Хомяков А. П., Курова Т. А., Чистякова Н. И. Соболевит $Na_{14}Ca_2MnTi_3P_4Si_4O_{34}$ — новый минерал // ЗВМО. 1983. Вып. 4. С. 456—461.

Хомяков А. П., Семенов Е. И., Еськова Е. М., Казакова М. Е., Шумяцкая Н. Г., Рудниц-кая Е. С. Вуоннемит из Ловозера // Изв. АН СССР. Сер. геол. 1975. № 8. С. 78—87. Хомяков А. П., Юшкин Н. П. Принцип наследования в минералогенезисе // Докл. АН СССР.

1981. T. 256. № 5. C. 1229—1233.

Институт минералогии, геохимии и кристаллохимии редких элементов (ИМГРЭ) Москва

Поступила в редакцию 20 июля 1991 г.

Всесоюзный научно-исследовательский институт минерального сырья (ВИМС) Москва

Московский университет

УДК 549.0

© 3BMO, № 1, 1992 г.

Д. чл. А. П. ХОМЯКОВ, Т. А. КУРОВА, д. чл. Г. Н. НЕЧЕЛЮСТОВ

МАНАКСИТ NaKMnSi₄O₁₀ — НОВЫЙ МИНЕРАЛ ¹

существенно марганцевый силикат манаксит $NaKMnSi_4O_{10}$ назван по ведущим компонентам химической формулы, как и его известный железистый аналог фенаксит $NaKFeSi_4O_{10}$.

Манаксит обнаружен А. П. Хомяковым в районе горы Аллуайв Ловозерского щелочного массива (Кольский полуостров), в пегматитах ультраагпаитового типа, характеризующихся чрезвычайным разнообразием минералов (Хомяков, 1983, 1990). Наряду с преобладающими калиевым полевым шпатом, нефелином, содалитом, канкрисилитом $Na_7Al_5Si_7O_{24}(CO_3) \cdot 3H_2O$ местами в них достаточно широко распространены арфведсонит, эгирин, анальцим, альбит, уссингит, макатит, грумантит, виллиомит и разнообразные акцессории - ломоносовит, вуоннемит, соболевит, казаковит, лоренценит, линтисит, лампрофиллит, цирсиналит, эвдиалит, аллуайвит, паракелдышит, терскит, беловит, нептунит, серандит и лопарит.

Манаксит, также являющийся акцессорным, образует в пегматитах вкрапления отдельных зерен неправильной формы размерами 1—3 мм и их агрегатов до 5 мм, приуроченных к интерстициям кристаллов породообразующих минералов. В наибольших скоплениях он отмечен в разностях пород, обогащенных канкрисилитом. Минерал бесцветный, кремовый, местами слегка розоватый. Просвечивает, в тонких сколах прозрачный. Блеск стеклянный до перламутрового на плоскостях спайности. Спайность весьма совершенная, слюдоподобная по (001) и совершенная по (010). Излом ступенчатый или занозистый. Хрупкий. При растирании образует спутанно-волокнистый агрегат. Твердость 5. Плотность, определенная микрометодом — $2.73~(2)~\rm r/cm^3$, вычисленная — $2.71~\rm r/cm^3$. В ультрафиолетовых лучах не люминесцирует. В ИК-спектре наблюдается ряд полос поглощения (см $^{-1}$), в том числе широкая 1142—982 с основным максимумом 1060 и серия узких: 795, 770, 750 (слабые), 692 (силь-

¹ Рассмотрено и рекомендовано к опубликованию Комиссией по новым минералам и названиям минералов Всесоюзного минералогического общества 13 апреля 1990 г. Утверждено Комиссией по новым минералам и названиям минералов Международной минералогической ассоциации 3 июля 1990 г.

ная), 632 (слабая), 605 (сильная), 533 (средняя), 470 и 430 (сильные). Легко разлагается на холоду 10%-ной НС1 с сохранением кремневого остова. При термической обработке на воздухе (600°C) разлагается на ряд фаз, преобладающей среди которых, судя по рентгенограмме порошка, является серандит.

Оптически двуосный, отрицательный. Показатели преломления, определенные иммерсионным методом в белом свете, следующие: Np=1.540 (2), Nm=1.551 (2), Ng=1.557 (2). Угол 2V, измеренный на федоровском столике, равен 73 (1)°, вычисленный 72°. Отчетливая дисперсия r>v. Наклон полюса слюдоподобной спайности (001) к осям оптической индикатрисы характеризуется следующими углами: $P \wedge Np=14^\circ$, $P \wedge Nm=76^\circ$, $P \wedge Ng=72^\circ$. Результаты расчета ренгенограммы порошка манаксита представлены

в табл. 1 (аналитик Т. А. Курова). Параметры его триклинной ячейки (про-

Таблица 1 Результаты расчета рентгенограммы порошка манаксита Results of manaksite X-ray diagram calculation

