50 or so of the lines measured, 32 lines were used in the determination of cell parameters by least-squares techniques [SMITH (1956) and BURNHAM (1962)].

PALACHE (1935) reports a density range of 3.39 to 3.44 g/cm^3 for hardystonites, which is consistent with density (3.42 g/cm^3) calculated using x-ray-emission microanalysis data and the refined cell-dimension data. There are two formula units of hardystonite in the unit cell. The space group is $P\bar{4}2_1m$ or $P42_1$ as the only systematic extinctions S. John Louisnathan

are h00 with h odd. WARREN and TRAUTZ (1930) discarded $P42_1$ as it was not possible to build a reasonable structure in this space group.

A grain of hardystonite free from zoning, twinning or inclusions was chosen and ground into a sphere of diameter 0.18 mm by the method of BOND (1951). Weissenberg and precession photographs were taken and the space-group extinction conditions were checked. Intensities were collected on a manual scintillation-counter diffractometer of Weissenberg geometry, using Zr-filtered MoK α radiation. For the layers hk0 through hk4, the symmetry-related reflections khl and $h\bar{k}l$ were measured in addition to hkl. (It should be mentioned here, that for the space group $P\bar{4}2_1m$, F(hkl) is not identical to $F(h\bar{k}l)$ when anomalous scattering is taken into consideration). For layers hk5 through hk8, only one set of intensities, namely hkl, was measured. Corrections for Lorentz and polarization factors were applied to the intensities using a program written by STEPHENSON and KNOWLES (private communication). No corrections for absorption were applied.

3. Refinement

The structure was refined with the SORFLS least-squares program written by R. B. K. DEWAR (private communication). This program is a local modified version of the ORFLS program of BUSING, MARTIN and LEVX (1962) which includes provision for anomalous dispersion and a correction for secondary extinction using ZACHARIASEN'S (1963, 1967) formula for a sphere.

The atomic coordinates of WARREN and TRAUTZ (1930) yielded $R = 22^{0}/_{0}$. Six refinement cycles with unit weights for all reflections and isotropic temperature factors, brought R to $15^{0}/_{0}$. Introduction of individual scale factors to the different l layers during three cycles of refinement reduced R to $13^{0}/_{0}$. Tests made to choose a proper weighting scheme showed that the errors in F_{obs} were neither dependent on $\sin \theta$ nor on the magnitudes of F_{obs} .

There were 151 reflections (or nearly half this number when only one set of symmetry-related reflections are taken into account) which showed rather significant differences in $|F_{obs}-F_{calc}|$. Of these, eighteen were very bad and were not used in subsequent refinements. A careful check of the rest revealed a difference of over $10^{0}/_{0}$ in the background counts on opposite sides of the peak. For such reflections, intensities were measured again, tracing the peak on a recorder during the second counting. Most of these peaks were weak, yielding

 $\mathbf{430}$

P_c **b k l** h k h k F., F . $\begin{array}{l} \textbf{F_c} & \textbf{3518} \\ \textbf{841985} \\ \textbf{5553956} \\ \textbf{3553956} \\ \textbf{355$ $\begin{array}{c} \textbf{s} 3 \ \textbf{s} 9 \\ \textbf{s} 3 \ \textbf{s} 9 \\ \textbf{s} 7 \\ \textbf{s} 5 \ \textbf{s} 2 \\ \textbf{s} 3 \ \textbf{s} 9 \\ \textbf{s} 7 \\ \textbf{s} 5 \ \textbf{s} 2 \\ \textbf{s} 3 \ \textbf{s} 3 \\ \textbf{s}$ ۶. P. $\begin{array}{c} \mathbf{F} & \mathbf{0} \\ \mathbf$ $\begin{array}{c} \textbf{P} & \textbf{c} & \textbf{23} \\ \textbf{23} & \textbf{33} \\ \textbf{24} & \textbf{32} \\ \textbf{24} & \textbf{25} \\ \textbf{24} & \textbf{24} \\$
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3</t $\begin{array}{c} 1493195288\\ 14931952888\\ 14931952888\\ 14931952888\\ 14931952888\\ 14931952888\\ 14931952888\\ 149319528\\ 1493195288\\ 149319588\\ 14931988\\ 149319588\\ 149319588\\ 1$ $\begin{array}{c} 227622\\ 217625724\\ 5259722\\ 10364756\\ 5259425625\\ 52375777\\ 9296455\\ 5259722\\ 10508265655042\\ 527572\\ 527577\\ 527572\\ 527572\\ 52757\\ 527572\\ 527577\\ 52757\\$ -8 0 4 6 8 10 12 2 3 10 11 12 2 3 10 11 510 11 4 8 6 7 8 1 1 2 1 1 2 2 2 2 2 2 2 2 2 2 2 1 -1 3 1 -1 4 1 -1 5 1 -1 6 1 -1 7 1 2

