A redetermination of the crystal structure of cosalite, $Pb_2Bi_2S_5*$

By T. SRIKRISHNAN** and WERNER NOWACKI

Department of Crystallography and Structural Sciences University of Bern***

(Received 7 February 1973)

Auszug

Die Kristallstruktur von Cosalit, Pb₂Bi₂S₅, wurde mit Hilfe von Diffraktometerdaten neu bestimmt, um die Koordinationen von Pb und Bi zu erhalten und sie mit denjenigen anderer Pb-Bi-Sulfide zu vergleichen. Die Gitterkonstanten und die Raumgruppe sind $a = 19,098 \pm 0,004$ Å, $b = 23,890 \pm 0,005$ Å, $c = 4,057 \pm 0,001$ Å und D_{2n}^{16} —Pbnm, mit 8 Formeleinheiten in der Elementarzelle (zwei in der asymmetrischen Einheit). Mittels Ausgleichsmethoden wurde die Struktur bis zu einem *R*-Wert von $10,8^{0}/_{0}$ für alle 1432 Reflexe (9,6⁰/₀ für die beobachteten 1217 Reflexe) verfeinert.

Alle Atome liegen in den Spiegelebenen der Raumgruppe bei z = 1/4 und 3/4. Die Bi-Atome konnten von den Pb-Atomen durch Vergleich ihrer Koordinationen unterschieden werden. Bi(1) hat eine quadratisch-pyramidale Koordination von fünf S in Abständen von 2,57 bis 2,83 Å, dazu ein zusätzliches S im Abstand von 3,21 Å. Die anderen drei Bi-Atome weisen eine deformiert-oktaedrische Sechserkoordination auf, mit Bi-S = 2,57 bis 3,45 Å (mittlere Standardabweichung = 0,01 Å), ebenso Pb(1) und Pb(2). Die beiden anderen Pb-Atome, Pb(3) und Pb(4), haben eine Achter-Koordination (trigonal-prismatisch plus zwei). Die (Pb-S)-Abstände liegen im Bereich von 2,72 bis 3,47 Å. Außerdem befindet sich in der Struktur ein "statistisches Kupferatom", dessen Koordination ein deformiertes Tetraeder ist (Cu-S = 2,21 bis 2,61 Å).

Die Strukturformel von Cosalit kann als $[Bi_2S_4|S|Pb^{VIP}b^{VIII}]$ geschrieben werden, Typus III.a₃ entsprechend der Klassifikation der Sulfosalze von NowACKI (1969).

^{*} Contribution No. 236b; part 71 on sulfides and sulfosalts. This work was presented at the Annual meeting of the Swiss Society for Crystallography held at Luzern on 15th October 1972. Abstract in Verh. Schweiz. Naturf. Gesellsch. Wiss. Teil, 1972, 265-266 (no 236a).

^{**} Present address: Organic Chemistry Laboratory, Swiss Federal Institute of Technology, Zürich, Switzerland.

^{***} CH-3012 Bern, Sahlistraße 6, Switzerland.

Abstract

The crystal structure of cosalite, Pb₂Bi₂S₅, has been redetermined with the help of diffractometric data, with a view to study the coordinations of Pb and Bi atoms in the structure and to compare them with that found in other leadbismuth sulfides. The cell dimensions and space group are $a = 19.098 \pm 0.004$, $b = 23.890 \pm 0.005$, $c = 4.057 \pm 0.001$ Å and D_{2h}^{16} —Pbnm. There are eight formula units in the unit cell and two in the asymmetric unit. The structure was refined by the method of least squares, to a final R value of $10.8^{\circ}/_{0}$ for all the 1432 reflections ($9.6^{\circ}/_{0}$ for the observed 1217 reflections).

All the atoms lie on the mirror planes of the space group at z = 1/4 and 3/4. Bismuth atoms could be distinguished from the lead atoms by a comparison of their coordination. Bi(1) has a coordination of five sulfur atoms in the range of 2.57 to 2.83 Å, which could be described as a square pyramid, plus an additional sulfur atom at a distance of 3.21 Å. The other three independent Bi atoms in the structure have a coordination of six, making up a distorted octahedron in each. These Bi—S distances are in the range 2.57 to 3.45 Å and the average standard deviation in them is 0.01 Å. Six sulfur atoms around Pb(1) and Pb(2) form a distorted octahedron. The other two lead atoms, Pb(3) and Pb(4), have a coordination of eight (in the corners of a trigonal prism plus two). The Pb—S distances are in the range of 2.72 to 3.47 Å; the mean standard deviation is 0.01 Å. There is, in addition, a "statistical copper" atom in the structure. The coordination around the copper atom is a distorted tetrahedron and the Cu—S distances are in the range of 2.21 to 2.61 Å.

The structural formula of cosalite could be written as $[Bi_2S_4]S[Pb^{vIPb^{vIU}}]$ and belongs to the type III.a₃, in the classification of sulfosalts by NOWACKI (1969).

Introduction

Cosalite is a lead bismuth sulfide and derives its name from its occurence at the Cosala mines, Sinaloa, Mexico. It is not an uncommon mineral, formed at moderate temperatures, in contact metamorphic deposits (Vaskö, Rézbánya, Fahlun and Nordmark) and in pegmatites. It occurs at the Cosala mines, Mexico, at the Bjelke mine, Nordmark, Sweden, at the Forno glacier, Switzerland and at a number of other places in the world (DANA, 1944). It has a chemical composition of $Pb_2Bi_2S_5$, but contains small amounts of Cu, Ag, and Fe, which is depending on its source.

Cosalite was first investigated by BERRY (1939), during the course of his studies of complex sulfosalts and he gave the cell dimensions and the possible space group and chemical composition (Table 2). WEITZ and HELLNER (1960) carried out the crystal-structure investigation of cosalite by three-dimensional Patterson and Fourier methods. Their analysis was not based on complete three-dimensional diffraction data and distinction between the lead and bismuth atoms was impossible,

8*

because of the small differences in their scattering factors and also because of the relatively inaccurate coordinates of the sulfur atoms.

Quite recently accurate analyses of some of the lead-bismuth sulfides are undertaken in this laboratory (IITAKA and NOWACKI, 1962; OHMASA and NOWACKI, 1970) and a distinction between lead and bismuth atoms has been made from a comparison of their coordination. We have undertaken this redetermination, so as to get an accurately refined structure, with the help of diffractometric data and hence distinguish between lead and bismuth atoms by a comparison of their coordination.

Experimental

Crystals of cosalite are opaque, lead-gray to steel-gray in colour and have a metallic luster. They are most frequently found elongated as needles, the needle axis being the c axis, as capillary forms and also as feathery or fibrous aggregates. Because of the fibrous nature of these crystals, some of the reflections have an inherent small faint streak associated with them. Also the existence of a perfect cleavage in the (001) direction rendered the problem of selecting a good crystal rather difficult.

The crystal used for the present study was prepared from a sample of cosalite from the Cariboo gold mines at Wells in British Columbia, Canada. It was a thin and fibrous needle, with dimensions $0.674 \times 0.126 \times 0.085$ mm, with approximately cylindrical cross section. An electron-probe analysis of the sample yielded the values given in Table 1. The chemical composition of cosalite is essentially Pb₂Bi₂S₅, although there are some minor traces of Cu and Ag. We shall discuss about the presence of Cu in a later section.

	Analysis No. 438	Theoretical
Pb	39.5%	$41.75^{0}/_{0}$
Bi	39.9	42.10
\mathbf{S}	18.3	16.15
\mathbf{Cu}	1.3	-
Ag	0.8	
	99.8%/0	100%/0

Table 1. Microprobe analysis of cosalite sample

Analysis No. 438: Cosalite sample from Cariboo gold mine, British Columbia, Canada (found with gold and quartz).

Theoretical: Pb₂Bi₂S₅.

	BERRY (1939)	WEITZ and HELLNER (1960)	Present study
Cosalite Pb ₂ Bi ₂ S ₅	$a = 19.07 \text{ \AA}$ b = 23.87 c = 4.055	19.101 Å 23.913 4.061	$egin{array}{c} 19.098 \pm 0.004 \ { m \AA} \ 23.890 \pm 0.005 \ 4.057 \pm 0.001 \end{array}$

Table 2. Crystallographic data of cosalite

Space group D_{2h}^{16} -Pbnm, Z = 8, $d_x = 7.17 \text{ g cm}^{-3}$, $V = 1851 \text{ Å}^3$, F(000) = 3309.

The lattice constants were determined with the help of backreflection Weissenberg photographs, on which the diffraction pattern of silicon have been superposed to calibrate the effect of film shrinkage. The precise lattice constants determined from a least-square best fit of 24 hk0 and 10 h0l reflections are given in Table 2, together with the values of BERRY (1939) and WEITZ and HELLNER (1960). The calculations were done with the aid of a program written by N. D. JONES (unpublished).

The crystal belongs to the orthorhombic system. The possible space groups, as deduced from the systematic absences in Weissenberg photographs, are D_{2h}^{16} —Pbnm or C_{2v}^{9} —Pbn 2₁. But the former space group has been assumed for the following two reasons. Firstly an examination of the Weissenberg photographs taken about the *c* axis revealed that the intensity distribution in the zero, second, fourth layers are alike as well as in the first and third. This is possible only in the space group Pbnm, in the fourfold special positions (on the mirror planes at z = 0.25 and 0.75). Secondly, an analysis of the distribution of the normalized structure amplitudes also indicated in favour of the centric space group rather than the acentric one (see Table 3). There are eight formula units in the unit cell and two in the asymmetric quarter.