S. JOHN LOUISNATHAN

h	k	1	F.	F.	b	k	1	F.	P	h	k	1	P.,	F	h	k	1	F.	F.	h	k	1	F	P.
•	•		7671	с 760г			E	1050	1750	F	-	4	0.05	e 0469	6	0	-	1507	1701	•	•	•	1060	1046
- 2	U	2	507	531	ň		9	1252	310	2	,	v	1058	1062	2	-	1	1035	788	ź	2	0	701	330
2			7691	2664	2	5		1698	1619	2			616	689	6			1033	1049	2			1008	1136
, R			065	1050	6	,	,	963	683				031	519	ă			300	645	2			1333	1440
2			466	260	7			16.66	1434				73	180	7	3	~	3909	3545	6			255	436
ž			070	613	'			307	1974	~		6	070	039				70.6	693	7			1035	705
4			1380	1457	ŏ			018	000	5	-	•	1793	1570	2			807	706	é			1101	1027
ŏ			173	140	6	6	5	796	606	6			1301	1971	6			855	688	3	3	8	466	37
10			2240	2106	ž	•	,	73	73	7			1067	1141	ž			73	204	í		•	480	- 200
1	1	5	3350	3426		7	5	1452	1553	á			2271	2187	Å			618	504	5			1775	1870
2	•		1525	1500	i i	ò	6	1263	1620	ä			318	452	ŏ			1074	1754	6			604	23
3			518	487	2			1254	1232	5	5	6	1141	1016	4	4	7	584	472	7			769	955
ú			1146	1202	3			0.54	1081	6			582	586	5		'	1073	863	8			315	230
5			2544	2537				2238	2238	ā			1179	1209	6			2023	2151	4	4	8	814	60
6			333	350	5			1071	715	6	6	6	2556	2347	7			1213	1079	5			1206	1029
7			1822	1837	6			2409	2417	7			710	429	8			841	996	6			521	64
8			823	748	7			1175	1180	B			694	200	5	5	7	1928	1952	7			934	704
ġ.			832	558	8			164	139	7	7	6	1671	1614	6	-	,	897	707	à			1547	1397
10			1107	1014	9			428	133	i	ò	7	288	677	7			1087	1161	5	5	8	1186	1019
2	2	5	1782	2002	10			1173	1167	2			2389	2566	8			73	228	6			514	419
3			927	902	1	1	6	1701	1682	3			566	273	6	6	7	638	610	7			719	408
4			1543	1664	2			2777	2738	4			3172	3118	7			471	350	6	6	8	1626	149
5			1031	1039	3			1935	1593	5			73	228	7	7	7	1270	1355	5	5	0	1773	60
6			3237	3155	4			1572	1716	6			888	659	1	0	8	252	217	7	7	0	868	264
7			1707	1754	5			658	743	7			1026	698	2			272	372	2	1	1	6444	644(
8			1491	1432	6			1085	1178	8			1265	1381	3			534	603	2	-1	1	6763	6422
9			764	702	7			1511	1640	9			73	381	4			859	1018	12	-1	1	1222	693
10			855	1007	8			1425	1392	1	1	7	1924	2204	5			557	667	4	-3	1	780	33
3	3	5	4451	4371	9			1218	1444	2			424	413	6			1554	1621	6	-3	1	542	834
4			688	601	10			455	421	3			442	321	7			620	301	9	8	1	73	435
5			1245	1257	2	2	6	2596	2519	4			1290	1316	8			403	210	10	0	2	195	222
6			381	370	3			859	849	5			1669	1712	9			645	307	11	0	2	1751	896
7			412	354	4			1847	1920	6			859	804	1	1	8	1042	1445	11	2	2	73	548
8			945	831	5			2298	2423	7			2003	1977	2			1543	1629	8	-3	2	73	714
9			2305	2254	6			1231	1128	8			1141	727	3			1664	1628	4	-4	2	2558	3740
10		-	189	276	7			710	870	9			915	667	4			1082	1128	9	0	3	792	26
4	4	5	1549	1406	8			1685	1759	2	2	7	2010	1888	5			620	668	8	8	3	1312	1344
5			1279	1299	9	-	,	922	716	3			306	304	6			647	416	9	4	4	73	44
6			2438	2486	3	- 3	6	706	698	4			902	766	7			1392	1218	7	-7	4	1799	107
7			1416	1316	4			1087	1118	5			135	329	8			934	878	7	5	6	73	375