	Emporimental	Theoretical		
	Experimental	Centric	Acentric	
E >	0.740	0.798	0.886	
$< \mathbf{E}^2 >$	1.005	1.000	1.000	
$< E^2 - 1 >$	1.103	0.968	0.736	
E > 3.0	1.2%/0	0.3º/o	0.01%/0	
E >2.0	$6.4^{0}/_{0}$	5.0º/0	1.8%/0	
E > 1.0	26.6%	$32.0^{0}/_{0}$	37.0%	

Table 3. Distribution of normalized structure factors for cosalite

Three-dimensional intensity data were collected by a Weissenberg counter diffractometer (Supper-Pace Autodiffractometer) using $CuK\alpha$ radiation. The intensities were corrected for Lorentz and polarization factors. Correction for absorption was made with the help of an ICR-10 program (JOHNSON, 1963), because of the high linear absorption coefficient of the material ($\mu = 1460 \text{ cm}^{-1}$ for $CuK\alpha$ radiation).

Structure determination and refinement

The coordinates of the heavy atoms were located from the Patterson synthesis. Because of the fact that the atoms lie on the mirror planes at z = 1/4 and 3/4, the Patterson interactions are confined to the sections at w = 0 and 1/2. This confirmed the coordinates of the metal atoms in WEITZ and HELLNER's model.

A structure-factor calculation was attempted with the coordinates of the heavy atoms, with the scattering factor of bismuth. The R factor for all the 1432 reflections was $25^{\circ}/_{\circ}$. A three-dimensional Fourier synthesis was computed with the coordinates of the heavy atoms. The sulfur atoms were found from the above Fourier map and this confirmed the sulfur coordinates of WEITZ and HELLNER's model.

Three-dimensional least-squares refinement was started with the coordinates of all atoms. The initial R factor was $22^{0}/_{0}$. After a series of isotropic refinements, the R factor dropped to $15^{0}/_{0}$. At this stage, the interatomic distances were calculated and marked difference was observed in the coordination of the Pb and Bi atoms. Based on their coordination, Pb atoms were distinguished from Bi atoms and further refinements were made with the individual atomic scattering factors for Pb and Bi. Neutral-atom form factors as given by THOMAS, UMEDA and KING were used for the Pb and Bi atoms, and those given by DAWSON were employed for S atoms¹.

Also, from a study of the difference Fourier at this stage, a vacant site was found at x = 0.40, y = 0.06, z = 0.75. Considerations of the dispositions of the sulfur atoms in the neighbourhood, and also the fact that there is a trace of Cu content in the sample (as evidenced by microprobe analysis), suggested that this could be the site of the Cu atom in the structure. From the percentage of content from microprobe and the peak height in the Fourier map, the occupancy factor for Cu was estimated to be not more than 0.12 (this was also verified by the least-squares refinement). The Cu atom was refined, at first isotropically

¹ International tables for x-ray crystallography, vol. III. Kynoch Press, Birmingham, 1962, p. 201–212.

Table 4. Observed and calculated structure amplitudes

		10010 11 000		aratea ber coras	e ampreaaco		
b F _o F _c	h F _o F _c	h F Fe	h F _o F _c	h F _o F _c	h F _o F _c	h F F	h F F
	19 265 -259	18 99 -83	3 282 -284	2 263 -283	15 179 163	7 738 -724	12 302 294
h U U	20 137 -136	19 44 -45	4 159 -156	4 78 63	16 85 -57	8 155 -143	13 101 110
10 906 820	21 158 168	20 241 250 21 126 132	6 166 -189	7 111 116	21 96 -107	11 143 -153	16 336 345
12 267 -219	h 6 0	22 136 144	7 235 263	8 124 -122	22 111 90	12 139 -125	17* 19 -10
14 188 -182 16 539 -456	0 759 704	h 11 0	8 258 -296 10 128 143	9 58 50	h 2 1	15 547 502	19 191 - 191
18 310 -275	2* 34 7	1 166 156	14 46 -60	11 78 74	1 134 89	15 209 182	20 111 114
22 162 172	5 545 405 4 164 -188	3 233 -215	16 174 -188	13 182 177	2 300 -344 3 906 -827	17 105 -100	h 14 1
h 1 0	8 107 -129	4 490 -538	17* 18 -16	14 151 145	4 275 -233	18 96 -77	3* 31 44
3 208 -200	11 284 -321	7* 31 -44	19 39 -43	109 -97	11 155 149	21 30 -34	5 376 387
4 92 -102	12 415 444	9* 26 -72	h 17 0	n 21 0	13 266 226	22 55 64	6 60 -65
13* 27 = -3	14 79 -72	12 107 -130	2 274 -251	4 61 -51	19 272 -292	h 9 1	9 261 307
14 163 -157	15 62 ~61	15 83 -100	3 453 -453	5 85 -91	20 280 289	2 153 128	10 182 -218
17 173 -162	17* 24 - 24	17 193 209	5 98 -111	7 141 -135	6 3 L	9 175 203	13 107 105
18 218 177	18 227 -236	18 59 75	6* 18 - 21 7 - 227 - 250	8 144 138	5 977 930	10 65 -62	14 176 -175 15 368 363
(9°)) (1)	204 31 25	20* 20 9	8 147 168	10 155 -144	6 259 197	12* 5 22	16 118 112
0* 10 -0	21 71 -85	21 110 117	9 166 185	11 155 153	11 194 -165	13 380 363	17 140 -136
1* 21 =44	5 7 0	h 12 0	11 152 173	14 58 -70	15 256 -213	15 101 -95	19* 24 =15
2 67 - 39	1 1/178 000	0 252 -249	13 68 -62 14 699 -683	h 24 0	17 255 -275 18 355 -357	16 120 =123 17 320 =503	20 101 -105
4 393 386	2 318 -327	3 130 -131	15 66 -56	0 223 239	21 105 126	18 291 -284	h 15 1
5 445 480 6 420 -396	5* 16 -25 7 -227 -254	4* 58 47 5 121 -135	16* 32 - 24 17 - 73 - 75	2 299 -300 5 106 -100	h 4 V	19 145 142 20 134 - 136	1* 3 -5 2 85 79
7 227 276	8 161 149	6 273 308	18 59 60	6 51 -50	6 166 104	21 217 227	3 62 -72
8 171 -154	9 463 505	8 232 -267	19* 17 22	7 53 -46 8* 95 -28	7 150 -152 8 506 455	h 10 1	4 442 420 5 583 -587
10 235 -211	12 430 -459	11 178 -195	h 18 0	9 99 91	9 488 -402	0 116 124	6 755 -755
11 241 227	13 218 -240	13 101 -112	3 141 131 3 215 -206	10 144 141	11 70 -77	1 95 ~103	7 61 -73 8 980 -399
13* 48 - 54	15 254 -251	15* 26 - 34	4 138 160	12 101 -98	14 242 189	7 160 -167	9 92 -71
14 259 225 15 644 560	16 143 -148	17 114 -133	5* 52 52 6 202 217	13 286 -274	10 517 280	10 67 81	10 212 -243
16 390 -346	18 253 268	18 256 -265	7 102 -104	h 25 0	h 5 1	11 377 -390	13* 38 28
17 70 -65 19 164 -162	20 264 277 21* 25 -26	20 52 -34	9 148 164	3 178 173	2 1359 1251	13 342 -322	15 70 -56
21 255 268	22 57 -70	21 28 0	13 348 -382	5 192 177	3 793 764	14 59 57	16 64 -59
23 116 -129	h 8 0	h 13 0	15 140 -140	8* 27 -48	6 64 73	16 291 -284	18 106 -99
h 3 0	0 201 -331	2 484 -464	16 103 112	9 96 -92	7 204 159 8 630 -550	17 183 -188	10 73 79
2* 31 1	2 193 -213	4 361 389	18 82 -84	11 87 -80	9 325 240	19 43 38	h 16 1
4 364 -417 5 1332 -1411	3 166 105 4 139 134	5 164 ~169 6* 29 - 34	h 19 - 0	12 89 -90	10 101 98	20 99 114 21 123 -139	$\frac{3}{4}$ $\frac{79}{127}$ $\frac{71}{127}$
6 589 534	5 117 -137	8 521 400	2 241 -220	h 26 0	13 160 143	h 11 1	6 487 -479
8 517 -570	7 104 77	9 558 400 10* 35 15	5 228 252	0 56 47 1 80 -75	14 180 139 15 443 -396	1 111 93	7 87 -04 8* 10 -11
10* 47 -35	8 124 -133	11 178 212	6 260 -270	2 81 78	16 117 107	2 448 397	9 106 125
12 156 -136	11 309 329	14 178 198	8 81 -86	4 162 152	20 200 -201	4* 30 -22	11 130 -147
13 117 117	12 64 89	15 225 -254	9 99 -105	5* 10 -2	21 123 -131	6* 47 45 2 7	12 211 237
15 140 -185	14 366 404	17 47 42	11 130 141	7* 10 34	5 6 1 × 50	8 163 -176	15 220 -221
16 168 147 17 150 -165	16 125 ~112	18 123 -134	12 128 -98 15 95 -85	8 114 107	5 00 103	10 312 -380	16 405 -410
19 210 204	19 246 242	21 62 63	15 59 -60	10 30 25	7 191 146	12 377 376	18 35 11
20 63 73	20 149 152 21 275 291	h 14 0	16 97 100	h 27 U	8 157 -126 9 168 -199	13 112 119	19 29 ~20
22* 20 105	22 170 -187	0 229 281	h 20 0	1* 22 29	10* 47 62	15 93 94	h 17 1
h 4 0	h 9 0	3 169 =159	0 125 142	3 115 113	15 272 255	17 89 83	2 143 -162
1* 17 -10 k k70 k00	1* 21 38	4 211 -199	1 84 -78	4 162 -156	15 94 80	18 241 -235	3 214 203
5 210 -176	5 93 111	7* 25 32	3 207 -217	6 280 249	17 359 326	20 195 -208	5 53 48
6 770 -815 8 251 -255	4 182 - 168 5 68 - 72	8 168 207	4 160	7 146 141	18 291 -279 19 135 144	21 243 ~290	6 62 -56 7 05 100
10* 50 =39	8 148 -136	12* 34 -51	6 224 -220	9* 5 13	20 183 194	h 12 1	8 56 69
11 170 157	9 100 124 10 219 253	14 91 -105 15 96 -106	7 211 219 8 328 339	h 28 0	21* 7 11 22 144 163	1 706 693	9* 25 -23 10 396 -438
13 167 -151	12 148 188	16 129 -141	9 393 400	0 132 -106	h 7 1	3 28 55	13 45 -43
14 102 -90 15 740 -660	13 206 228 14 205 242	17 132 135	107 59 49 11 99 96	2 80 -70 4 60 56	1* 32 5	4* 18 40 5 177 167	19 96 -86 15 106 104
16 278 -245	15 196 -215	19 425 442 90 57 50	12 159 160	5 94	5 158 154	6 65 -68	16* 30 1
18 147 129	17 287 -298	ы 15 0 5 15 0	16 169 -163	7 72 79	7 156 -138	9 231 -265	17 215 -195 18 58 58
20 53 -72 22 324 351	18 82 -83 19 121 135	1 596 -536	h 21 0	h 29 0	10 135 -108	10 176 194 11 3 70 550	h 18 1
23 213 -245	20 37 -46	3 71 -88	2 120 -96	1 164 -164	12 185 175	12 204 215	0 646 653
h 5 0	22 25 18	4 153 140 7 181 -220	3 166 175 4 101 -96	3 128 -118	13 109 =75 14 336 291	13 207 217 14 158 -169	1 270 285 2 159 -188
1* 46 -42	h 10 0	8 298 363	5 119 ~108	n 0 1	15 134 -123	15 91 99	3 217 202
5 419 428	2 164 132	10 72 61	0 195 -186 7 150 161	1 380 346 7 1223 1095	10 91 87 17 380 344	10 230 -246 17 46 -46	5 87 75 8 86 97
6 293 -370	3 461 -516	12 235 256	8 379 379	9 399 324	18 176 162	18 205 -204	9 195 -179
8 357 -429	5 396 -463	15 152 165	97 10 -45 10 69 88	-7 494 440 19 195 -214	-9 251 -258 20 151 -161	19 59 55 20 31 35	10 328 350
9 440 -471	7 220 226 9 300 374	16* 17 24	11 138 -145	h 1 1	21 119 131	h 13 1	12 78 -67
11 142 155	12 179 224	19 191 211	13 78 -72	6 179 -162	5 8 1	2 147 -150	14 98 90
12 431 -408 14 159 -161	13 236 -272 14 80 -85	20 87 92	14 169 -177 16 26 6	9 88 -82 10 81 -99	0* 47 -40	3 75 -90 6 106 118	15 37 -39 16* 13 -10
16 420 -409	15 180 -198	n 16 0	h 22 0	11 265 -206	1* 19 4	7 107 -132	17 39 32
18 151 164	17 140 145	1 312 285	1 88 102	14 627 521	2 157 -137 5* 13 -54	9 204 -221	

Table 4. (Continued)

h F ₀ F _c h 19 1 1 364 415	h F ₀ F _c h 26 1 0 135 159	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	h F ₀ F _c 8* 29 8 9 224 289 10 195 -239	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c} h \begin{bmatrix} F_0 \\ F_0 \end{bmatrix} & F_c \\ 9 & 68 & 52 \\ 10^* & 53 & 40 \\ 11 & 164 & 135 \\ \end{array} $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	h F _o F _e 3* 37 51 4 307 -288 5 399 395	h F _o F _c h 2 4 3 102 115
2 291 270 3* 31 32 5* 30 -3 7 90 -105 8 67 -62 10 180 214 11 707 740	1 + 155 + 1525 $3^* + 15 + 255$ $4^* + 10 - 111$ $5^* + 7 - 235$ 6 + 77 - 80 7 + 46 - 31 8 - 009 + 175	21" 19 24 h 5 2 2* 23 13 4 384 419 5 316 -301 4 375 963	$\begin{array}{c} 12 & ()4 & (0) \\ 13 & 197 & 224 \\ 14 & 66 & 72 \\ 15 & 152 & 166 \\ 16 & 40 & -47 \\ 17 & 109 & -115 \\ 18 & 03 & 76 \end{array}$	6 135 - 17 6 135 - 178 14 99 112 15 120 120 h 19 2 9 141 146	12 78 -00 13 357 275 14 404 ~367 15 118 -108 18 124 -120 h 2 3	h 9 3 1* 15 22 2* 59 -76 3 268 233 4 512 -478 5 166 160	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5 173 174 5 173 174 6 194 -184 7 99 92 8 68 -73 9 94 76 11 00 93
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9 185 157 h 27 1 1 150 -145 3* 19 -29 4 72 -57	7 119 -109 8 307 331 9 362 361 10 280 277 11 124 -128 19 375 336	19 29 38 h 11 2 1 114 -116 2 117 -131 3 154 168	5*24 - 54 6 175 217 7 135 - 161 10 111 138 11 96 - 118 14 71 54	$5^* 25 = 12$ 11 100 = 85 13 138 = 154 16 67 = 71 17 160 156 18 188 193	6 359 359 8* 19 -7 9 116 -134 10 58 58 11 66 -65 13 262 -25	14 53 -47 h 16 3 0* 34 -57 2* 30 -17 3 49 -36	12* 20 39 h 3 4 5 527 -571 6 248 236 7* 19 -96
h 20 1 1 230 -177 2 356 -342 3 128 -125 5 70 69	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13* 21 5 14 146 133 15 91 69 16 365 341 17 99 82 18 124 -131	5* 17 -20 7* 29 48 8* 20 -70 10 203 -245 11* 15 10 15 64 81	h 20 2 0 93 -120 1 70 65 4 108 127 5 151 -183	h 3 3 1 139 -142 2 160 130 5 134 -121 6 171 -120	14 48 -33 15 74 79 16 78 80 h 10 3 0* 59 -75	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9*21 31 10*33 4 11 152 150 12 59 -53 h 4 4
6 165 -163 7 105 111 8 75 -80 9 147 157 11* 19 26 12 138 134	2 97 98 3* 17 43 h 0 2 2 69 -66 10 702 -652	19 227 217 20 114 116 h 6 2 0 509 -545 5* 13 11	16 202 220 17 164 -173 18 54 -64 19 162 181 h 12 2	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	11 124 103 13 197 -171 15 155 132 17 147 173 18 222 251 b b 3	1* 20 49 4 134 -125 7 101 118 8* 26 2 9 130 140 10 59 -66	11 114 112 12 173 -165 13 64 64 b 17 3 2 93 105	0* 26 14 5 83 -98 6 302 -340 7 210 217 8 108 104 9* 12 26
13 119 -109 14 126 113 15 215 190 16 44 -37 h 21 1	12 208 160 14 155 137 16 441 376 18 250 231 h 1 2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 182 193 10 53 68 11 126 156 12 255 -319 13 83 95 14 158 176	12 112134 h 21 2 1 60 42 3 110140 5 74 89	6 94 -76 7 98 104 8 357 -282 9 348 262 11 62 62	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 149 -138 6* 24 32 7 60 -68 8 51 -48 h 18 3	11 63 53 12 139 130 h 5 4 5 152 153 11 83 78
1 05 -47 2* 39 28 3* 23 45 4 129 134 5 346 -330 6 126 110 7 69 83	2^{*} 15 20 3 132 127 4 67 75 5^{*} 21 -16 8^{*} 24 -15 9^{*} 35 16 12 87 72	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6 127 149 7 110 -132 8 267 -325 9* 10 38 11 97 117 12 96 -116 13 33 60	15 200 187 16 184 -101 17 78 93 18 78 -74 h 5 3 1 363 -340	h 11 3 1*58 -74 3*33 -21 4*31 -11 6*28 -15 7*50 -63	$\begin{array}{c} 0 & 438 & -404 \\ 1 & 201 & -190 \\ 2 & 114 & 117 \\ 3 & 153 & -137 \\ 4 \times & 34 & -24 \\ 5 & 60 & -54 \\ 6 \times & 10 & 17 \end{array}$	h 6 4 2* 33 27 7* 31 71 8 44 -40
8 159 -159 9 61 -66 10 51 53 13 126 -112 14 169 142	14 146 126 16 198 -177 17 149 140 20 401 -447 h 2 2	h 7 2 3* 19 ~1 4* 34 -3 5* 21 26 6 64 77	$\begin{array}{c} 5 & 101 & 128 \\ 13 & 140 & -166 \\ 14 & 141 & -157 \\ 15 & 193 & 215 \\ 16^{*} & 21 & 29 \\ 17^{*} & 28 & -30 \end{array}$	h 22 2 1* 30 -84 2 178 230 4 45 -56 5* 33 19	$\begin{array}{r} 4 & 145 & -133 \\ 6* & 28 & -46 \\ 7 & 110 & -97 \\ 8 & 452 & 362 \\ 9 & 216 & -169 \\ 10 & 61 & -52 \end{array}$	8 101 121 9 286 -310 10 261 265 11 68 63 12 286 -262 13 87 -80	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1) 145 -142 h 7 4 6* 34 -25 7 85 -105 8 72 76
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2^* 44 41 3 169 -202 4 277 -285 5 323 -350 6 306 302 7 189 -201	7 188 193 8 123 -122 9 393 -403 11 217 -220 12 396 371 13 191 181	18 95 107 h 14 2 1 286 265 3 114 132 4 147 163	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15 55 -40 16 106 -116 h 12 3 0 404 -390 1 492 -443	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9 215 233 10 326 323 11 145 143 h 8 4 4* 19 55
5 210 -203 6 375 -370 7 159 -164 8 148 151 9 145 -139 10* 30 40	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	14 171 -155 15 226 206 16 126 121 17 218 203 18 223 -222 20 228 -232	7* 20 ~37 12 48 35 13 55 63 14 68 83 15 78 88 16 105 114 17 100 116	h 23 2 2 152 197 3 120 129 4 42 44 5 68 81	18 77 86 h 6 3 0 303 303 1 226 -203 4 234 221	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10 159 -148 h 20 3 l 136 122 2 247 233 3 84 79 l 20 72	5^* 30 -48 6^* 14 -14 7 62 57 8^* 30 -62 9 236 243 10 35 72
11 56 -42 12 179 166 h 23 1 1 61 57 2 55 -60 3 116 117	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	h 8 2 0 213 246 7 76 -72 8 87 104 10 96 -115 11 268 -270	17 100 2116 18 130 137 h 15 2 3 68 71 4 102 -113 5* 34 -54	7 94 113 8 105 -118 9 78 90 10 109 120 h 24 2 0 177 -204	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	h 9 4 2* 5 54 5* 10 -55 8 48 -66 9 58 57
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	h 3 2 1* 19 -13 4 272 301 5 1055 1068 6 466 ~393 8 422 424	12 51 -68 13* 26 20 14 318 -316 16 100 97 17 132 -135 19 213 -202	9* 25 -55 10* 40 -53 12 161 -208 13 210 -269 14* 16 21 15~121 -133	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13 188 - 168 14 113 116 15 55 - 64 16 38 47 17 212 - 224	15 64 -76 h 13 3 2 92 90 3 53 58 4* 33 1	h 21 3 1 46 41 2* 24 -22 3* 5 -21 4 88 -86 5 230 232	10 101 120 h 10 4 0* 20 14 7 85 .106 8* 21 ~14
12 116 -107 13 120 113 b 24 1 0 231 273 1 176 -145	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20 116 -125 h 9 2 1* 30 -20 3* 11 -76 5* 28 66	16 2923 17* 8 3 h 16 2 0 99 -125 4 108 137	8* 11 25 9 71 ~77 h 25 2 3 124 -145 4* 15 -24	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6 78 -72 7 52 -49 h 22 3 1* 14 26 2 58 -66	9 116 -146 10 114 131 b 11 4 5* 9 9 7* 19 -45
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 5 & 130 & -140 \\ 7 & 116 & -130 \\ h & 26 & 2 \\ 0 & 39 & -45 \\ 1^{*} & 23 & 65 \\ 2 & 47 & -67 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5 70 -80 5 141 155 5 133 136 h 23 3 1 39 -48	8* 25 31 9* 19 ~30 h 12 4 3* 29 ~54 5* 24 ~51
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	n 4 2 3* 26 -21 4 380 376 5 189 160 6 640 611 7 385 -426	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	h 17 2 2 211 204 4 264 318 6* 24 -18 7 158 196	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	n 0 4 10 456 374 12 79 -69 14 3 4 3* 43 -46	n 13 4 3* 19 17 5* 16 -61 6* 26 4 7* 28 -56 h 15 4
3 140 -145 4 132 130 5* 18 3 6* 28 15 7 129 -126 9 155 132	8 187 -187 9* 32 -76 11 139 -118 12 266 -228 13 153 128 14 100 71	19 100 -112 20 30 35 h 10 2 1* 61 -63 2 112 -105 6 701 +77	10 100 128 12* 22 26 13 40 55 15 55 54 16* 12 -18 h 18 2	7 680 -659 9 254 -104 13 466 -429 15* 34 -15 17 264 -317 h 1 3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11* 32 -7 12* 15 5 13 81 -75 14 114 112 h 15 3	4*16 -41 6*23 -8 7*45 -33 8*26 -22 11261 -229 13*9 -5	3* 22 =42 4* 30 66
11 237 199	16 246 210	7 168 -184	0* 9 18	6 136 90	14 182 168	2 59 -61		