The table contains 715 reflections. The overall scale factor is 0.916×10^{-2} . Determination of absolute configuration requires that the signs on all hkl's be reversed. The 18 reflections listed at the end of the table were not used in the least-squares refinements.

very jagged and irregular traces. All these 129 reflections were then uniformly weighted at half the weight assigned to the remaining 811 reflections. Such a weighting scheme appeared to be justifiable, since the quantity $g = \{[w(|F_{obs}-K_iF_{calc}|)^2]/(NO-NV)\}^{1/2}$, (where NO is the number of observations, NV is the number of parameters varied, and K_i is the scale factor of the *i*th *l* layer), was always close to unity (HAMILTON, 1964). Continuing the refinement under these conditions gave an *R* value of $9.9^{0}/_{0}$ and *R'* value of $9.5^{0}/_{0}$ after six

 Table 4. Coordinates and thermal vibration

 (Numbers in parentheses are the estimated standard deviations)

	x	y	z	β_{11}	β_{22}
Ca	0.3322 (01)	$\frac{1}{2} - x$	0.5061 (03)	0.0055 (01)	β_{11}
\mathbf{Zn}	0	Ō	0	0.0025 (01)	β_{11}
Si	0.1393 (02)	$\frac{1}{2} - x$	0.9394 (03)	0.0020 (01)	β_{11}
O(1)	$\frac{1}{2}$	0	0.1771 (15)	0.0098 (10)	β_{11}
O(2)	0.1400 (05)	$\frac{1}{2} - x$	0.2551(11)	0.0055 (05)	β_{11}
O(3)	0.0818 (07)	0.1885 (05)	0.7847(09)	0.0145 (09)	0.0017 (05)

* Since different scale factors were used for the different l layers, β_{33} of Zn tropic temperature factors.

cycles of refinement, where $R = \sum ||F_{\rm obs}| - |K_i F_{\rm calc}|| / \sum |F_{\rm obs}|$, and $R' = [\Sigma w (F_{obs} - K_i F_{calc})^2]^{1/2} / [\Sigma w F_{obs}^2]^{1/2}$. Introduction of anomalous-dispersion corrections, with $f'_{\rm Zn} = 0.30$, $f''_{\rm Zn} = 1.50$, $f'_{\rm Ca} = 0.20$, $f''_{\rm Ca} = 0.35$, $f'_{\rm Si} = 0.10$, and $f''_{\rm Si} = 0.10$ (all values given are for $\theta = 0^{\circ}$, and were assumed to be constant for all values of θ) in four cycles of refinement gave $R = 8.7^{\circ}/_{0}$ and $R' = 7.5^{\circ}/_{0}$. Anisotropic temperature factors were introduced, and two parallel sets of refinements, one on hkl and $h\bar{k}l$ data and other on $\bar{h}\bar{k}l$ and $\bar{h}kl$ data were done. After four cycles of refinement the set with hkl and $h\bar{k}l$ gave $R = 8.1^{0}/_{0}$ and $R' = 6.0^{0}/_{0}$, while the set with $\bar{h}\bar{k}\bar{l}$ and $\bar{h}k\bar{l}$ gave $R = 6.7^{0}/_{0}$ and $R' = 5.4^{\circ}/_{0}$. Of the symmetry-related reflections, hkl and khl, the set that gave a better R value was retained and the other set removed. and this left 697 independent reflections for further refinements. In another four cycles, the refinement on positive l configuration converged to $R = 7.8^{\circ}/_{\circ}$, and $R' = 5.8^{\circ}/_{\circ}$, and that on negative l configuration converged to $R = 6.7^{\circ}/_{0}$ and $R' = 5.3^{\circ}/_{0}$. The quantity g at this final stage was 1.25. The differences in the z coordinates of the oxygen atoms relative to the Zn atom were of the order of 0.005 to 0.01 Å between the two configurations. These differences in R' and z coordinates are significant even at a confidence level of $0.10/_0$ (see HAMILTON'S, 1964, significance tests on R values). The final list of $F_{\rm obs}$ and $F_{\rm calc}$ are shown in Table 3. The final atomic coordinates and the thermal parameters of the atoms in hardystonite are given in Table 4.