and later anisotropically. There was no other peak in the difference Fourier, which was almost flat.

The final R value at the end of the anisotropic refinement for all the atoms was $9.6^{0}/_{0}$ for the observed 1217 reflections ($10.8^{0}/_{0}$ for all the 1432 reflections). Reflections with $I < 2.33 \sigma(I)$ were assigned as unobserved reflections.

In the course of these calculations, individual weights were calculated by the modified formula of GABE (1966) and these were assigned for the reflections

$$w=rac{1}{\sigma^2(F)}=4\,F_0{}^2\Bigl/{\sum\limits_{i=1}^4}\left(rac{\partial\,F_0{}^2}{\partial\,q_i}
ight)^2\,\sigma^2\left(q_i
ight),$$

where q_1 = peak count, q_2 = background count, $q_3 = (LP)^{-1}$ and q_4 = transmission. The effect of anomalous dispersion was taken into consideration, but no significant difference was found between the enantiomorphs.

A block-diagonal least-squares program written by ENGEL (1968) for the BullGamma 30S was used in the earlier stages of the analysis and in the later stages, a program of the same author for IBM 370/155 was used (ENGEL, 1972).

A list of the final observed and calculated structure amplitudes is given in Table 4.

Description of the structure

The final atomic coordinates are given in Table 5 (a) and the anisotropic temperature factors in Table 5 (b). The root-mean-square displacement of the atoms along the principal axes of the vibration ellipsoids are given in Table 6. The atomic arrangement projected down the *c* axis is shown in Fig. 1. The structure proposed by WEITZ and HELLNER is essentially correct, as can be seen from Table 5 (a). The average shift in the coordinates of the heavy atoms from the model of WEITZ and HELLNER is 0.012 Å (0.008 Å in the *a* direction and 0.017 in the *b* direction), and in that of the sulfur atoms is 0.024 Å (0.021 in the *a* direction and 0.026 Å in the *b* direction). The largest shift in a heavy-atom coordinate is 0.03 Å and in that of a sulfur atom is 0.05 Å. WEITZ and HELLNER did not find any statistical copper in their structure.

The interatomic distances and angles are tabulated in Tables 7a and 7b. A distinction of Pb from Bi is impossible by x-ray measurements, as the difference in their atomic scattering amplitudes is only unity. However, a study of their coordinations permits one to make a

distinction between them. As can be seen from Table 7a, four metal atoms [Pb(1), Pb(2), Bi(1), Bi(2)] have three nearest sulfur atoms in the range of 2.57 to 2.84 Å, whereas the remaining four metal atoms have no sulfur atom at a distance shorter than 2.72 Å. The former are therefore regarded as bismuth atoms and the latter as lead atoms. These values are in good agreement with those found in other bismuth-lead sulfides, as aikinite and galenobismutite, as can be seen from Table 8.

Cosalite has four independent lead and bismuth atoms in the structure. Six sulfur atoms around Pb(1) make a distorted octahedron. The octahedron is built up by S(3'), S(8), S(8'), S(5'), S(5'') and S(7). Pb(2) also has a distorted octahedral configuration with S(3'), S(3''), S(3''), S(4), S(1') and S(1''). The octahedron around Pb(1) is a little more distorted than the one around Pb(2). These octahedra are arranged parallel to the *c* axis. These Pb—S distances are in the range 2.72 to 3.02 Å and are in good agreement with the value found in galena (2.97 Å). The mean standard deviation in Pb—S distances is 0.01 Å. Similar coordination for the lead atom is also found in marrite

Table 5a. The final atomic coordinates of cosalite, their standard deviations and occupancy factors. In brackets: atomic coordinates given by WEITZ and HELLNER (1960)

Atom	x		y		z		Occupancy factor
$\begin{array}{c} {\rm Bi}(1) \\ {\rm Bi}(2) \\ {\rm Pb}(1) \\ {\rm Pb}(2) \\ {\rm Bi}(3) \\ {\rm Bi}(4) \\ {\rm Pb}(3) \\ {\rm Pb}(4) \\ {\rm S}(1) \\ {\rm S}(2) \\ {\rm S}(3) \\ {\rm S}(3) \\ {\rm S}(4) \\ {\rm S}(5) \\ {\rm S}(5) \\ {\rm S}(6) \\ {\rm S}(7) \\ {\rm S}(8) \end{array}$	$\begin{array}{c} 0.98212(9) \\ 0.09276(10) \\ 0.27415(10) \\ 0.03437(15) \\ 0.08994(11) \\ 0.18547(10) \\ 0.38270(13) \\ 0.29262(11) \\ 0.4766(6) \\ 0.0292(6) \\ 0.4141(8) \\ 0.1518(7) \\ 0.2823(7) \\ 0.2279(6) \\ 0.1278(6) \\ 0.3066(6) \end{array}$	$\begin{array}{c} -0.018] \\ [0.093] \\ [0.274] \\ [0.035] \\ [0.091] \\ [0.186] \\ [0.383] \\ [0.293] \\ [0.476] \\ [0.293] \\ [0.476] \\ [0.293] \\ [0.413] \\ [0.152] \\ [0.285] \\ [0.228] \\ [0.131] \\ [0.306] \end{array}$	$\begin{array}{c} 0.15503(9)\\ 0.30330(10)\\ 0.4064(10)\\ 0.43512(13)\\ 0.01082(10)\\ 0.17157(9)\\ 0.20591(12)\\ 0.37318(12)\\ 0.37318(12)\\ 0.1384(6)\\ 0.2286(8)\\ 0.9987(8)\\ 0.3623(6)\\ 0.4646(8)\\ 0.2376(6)\\ 0.0884(6)\\ 0.1244(7)\\ \end{array}$	$ \begin{bmatrix} 0.155 \\ [0.302] \\ [0.403] \\ [0.433] \\ [0.011] \\ [0.171] \\ [0.206] \\ [0.374] \\ [0.138] \\ [0.230] \\ [0.364] \\ [0.364] \\ [0.465] \\ [0.235] \\ [0.088] \\ [0.251] \end{bmatrix} $	$\begin{array}{c} 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.75 \\ 0.75 \\ 0.75 \\ 0.25 \\ 0.75 \\ 0.25 \\ 0.75 \\ 0.75 \\ 0.75 \\ 0.75 \\ 0.75 \\ 0.75 \\ 0.25 \\ 0.75 \\ 0.25 \\ 0.75 \\ 0.25 \\ 0.$	0.25] 0.25] 0.25] 0.75] 0.75] 0.25] 0.25] 0.25] 0.75] 0.25] 0.75] 0.25] 0.75] 0.25] 0.25] 0.25] 0.25] 0.25] 0.25] 0.25] 0.75] 0.25] 0.25] 0.75] 0.25] 0.75] 0.25] 0.75] 0.25] 0.75] 0.75] 0.25] 0.75] 0.75] 0.25] 0.75] 0	0.50
S(9)	0.3622(8) 0.4246(7)	[0.360]	0.2959(7)	[0.296]	0.75	0.75]	0.50
S(10) Cn(1)	0.4346(7)	[0.434]	0.4152(7) 0.057(3)	[0.418]	0.25 [0.75	0.29]	0.50
~ 4(+)					0.10	1	V. I 4

Table 5b. The final anisotropic temperature-factor coefficients for cosaliteThe values are the coefficients in the expression

Atom	β11	β_{22}	eta_{33}	β_{12}	β_{13}	β_{23}
Atom Bi(1) Bi(2) Pb(1) Pb(2) Bi(3) Bi(4) Pb(3) Pb(4) S(1) S(2) S(3) S(4) S(5)	$\begin{array}{c c} \beta_{11} \\ \hline 0.00055(4) \\ 68(4) \\ 89(4) \\ 184(7) \\ 91(4) \\ 64(4) \\ 134(5) \\ 93(5) \\ 0.0004(2) \\ 4(3) \\ 11(3) \\ 8(3) \\ 9(2) \end{array}$	$\begin{array}{r} \beta_{22} \\ \hline 0.00105(3) \\ 105(3) \\ 126(4) \\ 154(5) \\ 121(4) \\ 112(3) \\ 140(4) \\ 162(5) \\ 0.0009(2) \\ 17(3) \\ 13(3) \\ 9(2) \\ 16(2) \end{array}$	$egin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c c} & \beta_{12} \\ \hline 0.00000(5) \\ 0(5) \\ 7(6) \\ - & 13(8) \\ - & 2(6) \\ 7(6) \\ 3(7) \\ - & 1(7) \\ -0.0003(3) \\ - & 2(4) \\ 13(4) \\ - & 1(4) \\ - & 0(4) \\ \end{array}$	β ₁₃	β_{23}
S(4) S(5) S(6) S(7) S(8) S(9) S(10) Cu(1)	$8(3) \\ 9(3) \\ 2(2) \\ 4(3) \\ 4(3) \\ 13(3) \\ 7(3) \\ 27(12)$	$\begin{array}{c} 9(2) \\ 16(3) \\ 11(2) \\ 9(2) \\ 13(2) \\ 13(3) \\ 12(2) \\ 22(10) \end{array}$	$\begin{array}{c} 41(17) \\ 18(16) \\ 35(15) \\ 48(16) \\ 8(13) \\ 9(14) \\ 11(13) \\ 0.08(7) \end{array}$	$\begin{array}{c c} - & 1(4) \\ - & 0(4) \\ - & 3(3) \\ & 9(4) \\ & 1(3) \\ - & 4(4) \\ & 3(4) \\ & 12(17) \end{array}$		

 $\exp\left[-(h^2\beta_{11}+k^2\beta_{22}+l^2\beta_{33}+hk\beta_{12}+hl\beta_{13}+kl\beta_{23})\right]$

Table 6. The root-mean-squared displacement of the atoms of cosalite along theprincipal axes of the vibration ellipsoids and direction cosines of these axes withrespect to the crystallographic axes

						~	
Atom	$B_{ m isotrop}$	Axes	B	$\sqrt{ar u^2}$	$\cos \alpha_1$	$\cos \alpha_2$	$\cos \alpha_3$
Bi(1)	1.62 Å ²	1	$0.80~{ m \AA^2}$	0.101 Å	1	0	0
. ,		2	2.40	0.174	0	1	0
		3	1.67	0.145	0	0	1
]	1	
Bi(2)	1.79	1	0.99	0.112	1	0	0
		2	2.40	0.174	0	1	0
		3	1.97	0.158	0	0	1
Pb(1)	1.98	1	1.30	0.128	0.999	-0.040	0
- (-/		2	2.88	0.191	0.040	0.999	0
1		3	1.78	0.150	0	0	1
1					l		
Pb(2)	3.05	1	2.67	0.184	0.990	0.139	0
(-/		2	3.53	0.212	- 0.139	0.990	0
		3	2.95	0.193	0	0	1

Atom	$B_{ m isotrop}$	Axes	В	$\sqrt{ar{u}^2}$	$\cos \alpha_1$	$\cos \alpha_2$	$\cos \alpha_3$
Bi(3)	1.87 Å^2	- 1	$1.33 Å^2$	0.130 Å	1	0.013	0
(-)		$\overline{2}$	2.76	0.187	-0.013	1	0
		3	1.53	0.139	0	0	1
Bi(4)	1.87	1	0.93	0.109	0.999	- 0.039	0
		2	2.56	0.180	0.039	0.999	0
		3	2.11	0.164	0	0	1
Pb(3)	2.45	1	1.95	0.157	1	-0.022	0
		2	3.20	0.201	0.022	1	0
		3	2.19	0.167	0	0	1
Pb(4)	2.43	1	1.36	0.131	1	0.004	0
		2	3.70	0.216	-0.004	1.000	0
		3	2.23	0.168	0	0	1
S(1)	1.36	1	0.48	0.078	0.989	0.149	0
		2	2.02	0.160	-0.149	0.989	0
		3	1.58	0.142	0	0	1
S(2)	1.81	1	0.61	0.088	0.998	0.066	0
		2	3.92	0.223	-0.066	0.998	0
		3	0.91	0.107	0	0	1
S(3)	2.14	1	0.89	0.106	0.862	-0.507	0
		2	3.69	0.216	0.507	0.862	0
		3	1.85	0.153	0	0	1
S(4)	2.00	1	1.19	0.123	0.996	0.088	0
		2	2.13	0.164	-0.088	0.996	0
		3	2.68	0.184	0	0	1
S(5)	2.03	1	1.36	0.131	1	0.012	0
		2	3.56	0.212	-0.012	1	0
		3	1.18	0.122	0	0	1
S(6)	1.69	1	0.25	0.056	0.994	0.109	0
		$\overline{2}$	2.52	0.178	-0.109	0.994	0
		3	2.30	0.171	0	0	1
S(7)	1.09	1	0.25	0.056	0.001	_ 0.422	Ω
6(7)	1.04	л 9	0.20	0.000	0.301	0.433	0
		4	2.00	0.114	0.400	0.801	v

Table 6. (Continued)

Atom	$B_{ m isotrop}$	\mathbf{Axes}	В	$\sqrt{ar{u^2}}$	$\cos \alpha_1$	$\cos \alpha_2$	$\cos \alpha_3$
S(8)	1.33 Å^2	1	0.56 Å ²	0.085 Å	0.999	-0.044	0
		2	2.86	0.190	0.044	0.999	0
		3	0.55	0.084	0	0	1
S(9)	1.80	1	1.77	0.150	0.996	0.257	0
()	i 1	2	3.05	0.197	-0.257	0.996	0
		3	0.59	0.087	0	0	1
S(10)	1.53	1	1.01	0.113	0.988	-0.153	0
()		2	2.87	0.191	0.153	0.988	0
		3	0.70	0.094	0	0	1
Cu(1)	4.83	1	3.25	0.203	0.852	-0.524	0
. ,		2	5.82	0.272	0.524	0.852	0
		3	5.42	0.262	0	0	1

Table 6. (Continued)