Interatomic distances and bond angles together with their estimated standard deviations, taking into account both the errors in cell dimensions and in structural parameters, were calculated using the SORFFE program, a local modified version of the ORFFE written

β_{33}	β_{12}	β ₁₃	β23
0.0076 (04)	0.0025 (01)	0.0005 (02)	$-\beta_{13}$
0.0073*	0	0	0
0.0042(06)	0.0001 (02)	0.0003 (03)	$-\beta_{13}$
0.0044(20)	-0.0050(14)	0	0
0.0069 (16)	0.0028(07)	-0.0004(06)	$-\beta_{13}$
0.0124(15)	-0.0016(06)	0.0033 (08)	-0.0014(07)

parameters of atoms in hardystonite in the last two decimal places of the preceding quantity)

was not varied after converting the isotropic temperature factors into aniso-

Z. Kristallogr. Bd. 130, 4-6

S. JOHN LOUISNATHAN

Table 5. Bond lengths and angles in hardystonite The estimated standard deviations given in parentheses are $\times 10^4$ for bond lengths and $\times 10$ for bond angles

Bond leng	gths	Bond angles						
The ZnO ₄ tetrahedro	on at point sym	metry 4						
$Zn \rightarrow O(3) [4 \times]$	1.937 (4) Å	O(3)-Zn- $O(3')$ [2×]	112.3 (3)°					
$O(3) \rightarrow O(3') [2 \times]$	3.217 (8)	$O(3) - Zn - O(3'') [4 \times]$	108.1 (1)					
O(3)-O(3") [4×]	3.136 (8)							
The Si ₂ O ₇ group at p	oint symmetry	mm2						
Si-O(1)	$1.649~(3){ m \AA}$	SiO(1)Si'	$138.5(3)^{\circ}$					
Si-O(2)	1.583 (1)	O(1)-Si-O(2)	111.0(2)					
SiO(3) [2×]	1.619 (4)	O(1)—Si— $O(3)$ [2 ×]	101.4 (4)					
O(1)-O(2)	2.664(4)	O(3)—Si—O(3''')	103.5 (4)					
O(1)—O(3) [2×]	2.529(4)	O(3)—Si— $O(2)$ [2×]	118.5 (2)					
O(3)—O(3''')	2.543(9)							
O(3)—O(2) [4×]	2.752 (4)							
The CaO ₈ polyhedron	n at point symr	netry m						
Ca $-O(3)$ [2 ×]	2.412 (5)	$O(2)$ —Ca—O(3) $[2 \times]$	66.8 (1)°					
Ca-O(2)	2.472 (2)	O(3)— Ca — $O(3')$	63.6(2)					
Ca-O(1)	2.485 (4)	O(2)— Ca — $O(2')$	58.8 (2)					
Ca-O(3''') [2×]	2.685(5)	O(2)— Ca — $O(3') [2 ×]$	89.7 (1)					
Ca—O(2') [2 ×]	2.700 (1)	O(2'')-Ca- $O(3''')$ [2 ×]	84.7 (2)					
O(1)-O(2'')	4.004 (1)	O(1)—Ca— $O(3''')$ [2 ×]	58.4 (1)					
O(3'''')O(3'')	5.043 (8)	O(1)-Ca-O(2'')	107.8 (2)					
		O(3''')—Ca— $O(3'''')$	139.8(2)					

by BUSING, MARTIN and LEVY (1964). The bond distances and bond angles in hardystonite (Table 5) do not include corrections for thermal movements.