Fig.1. A projection of the structure of cosalite $\parallel c$

Ph(1) - S(3')	2.854(15) Å	S(5) - S(10)	$3.737(17) \text{ Å } [2 \times]$
£ 5(1) S(8)	2.915(11) (2×]	Cu(1')	3.89(6)
S(5')	$2.929(13)$ $[2 \times]$	S(7)	3.976(19) [2×]
S(7)	3.020(12)	S(8')	4.18(2)
N(1)	0.020(12)	S(9)	4.31(3)
Mean	2.921	(-)	()
Pb(2) - S(3')	$2.719(12){ m \AA}[2 imes]$	S(6) - S(9)	$3.554(16){ m \AA}[2 imes]$
S(3''')	2.789(16)	S(8)	3.700(17) [2×]
$\mathbf{S}(4)$	2.838(14)	S(7)	4.046(19)
S(1')	$2.902(9)$ $[2 \times]$		
Mean	2.812	S(7)-S(8)	4.064(14) Å [2×]
, dour		S(10')	4.211(15)
Pb(3) - S(9)	$2.982(13)$ Å $[2 \times]$	S(10'')	4.31(2) $[2 \times]$
S(6)	3.051(11)		0
S(1)	$3.151(10)$ $[2 \times]$	S(8) - S(9)	$4.23(2) \mathrm{A}$
S(8)	$]$ 3.166(11) $[2 \times]$		
S(2')	3.205(14)	S(9) - S(10)	$[3.761(19) \mathrm{A} [2 \times]]$
Mean	3.107	$B_{i}(1) = S(0')$	2 572(16) Å
Pb(4) = S(10)	2 891/13) Å	S(10)	2.785(11) [2×1
10(4) - 0(10)	2.001(10)11 $2.087(14) 52 \times 1$	$\mathbf{S}(2')$	$2.900(11)$ $[2\times]$
S(3) S(0)	$2.301(14)$ $[2\times]$	S(7')	$3.205(12)$ $[2 \land]$
S(3) S(4)	$3379(10)$ $[2\times]$		0.200(12)
S(4)	3.66(14)	Mean	2.839
Mean	3.148	Bi(2) - S(1')	2.619(12) Å
Moun		S(4)	2.715(10) [2×]
S(1) - S(8)	$3.265(16){ m \AA}$	S(2)	2.962(12) [2×]
S(3')	3.88(2)	$\mathbf{S}(6)$	3.021(12)
$\mathrm{S}(2')$	$[3.900(19) [2 \times]]$	Mean	2.832
S(4')	$[3.913(15) [2 \times]]$, internet	
$S(3^{\prime\prime})$	$[4.085(19) [2 \times]]$	Bi(3) - S(5')	$2.678(15){ m \AA}$
S(9)	4.35(2)	S(7)	2.841(10) [2×]
S(2) S(0')	3 825(17) Å [2×]	S(10')	3.090(12) [2×]
S(2) = S(10')	3.88(2)	S(10''')	3.453(14)
S(10)	3.96(2)	Mean	2.999
S(4) S(6)	4.309(14) [2×]		
S(0)	4.346(19) [2×]	Bi(4) - S(8)	$2.573(12){ m \AA}$
~(.)		S(6)	2.695(9) [2×]
S(3) - S(3')	3.859(17) Å [2 $ imes$]	S(7)	3.046(10) [2×]
S(4)	4.039(20)	S(2)	3.281(13)
$\operatorname{Cu}(1^{\prime\prime\prime})$	4.04(6)	Mean	2.889
S(8')	$4.165(19)$ $[2 \times]$		
S(5)	$4.341(18)$ $[2 \times]$	Cu(1)-S(8)	$2.22(6){ m \AA}$
9(4) 9(5)	3 49(2) Å	S(3')	2.52(4) [2×]
0(4)-0(0) S(6)	3.886(17) 52.87	S(1)	2.61(6)
Ø(0) 870)	4.39(9)	Mean	2.464
S(9)	(4) ±.04(4)	1	1

Table 7a. Interatomic distances in cosalite

			······	
S(3') - Pb(1) -	-S(5')	97.3(4)°*	S(5) - Pb(4) - S(4)	$66.2(4)^{\circ*}$
	S(7)	178.4(5)	S(4')	114.3(3)*
	S(8)	$92.4(3)^*$	S(5)	85.5(4)
			S(6)	131.3(3)*
S(5')Pb(1)-	$-S(5^{\prime\prime})$	87.7(3)	S(9)	91.1(3)*
	S(7)	83.9(4)*	S(9')	157.5(4)*
			- -	
S(8) - Pb(1) -	-S(5')	91.2(3)*	S(9) - Pb(4) - S(4)	84.3(3)*
	$S(5^{\prime\prime})$	170.3(4)*	S(4')	134.4(4)*
	S(7)	86.4(3)*	S(6)	65.8(3)*
	S(8')	88.2(3)	S(9')	83.5(3)
S(1') - Pb(2) -	-S(1'')	88.7(3)	S(10) - Pb(4) - S(4)	140.6(2)*
			S(5)	78.9(4)*
S(3') - Pb(2) -	-S(1')	$87.4(3)^*$	S(6)	131.2(4)
	S(1'')	176.1(4)*	S (9)	78.6(4)*
	$\mathrm{S}(3^{\prime\prime})$	96.5(4)		{
	$\mathrm{S}(3^{\prime\prime\prime})$	88.9(4)*	S(2') = Bi(1) = S(2'')	91.5(4)
	S(4)	93.2(4)*	S(2) = BI(1) - S(2) - S(7')	91.9(3)*
	8/1/)	01.7(4)*	~(,,)	
$S(3^{-1}) - PD(2) -$	-D(I) -D(I)	$\frac{91.7(4)}{176.7(5)}$	S(9') - Bi(1) - S(2')	90.0(4)
	0(4)	170.7(0)	S(7')	177.3(5)
S(4) - Pb(2) -	$-\mathbf{S}(1')$	85.9(3)*	$\mathbf{S}(10)$	89.1(4)*
$\mathcal{O}(\mathbf{r}) = \mathcal{O}(\mathbf{r})$	~(~)			
	8440	50 9/ 9)	S(10) - Bi(1) - S(2')	178.7(4)*
S(1) - PD(3) -	-5(1)	50.2(2)	$\mathrm{S}(2^{\prime\prime})$	87.5(3)*
	$\mathfrak{S}(\mathbb{Z})$	70.7(0)* 20.0(9)*	S(7')	89.1(3)*
	0(0) 9(01)	02.2(3) 111.0(3)*	S(10')	93.5(3)
	0(0)	111.0(0)		
S(6) - Pb(3) -	-S(1)	132.7(2)*	S(1') - Bi(2) - S(4)	94.4(4)*
	S(2')	136.4(4)	S(2)	88.4(3)*
	S(8)	73.0(3)*	$\mathbf{S}(6)$	179.2(4)
S(8) - Pb(3) -	-S(2')	134.5(2)*	S(2)-Bi (2) -S $(2')$	86.5(3)
	S(8')	79.7(2)	S(6)	92.2(3)*
G(0) D1-(9)	8(1)	00 3(3)*		
S(9) - PD(3) -	-0(1)	$90.0(0)^{1}$	S(4) - Bi(2) - S(2)	88.3(3)*
	8(1)	101.0(4)*	${ m S}(2')$	$174.0(4)^*$
	0(2) 9(6)	70.0(4)*	S(4')	96.7(3)
	0(0) 9(0)	14.4(4)" 87 0(2*	$\mathbf{S}(6)$	85.1(3)*
	a(a) a(a)	01.0(0) 145.0(4)*		
	S(0)	140.0(4)' 85 7/3)	S(5') - Bi(3) - S(7')	92.2(4)*
	0(9)	oə. ((ə)	S(10')	80.4(4)*
S(4) - Ph(4) -	$-\mathbf{S}(4')$	73.8(2)	S(10''')	173.6(5)
$\omega(x) = x \omega(x)$	\sim (\sim) S(6)	$69.2(3)^*$		}
	~(0)	00(0)	7	

Table 7 b. Bond angles in cosalite

Table	7b.	(Conti	inued)	

			-			
S(7) - Bi(3) - S(7')	$91.1(3)^{\circ}$	Cu(1') - S(3) -	-Cu(1″)	107.6(1.8)°	
S(10')	93.0(3)*		Pb(1')	66.8(1.2)*	
S(10'')	171.6(3)*		Pb(2)	170.8(1.3)*	
S(10''')	83.4(3)*		Pb(2')	77.5(1.2)*	
S(101) D:(0) S(10//)	00.1(0)		$\mathrm{Pb}(2^{\prime\prime})$	82.2(1.4)*	
в(10)—B1(3)—B($\begin{bmatrix} 10 \\ 10 \end{bmatrix}$	82.1(3)	DL/1/1 S(2)	DL (9/1)	194.0/7)	
S(10,)	104.4(3)*	F D(1)—D(3)-	-rb(2)	124.9(7)	
S(6)-Bi(4)-S(2)	91.7(3)*	Pb(2)-S(3)-	-Pb(1')	122.4(4)*	
S(6')	97.6(3)		$\mathrm{Pb}(2')$	96.5(5)	
S	7)	89.4(3)*		$\mathrm{Pb}(2^{\prime\prime})$	91.1(4)*	
S(7')	172.8(3)*	D:(9) S(4)	D:(9/)	06.7(5)	
			DI(2) - O(4) -	-D1(2)	90.7(9)	
S(7) - Bi(4) - S(2)	86.7(3)*		PD(2)	89.4(3)*	
$\mathbf{S}($	7′)	83.5(2)		Pb(4)	85.5(2)*	
		1 - 0 (1)		Pb(4')	$145.0(5)^*$	
$S(8) - B_1(4) - S(3)$	2)	178.6(5)		S(5)	131.3(2)*	
S(6)	89.2(3)*	$\mathbf{D}\mathbf{b}(0) = \mathbf{S}(1)$	Db(A)	195 6/4/*	
S(7)	92.3(3)*	PD(2) - O(4) -	-P0(4)	125.0(4)*	
S(3') Cu(1) S(1)	105 7(1 5)*		8(9)	97.8(5)	
)a—(1)n0—(6)a	1) 9//)	109.7(1.9)	Pb(4) - S(4) -	-Pb(4')	73.8(3)	
)6	ə) [108.0(2)	() ()	S(5)	51.5(3)*	
S(8) - Cu(1) - S(1)	85.0(2)		-		
S(31	123.3(1.2)*	Bi(3')-S(5)-	-Pb(1)	$94.6(5)^*$	
(- /	/		Pb(4)	104.0(4)*	
Cu(1)— $S(1)$ — Bi	(2')	163.7(1.4)		S(4)	159.9(7)	
Pt	(2')	78.4(1.0)*	$\mathbf{D}\mathbf{b}(1) = \mathbf{S}(5)$	Dh(1/)	97 7(5)	
\mathbf{P} t	o(3)	90.3(1.0)*	1 D(1)—D(0)-	$\frac{-1}{Db}(1)$	07.7(0)	
D:(9/) (1/1) DI	100	00.0(0)*		$D_{\rm L}(4)$	90.4(1)	
B1(2) - S(1) - Pt	$\mathcal{D}(2^{\circ})$	90.0(3)*		PD(4)	$101.0(0)^{*}$	
Pt	D(3)	102.1(4)*	1	8(4)	99.9(4)	
Pb(2')-S(1)-Pb	o(2'')	88.7(4)	Pb(4)— $S(5)$ –	-Pb(4')	85.5(5)	
Pt	o(3)	167.5(4)*	2	S(4)	62.3(3)*	
Pł	o(3′)	94.36(0.08)*	$B_{i}(2) = S(6)$	-Ph(3)	163 1/5)	
Ph(3')_S(1) Pl	a (2)	80.2(3)	$DI(2) \otimes (0)$	Ph(4)	79.6(3)	
1 D(3)-D(1)-L1	5(5)	00.2(3)		S(0)	13.0(3)	
Bi(1')-S(2)-Bi	(1'')	91.5(5)		5(3)	114.4(4)	
Bi	(2)	174.3(5)*	Bi(4)-S(6)-	$-\mathrm{Bi}(2)$	$92.7(3)^*$	
Bi	(2')	90.77(0.05)*		Bi(4')	97.7(5)	
Bi	(4)	91.8(4)*		Pb(3)	98.4(3)*	
Pł	(3')	91.5(3)*		Pb(4)	130 9(2)*	
		(2)		S(9)	91.0(2)	
Bi(2)— $S(2)$ — Bi	(2')	86.5(4)		a (a)		
Bi	(4)	83.0(3)*	Bi(4')-S(6)-	-S(9)	151.2(5)	
Pł	o(3′)	93.7(4)*	Pb(3) = S(6)	-Ph(4)	83.5(3)	
$Ph(3') = S(2) = B_{1}$		175 4(6)	U)~~	$\mathbf{S}(9)$	53.0(3)	
1 D(0)-D(2)-DI	(4)	T10.#(0)	l	2(0)	00.0(0)	