4. Discussion

This study confirms the structure of hardystonite as obtained by WARREN and TRAUTZ (1930). The zinc tetrahedra are located at the corners and base-center of the primitive tetragonal lattice. All four tetrahedral oxygen atoms are shared by adjacent silicon tetrahedra, and the silicon tetrahedra are joined in pairs forming Si₂O₇ groups. The linkage of zinc and silicon tetrahedra results in an heterocyclic five-membered tetrahedral ring. The rings link together to form a corrugated sheet parallel to c(001), and the adjacent sheets are held together by Ca-O bonds.

The Zn-O bonding appears to have considerable covalent character. The mean Zn-O distance in zincite is 1.95 Å, and it varies from 2.08 to 1.96 Å for different zinc spinels (SLATER, 1965). The sum of tetrahedral covalent radii of oxygen and zinc is 1.97 Å (PAULING, 1960). In comparison, the distance of 1.937 Å in hardystonite is definitely shorter by a significant amount, and this distance compares well with the covalent Zn-O distance of 1.936 Å as obtained from the arithmetic mean of the shortest Zn-Zn distance (2.665 Å) in zinc metal and the O–O distance (1.207 Å) in the O₂ diatomic molecule. Using PAULING's (1960) arguments, this is a strong indication for the presence of covalent-bond character between zinc and oxygen. The bond angles (108° 5', four times; 112° 17', twice) within the ZnO₄ tetrahedron are almost regular, suggesting that zinc, using its sp^3 hybrid orbitals, forms strong σ bonds with the oxygen atoms.

CRUICKSHANK (1961) has proposed the existence of π bonding in addition to σ bonding between Si and O atoms in silicates. For isolated Si_2O_7 groups he predicts distances of 1.656 Å to the bridging oxygen and 1.621 Å to the terminal oxygen atoms. In hardystonite the bridgebond distance is 1.649 Å and there are two terminal-bond distances of 1.619 Å, which compare very well with predicted distances. The third terminal-bond distance of 1.583 Å is significantly shorter than the predicted distance.

Every oxygen atom in the structure has four nearest-neighbor cations in a distorted tetrahedral configuration, suggesting that every oxygen atom is in a state of partial nonequivalent-sp³ hybridization. This would increase the strength of σ bonds between oxygen and zinc, and of both σ and π bonds between oxygen and silicon. The terminal oxygen atom, O(3), is σ bonded both to silicon and zinc, indicating that the Si₂O₇ group in hardystonite cannot be considered as an isolated pyrosilicate ion. The effect of O(3) sharing its bonds between Si and Zn is to nearly equalize the Si-O(3) terminal bond and the Si-O(1) bridge bond, as for example, is found in hemimorphite, Zn₂Si₂O₇(OH)₂ · H₂O (MCDONALD and CRUICKSHANK, 1967). This is not observed in hardystonite possibly because, the nonequivalent-sp³ hybridization of O(3) enhances the overlap between oxygen electrons and the d electrons of silicon, while the d electrons of zinc, buried in the ion core, do not take part in bonding. The apical oxygen atom, O(2), does not share its electrons in bonding with any other tetrahedral cations in the structure. SMITH and BAILEY (1963) observe that, for most corrugated Si₂O₅ sheets (which are comparable with the ZnSi₂O₇ sheet in hardystonite), the bond length to the unshared oxygen is

28*

shorter than those to basal oxygen atoms. The short Si-O(2) distance in hardystonite is a result of double- to triple-bond character.

The CaO₈ polyhedron in hardystonite is a highly distorted square antiprism. The Ca-O distance for Ca in 8-coordination varies from 2.34 to 2.60 Å in different minerals. The bond distances and bond angles in the Ca polyhedron of hardystonite are given in Table 5. There is no evidence in these bond lengths for the presence of any significant covalent bonding. However, from the evidence that all oxygen atoms have some hybrid characteristics one may expect a certain amount of covalency in Ca-O bonds, especially in the Ca-O(3) and Ca-O(2) bonds. Using the argument of electrostaticvalence bond counts, SMITH (1953) has correlated the short Ca-O distances in melilite with the covalent character in these bonds. The distortion of the Ca polyhedron is more a consequence of bonding characteristics within the sheet than of any covalent bonding within the polyhedron. The mean of half of the bond angles (mean θ) at calcium is 57°21'. At such an angle, calculations of KEPERT (1965) show that the ligand-ligand repulsion energies tend to be minimal, thus enhancing the stability of the central ion in the polyhedron.