Pb(4)-S(6)-S(9)	$51.4(3)^{\circ}$	Bi(1')-S(9)-Pb(3)	102.2(4) **
$D_{1}^{2}(9) = S_{1}^{2}(7) = D_{1}^{2}(1/1)$	050(2)*	Pb(4)	96.5(4)*
D(3) = S(7) = D(1)	95.9(5)*	S(6')	145.2(2)
$Bi(3^{\circ})$	91.1(4)		
Bi(4)	92.40(0.05)*	Pb(3)-S(9)-Pb(3')	85.7(4)
Bi(4')	173.2(4)*	Pb(4)	92.35(0.11)*
Pb(1)	$89.4(3)^{*}$	Pb(4')	161.2(6)*
Bi(4)-S(7)-Bi(4')	83.5(3)	S(6')	101.6(5)
Bi(4') - S(7) - Bi(1')	89.4(3)*	Pb(3')— $S(9)$ — $S(6')$	54.8(3)
Pb(1) - S(7) - Bi(1')	172.4(5)	Pb(4)-S(9)-S(6')	107.6(5)
Bi(4)	84.9(3)*	Pb(4') - S(9) - Pb(4)	83.5(4)
(-)		S(6')	62.8(3)
Cu(1) - S(8) - Bi(4)	159.1(1.7)		
Pb(1)	69.2(1.1)*	Bi(1) - S(10) - Bi(1')	93.5(5)
Pb(3)	97.8(1.2)*	Bi(3)	90.95(0.09)*
/ _ /		$\operatorname{Bi}(3')$	166.6(5)*
Bi(4)— $S(8)$ — $Pb(1)$	96.3(3)*	$Bi(3^{\prime\prime})$	91.6(3)*
Pb(3)	98.2(4)*	Pb(4)	95.5(4)*
Pb(1)— $S(8)$ — $Pb(1')$	88.2(4)	$\operatorname{Bi}(3) \!\!\!-\!\!\!\!-\!\!\!\!-\!\!\!\!\!-\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	82.1(4)
Pb(3)	94.23(0.08)*	$\operatorname{Bi}(3^{\prime\prime})$	75.7(3)*
Pb(3')	164.9(4)*	Pb(4) - S(10) - Bi(3)	96.6(3)*
$\mathrm{Pb}(3) \mathrm{-\!Pb}(3') \mathrm{-\!Pb}(3')$	79.7(3)	Bi(3'')	169.6(6)

Table 7 b. (Continued)

 $* = [2 \times]$

(WUENSCH and NOWACKI, 1967) and dufrenoysite (RIBÁR, NICCA and NOWACKI, 1969).

The Pb(3) and Pb(4) atoms have a coordination of eight, which could be described as a trigonal prism ||c, and additional two S atoms.For Pb(3), the trigonal prism is formed by S(9), S(9'), S(1), S(1'), S(8) and S(8'). Almost perpendicular to the face formed by S(8), S(8'), S(9), S(9') lies the S(6) at a distance of 3.05 Å and almost perpendicular to the face formed by S(1), S(1'), S(9), S(9') lies S(2') at a distance of 3.21 Å. The atoms S(5), S(5'), S(9), S(9'), S(4) and S(4') form the trigonal prism around Pb(4) and almost normal to the faces formed by S(9), S(9'), S(4), S(4') and S(9), S(9'), S(5), S(5') lie S(6) and S(10) at distances of 3.47 and 2.89 Å respectively. These Pb—S distances are in the range 2.89 to 3.47 Å and have a mean standard deviation of 0.01 Å. Similar coordination for the lead atom is also found in bournonite and seligmannite (EDENHARTER, NOWACKI and TAKÉUCHI, 1970), in hatchite

Z. Kristallogr. Bd. 140, 1/2

129

Bi–	-8	Pb-	-8	Bi—	s	Pb-	s
	Cosc	ılite			Galeno	bismutite	
2.57 Å 2.79 2.83 3.21 2.62 2.72 2.96 3.02	 (1) (2) (2) (1) (1) (2) (2) (2) (1) 	$\begin{array}{c} 2.85 \text{ \AA} \\ 2.92 \\ 2.93 \\ 3.02 \\ \\ 2.72 \\ 2.79 \\ 2.84 \\ 2.90 \end{array}$	 (1) (2) (2) (1) (2) (1) (1) (2) 	2.63 Å 2.73 2.99 3.12 2.78 2.79 3.00 3.02	 (1) (2) (2) (1) (2) (1) (1) (2) 	2.85 Å 2.98 3.01 3.21	(1) (2) (2) (2)
2.68 2.84 3.09 3.45 2.57 2.70 3.05 3.28	$(1) \\ (2) \\ (2) \\ (1) \\ (1) \\ (2) \\ (2) \\ (1) \\ (1) \\ (1) \\ (2) \\ (1) \\ (1) \\ (1) \\ (2) \\ (2) \\ (1) \\ (1) \\ (2) \\ (2) \\ (1) \\ (2) $	$\begin{array}{c} 2.98\\ 3.05\\ 3.15\\ 3.17\\ 3.21\\ 2.89\\ 2.99\\ 3.05\\ 3.38\\ 3.47 \end{array}$	$(2) \\ (1) \\ (2) \\ (2) \\ (1) \\ (1) \\ (2) \\ (2) \\ (2) \\ (2) \\ (1) \\ (1) \\ (2) \\ (2) \\ (1) \\ (1) \\ (2) \\ (2) \\ (1) \\ (2) \\ (2) \\ (1) \\ (2) \\ (2) \\ (2) \\ (1) \\ (2) $	3.10 2.66 2.76 2.95 3.16	 Aik (1) (2) (2) (1) 	inite 2.89 2.99 2.99 3.26	(1) (2) (2) (2)

Table 8. Coordination of Bi and Pb in cosalite, aikinite and galenobismutite

Number in parenthesis indicate the number of vectors of this length.

(MARUMO and NOWACKI, 1967) and wallisite (TAKÉUCHI, OHMASA and NOWACKI, 1968).

There are four independent bismuth atoms in the structure. Five sulfur atoms, S(10), S(10'), S(2'), S(2'') and S(9) around the Bi(1) at distances of 2.79 (\times 2), 2.83 (\times 2) and 2.57 Å form a square pyramid and in addition there is another S atom, S(7'), at a distance of 3.21 Å from the Bi. Such square pyramidal coordination has also been observed in CuBi₅S₈ (OHMASA and NOWACKI, 1972). The other three Bi atoms have a coordination of six, forming a distorted octahedron. The octahedron around Bi(3) is a little more distorted than that around Bi(2) and Bi(4). The shorter of these Bi—S distances are in the range 2.57 to 2.84 Å and the longer three are in the range 2.96 to 3.45 Å. The mean standard deviation in the Bi—S distances is 0.01 Å. Similar coordination for bismuth atom are also observed in galenobismutite

Pb(1)Cu(1)	2.97(4) Å [2 \times]	Bi(2)-Pb(2)	$3.908(3){ m \AA}[2{ imes}]$
Bi(4)	4.095(3) $[2 \times]$	$\operatorname{Bi}(1')$	4.125(3)
Bi(3)	4.123(2) $[2 \times]$	Bi(4)	4.142(3) $[2 \times]$
Pb(4')	4.199(4)	Pb(4)	4.166(3)
Pb(3)	4.459(4)	Pb(3')	4.501(3) $[2 \times]$
Pb(2')	4.883(3)		
D1 (2) (1 (11)	9, 20(6)	Bi(3) - Bi(3')	$4.023(2)$ {2×]
PD(2) - Ou(1)	3.28(0) 9.40(5) 59.73	Pb(1')	4.123(2) [2×]
$\operatorname{Cu}(1^{-})$	3.49(5) [2×]	Bi(1')	4.194(3)
B1(2)	$[3.908(3) [2 \times]$	$\operatorname{Bi}(4)$	4.252(3)
$Pb(2^{\prime})$	3.931(4) [2×]	Pb(4')	4.468(3) [2×]
$Pb(3^{\circ})$	4.443(4)	Bi(1'')	4.497(3) [2×]
Pb(T)	4.883(3) [2×]		
Pb(3)-Cu(1)	4.10(6) [2×]	Bi(4) - Pb(1)	4.095(3) [2×]
Bi(1')	4.331(3) $[2 \times]$	Bi(2)	4.142(3) [2×]
Pb(4)	4.351(4)	Bi(3)	4.252(3)
Bi(4)	4.356(4) [2×]	Pb(3)	4.356(3) [2×]
Pb(2')	4.443(4)	Bi(1')	$4.399(2)$ $\{2\times\}$
Pb(1)	4.459(4)	Cu(1)	4.71(6)
$\operatorname{Bi}(2')$	4.501(3) $[2 \times]$		()
Ph(A) = Ri(9)	4 166/3)	Cu(1)—Pb(1)	2.97(4) $[2 \times]$
$10(4) \sim B(2)$ Ph(1')	4.199(4)	Pb(2')	3.28(6)
10(1) Bi(1)	4.139(4) $4.903(2)$ $[2 \times]$	$Pb(2^{\prime\prime})$	3.49(5) [2×]
$D_1(1)$ $D_2(2)$	$4.205(2)$ $[2 \times]$	Pb(3)	4.10(6) $[2 \times]$
10(3) Bi(3')	4.351(4) $4.468(3)$ [2 \times]	Bi(4)	4.71(6)
DI(5)	4.400(0) [2 \]		
Bi(1)— $Bi(2')$	4.125(3)		
Bi(3')	4.194(3)	Sums of metallic	radii:
Pb(4')	4.203(2) $[2 \times]$		a
Pb(3')	4.331(3) $[2 \times]$	Pb-Pb 3.408 Å	Pb-Bi 3.480 Å
Bi(4')	4.399(2) $[2 \times]$	PbCu 2.980	Bi-Cu 3.052
$\operatorname{Bi}(3'')$	4.497(3) $[2 \times]$	Bi-Bi 3.552	Cu-Cu 2.552

Table 9. Metal-metal distances in cosalite

(IITAKA and NOWACKI, 1962), CuBi₅S₈ (Ohmasa and Nowacki, 1972) and hodrushite (Kupčík and Makovický, 1968).

There is a statistical copper atom in the structure. Four sulfur atoms S(8), S(3'), S(3'') and S(1) surround the copper tetrahedrally at distances of 2.22, 2.52 (\times 2), and 2.61 Å respectively. This tetrahedron is a little distorted in the *a* direction. The copper has an occupancy factor of 0.12 and the mean standard deviation in Cu—S distance is 0.05 Å, very much larger than the Pb—S and Bi—S distances in the structure. Similar tetrahedral coordination for copper is also found in aikinite (OHMASA and NOWACKI, 1970), CuBi₅S₈ (OHMASA and NOWACKI,

9*

Fig.2a. Coordination of Pb, Bi and Cu atoms in cosalite

1972) and also in bournonite and seligmanite (EDENHARTER, NOWACKI and TAKÉUCHI, 1970).

The coordination around the metal atoms and that around the sulfur atoms are shown in Fig.2a and Fig.2b, projected down the b axis. The coordination polyhedra of the sulfur atoms S(1), S(2), S(3), S(7), S(8), and S(10) have the form of a distorted octahedron, with six metal atoms around them. The remaining sulfur atoms S(4), S(5), S(6) and S(9) have five metal atoms surrounding them.

The metal-metal distances are given in Table 9. All the distances are generally much larger than the sum of the metallic radii of the

Fig. 2b. Coordination of the sulfur atoms in cosalite

corresponding metal atoms. There is only one exception. It is a Pb(1)—Cu(1) distance of 2.97 Å, which is of the same order of magnitude as the sum of the metallic radii, 2.98 Å. But the standard deviation in this bond length, which involves the statistical copper, is rather higher (0.04 Å) and hence this deviation is well within the limits of the standard deviation. The S—S distances are given in Table 7 b. A projection of the structure down the *c* axis is given in Fig.3. The *c* axis of cosalite

T. SRIKRISHNAN and WERNER NOWACKI

Fig. 3. Structure of cosalite projected || [001]

is the d_{110} of galena. Hence the structure of cosalite could be described as a deformed galena-like structure.

In cosalite, the factor φ , the metal-to-sulfur ratio is 2.5 and hence it comes under the Type III in the classification of NOWACKI (1969). A schematic diagram of the Bi—S linkages down (001) is given in Fig.4. If we consider the three short Bi—S bonds, we can see, that each bismuth shares one sulfur with its translated one and thus forms an infinite chain of the composition BiS_{2/2}S = BiS₂. All the four chains of bismuth run parallel to (001). There are two additional sulfur atoms which are not connected by short bonds to bismuth, S(2) and S(3). The Pb atoms are introduced in the interstices and are connected to the main chains by bonds through the sulfur atoms. Thus the composition

Fig.4. A schematic representation of the Bi-S bonds within single sheets running along the *c* axis. Each sheet is linked to the neighbouring ones through the Pb atoms;

----- Bi-S bonds of length 2.57 to 2.84 Å ----- Bi-S bonds of length 2.83 to 3.21 Å

of cosalite could be written as $(BiS_2)_4S_2Pb_4 = Pb_4Bi_4S_{10}$. The structural formula could be written as $[BiS_2|S|Pb^{VI}Pb^{VIII}]$ and it belongs to the type III.a₃ in the classification of NOWACKI (1969).

Acknowledgement

The computations in this study were performed on the IBM 1620, Bull Gamma 30S and IBM 370/155 using the programs written by Dr. P. ENGEL, Dr. N. D. JONES, Mr. A. EDENHARTER and Dr. T. ITO. Thanks are due to them for that. The authors would also like to thank Mr. A. EDENHARTER and Dr. P. ENGEL for many suggestions. Thanks are also due to Professor W. NEF and Dr. R. R. HÜSSER for permission to use the Bull Gamma 30S and IBM 370/155 computers, to the Schweizerischer Nationalfonds (Projects Nos. 2.188.69 and 2.516.71) and Stiftung Entwicklungsfonds Seltene Metalle for financial help.

References

- L. G. BERRY (1939), Studies of mineral sulfosalts. 1. Cosalite from Canada and Sweden. Univ. Toronto Studies, Geol. Ser. No. 42, 23-30.
- J. D. DANA (1944), The system of mineralogy. 7th ed. Vol. I. J. Wiley, New York, p. 445-447.

T. SRIKRISHNAN and WERNER NOWACKI

- A. EDENHARTER, W. NOWACKI und Y. TAKÉUCHI (1970), Verfeinerung der Kristallstruktur von Bournonit [(SbS₃]₂ Cu^{IV}Pb^{VII}Pb^{VIII}] und von Seligmannit [(AsS₃)₂ | Cu₂^{IV}Pb^{VII}Pb^{VIII}]. Z. Kristallogr. 131, 397-417.
- P. ENGEL (1968), Kristallographische Programme für die Rechenanlage Bull Gamma 30 S. [unpublished Appendix to Diss. Univ. Bern].
- P. ENGEL (1972), Kristallographische Programme für IBM 370/155 (unpublished).
- E. J. GABE (1966), 1620 programs from I.C.R. Department of Molecular Structure (Physics Department), Institute of Cancer Research, No. 16, data reduction. Appendix.
- Y. IITAKA and W. NOWACKI (1962), A redetermination of the crystal structure of galenobismutite, PbBi₂S₄. Acta Crystallogr. 15, 691-698.
- C. K. JOHNSON (1963), 1620 programs from I.C.R., Program for absorption correction for crystal ground as an ellipsoid of revolution. I.C.R-10, Institute of Cancer Research, Philadelphia, U.S.A.
- V. KUPČÍK und E. MAKOVICKÝ (1968), Die Kristallstruktur des Minerals (Pb,Ag,Bi) Cu₄Bi₅S₁₁. N. Jahrb. Mineral., Monatshefte 236-237.
- F. MARUMO and W. NOWACKI (1967), The crystal structure of hatchite, PbTlAgAs₂S₅. Z. Kristallogr. 125, 249-265.
- W. NOWACKI (1969), Zur Klassifikation und Kristallchemie der Sulfosalze. Schweiz. Min. Petr. Mitt. 49, 109-156.
- M. OHMASA and W. NOWACKI (1970), A redetermination of the crystal structure of aikinite, [BiS₂|S|Cu^{IV}Pb^{VII}]. Z. Kristallogr. 132, 71-86.
- M. OHMASA and W. NOWACKI (1972), The crystal structure of synthetic CuBi₅S₈. Z. Kristallogr. 137, 422-432.
- B. RIBÁR, CH. NICCA und W. NOWACKI (1969), Dreidimensionale Verfeinerung der Kristallstruktur von Dufrenoysit, Pb₈As₈S₂₀. Z. Kristallogr. 130, 15-40.
- Y. TAKÉUCHI, M. OHMASA and W. NOWACKI (1968), The crystal structure of wallisite, PbTlCuAs₂S₅, the Cu analogue of hatchite. Z. Kristallogr. 127, 349-365.
- G. WEITZ und E. HELLNER (1960), Über komplex zusammengesetzte sulfidische Erze. VII. Zur Kristallstruktur des Cosalits, Pb₂Bi₂S₅. Z. Kristallogr. 113, 385-402.
- B. J. WUENSCH and W. NOWACKI (1967), The crystal structure of marrite, PbAgAsS₃. Z. Kristallogr. 125, 459-488.