A consequence of such a description of bonding within the Si_2O_7 group in melilite-type structures is that, with different cation substitutions in the Zn or Ca sites, the dimensions of the Si_2O_7 group also vary. Specifically, with the increase in the covalency of bonding between oxygen atoms and cations other than Si, due to substitutions of different atomic species, there will be an increasing degree of equalization of bond lengths between the bridge bonds and terminal bonds of the pyrosilicate group.

Thus the structure of hardystonite can be summarized as consisting of $[\text{ZnSi}_2\text{O}_7]^{-4}$ sheets within which the nature of bonding is dominantly covalent, the adjacent sheets being held together by Ca²⁺ ions with the interlayer bonding predominantly ionic in character.

Thus ZOLTAI'S (1960) classification of melilites as "two-dimensionally non-terminated, single-sheet, structure of tetrahedra" is more appropriate than the older description in terms of Si_2O_7 isolated sorosilicate groups.

Acknowledgements

The author wishes to express his gratitude to Professors JOSEPH V. SMITH and PAUL B. MOORE for their critical discussions. The financial support for this work came from NSF-GA 907 administered to Professor PAUL B. MOORE.

References

- W. L. BOND (1951), Making small spheres. Rev. Scient. Instr. 22, 344-345.
- CHARLES W. BURNHAM (1962), Lattice constant refinement. Ann. Rept. Direct. Geophys. Lab. Year Book 61, 132-135.
- W. R. BUSING, K. O. MARTIN and H. A. LEVY (1962), ORFLS, a Fortran crystallographic least squares program. Oak Ridge National Laboratory, Oak Ridge, Tennessee.
- --- (1964), ORFFE, a Fortran crystallographic functions and error program. Oak Ridge National Laboratory, Oak Ridge, Tennessee.
- D. W. J. CRUICKSHANK (1961), The role of 3d-orbitals in π -bonds between (a) silicon, phosphorus, sulphur, or chlorine and (b) oxygen or nitrogen. J. Chem. Soc. 1961, 5486-5504.
- W. G. HAMILTON (1964), Statistics in physical science. Ronald Press, New York.
- D. L. KEPERT (1965), The stereochemistry of eight-co-ordination. J. Chem. Soc. 1965, 4736-4744.
- W. S. McDONALD and D. W. J. CRUICKSHANK (1967), Refinement of the structure of hemimorphite. Z. Kristallogr. 124, 180-191.
- C. PALACHE (1935), The minerals of Franklin and Sterling Hill, New Jersey. U.S. Geol. Surv. Prof. paper No. 180, 93-94, Washington, D.C.
- LINUS PAULING (1960), The nature of the chemical bond. Cornell Univ. Press.
- E. R. SEGNIT (1954), The system CaO-ZnO-SiO₂. J. Amer. Ceram. Soc. 37, 273-277.
- JOHN C. SLATER (1965), Quantum theory of molecules and solids (Appendix 1). McGraw Hill, New York.
- J. V. SMITH (1953), Reexamination of the crystal structure of melilite. Amer. Mineral. 38, 643-661.
- J. V. SMITH (1956), The powder patterns and lattice parameters of plagioclase felspars. I. The soda-rich plagioclases. Mineral. Mag. 31, 47-68.
- J. V. SMITH (1965), X-ray-emission microanalysis of rock-forming minerals. I. Experimental techniques. Journ. Geol. 73, 830-864.
- J. V. SMITH (1966), X-ray-emission microanalysis of rock-forming minerals. VI. Chiropyroxenes near the diopside-hedenbergite join. Journ. Geol. 74, 463-477.
- J. V. SMITH and S. W. BAILEY (1963), Second review of Al-O an Si-O tetrahedral distances. Acta Crystallogr. 16, 801-811.
- B. E. WARREN and O. R. TRAUTZ (1930), The structure of hardystonite Ca₂ZnSi₂O₇. Z. Kristallogr. 75, 525-528.
- W. H. ZACHARIASEN (1963), The secondary extinction correction. Acta Crystallogr. 16, 1139-1144.
- (1967), A general theory of x-ray diffraction in crystals. Acta Crystallogr. 23, 558-564.
- TIBOR ZOLTAI (1960), Classification of silicates and other minerals with tetrahedral structures. Amer. Mineral. 45, 960-973.