I	d эксп	$d_{_{ m BMV}}$	hkl	I	$d_{\mathfrak{s}_{KCH}}$	$d_{_{ m BM4}}$	hkl
	ı	1	1 1	1			1
70	6.89	6.91	010	00		(3.04	$\bar{2}12$
15	6.01	6.01	10Ī	80	3.05	3.04	$11\bar{3}$
10	5.17	5.21	Ť11			(3.02	111
15	4.71	4.70	011	50	3.00	3.02	$2\overline{1}1$
35	4.55	4.54	002	00	0.00	$\begin{cases} 3.02 \\ 2.99 \end{cases}$	
50	4.07	4.07	111	70	2.880	`	200
				10	2.000	2.885	$02\bar{3}$
13	3.94	3.95	$1\overline{2}0$	70	2.715	∫ 2.723	1Ī3
13	3.70	3.70	110	70	2.715	l 2.711	Ī22
100	3.45	∫ 3.45	$02\bar{2}$			(2.619	$1\bar{3}2$
100	3.40	3.45	020	30	2.609	2.606	222
24	3.36	3.37	Ī21	•	2.000	2.591	201
90	3.26	3.27	$01\bar{3}$	10	2.542		
00	0.20			10	2.342	2.538	$21\overline{2}$
		3.17	$20\overline{1}$	24	2.504	2.515	$2\bar{3}1$
40	3.16	₹ 3.17	$10\bar{3}$	44	2.004	2.507	$2\bar{1}2$
		3.16	$2\overline{2}0$	70	2.463	2.464	03Ī
		•			200	2.101	001

Примечание. Условия съемки: камера РКУ-114.6 мм, $\mathrm{Cr}_{K_{\alpha,\beta}}$ -излучение. Индексы отражений прокорректированы по результатам монокристальной съемки минерала на автодифрактометре PT Syntex.

странственная группа $P\overline{1}$) определены на монокристальном автодифрактометре $P\bar{1}$ Syntex: a=6.993 (5), b=8.219 (7), c=10.007 (9) Å, $\alpha=105.11$ (7), $\beta = 100.76 (6), \gamma = 114.79 (6)^{\circ}, V = 474.5 \text{ Å}^3, Z = 2.$

Химический состав минерала изучен Г. Н. Нечелюстовым на рентгеновском микроанализаторе Camebax (20 кВ, 20 нА). Стандарты — альбит, чкаловит (Na, Si), $K_2ZrSi_2O_7$ (K), $SrMoO_4$ (Sr), апатит (Ca), диопсид (Mg), родонит (Mп), альмандин (Fe). Результаты анализа (табл. 2) пресчитываются при O=10 на эмпирическую формулу $(Na_{1.11}K_{0.89}Ca_{0.01})Sr_{0.01}(Mn_{0.94}Fe_{0.03})Mg_{0.03}Si_{3.99}$. O_{10} . Идеализированная формула $NaKMnSi_4O_{10}$.

Как показывает сравнение манаксита с фенакситом (Дорфман и др., 1959; Головачев и др., 1970), по физическим свойствам эти минералы чрезвычайно близки между собой (табл. 3), и их надежная диагностика возможна лишь при наличии данных о химическом составе.

Tia.блица. 2

Химический состав (мас.%) манаксита

Chemical composition of manaksite

Компонент	зерно 1	зерно 2	зерно З	среднее	O=10
Na ₂ O	9.0	8.9	8.8	8.9	1.109
K ₂ O	10.6	10.8	10.9	10.8	0.886
SrO	0.2	0.2	0.2	0.2	0.007
CaO.	0.2	0.2.	0.2	0.2	0.014
MgO	0.3	0.3	0.3	0.3	0.029
MnO	17.2	17.2	17.3	17.2	0.937
FeO	0.8	0.7	0.8	0.8	0.043
SiO ₂	61.9	61.9	62.1	62.0	3.987
Сумма	100.2	100.2	100.6	100.4	

Таблица 3

Сравнительная характеристика манаксита и фенаксита

Сотватіson of manaksite and fenaksite characteristics

Comparason or m	allansite a	ilu iciiaks	ile Chara	eteristics	
Свойства	Мана NaKMr		Фенаксит NaKFeSi₄O₁о		
Сингония	і Триклинн	ая	: Триклинная		
<i>a</i> , α	6.993Å,	105.11°	6.97Å,	105.07°	
<i>b</i> , β	8.219Å,	100.76°	8.18Å,	98.96°	
c, y	10.007Å,	114.79°	9.97Å,	114.66°	
Интенсивные ли-	6.89 (70)	6.86 (50)		
нии порошковой	3.45 (100)	4.67 (50)		
рентгеног р ам-	3.26 (90)	4.48 (50)		
мы, $d(I)$	3.05 (80)	3.55 (70)		
	2.880	(70)	3.44 (70)		
	2.715	(70)	3.03 (100)		
	2.463	(70)	2.88 (60)		
			2.71 2.46		
Основные максимумы в ИК- спектре, см ⁻¹	982,			607, 694, 1050	
D, г/см ³	2.7	73	2.73-	2.744	
Np	1.5	40	1.541		
Nm	1.5	51	1.560		
Ng	1.5	57	1.567		
2V, град	7	3		84	
Цвет	Бесцветні мовый, тый	ый, кре- , розова-	Розовый то-роз	, желтова- зовый	

Манаксит — один из конечных продуктов кристаллизации пересыщенных щелочными, летучими и редкими элементами силикатно-солевых расплавоврастворов — наиболее поздних дифференциатов агпаитовых нефелин-сиенитовых магм. Его обнаружение в ультраагпаитовых дериватах Ловозера весьма симптоматично на фоне сравнительно широкого распространения фенаксита в аналогичных образованиях Хибин. Этот факт подчеркивает геохимическую специализацию на марганец первого и на железо второго массивов. Не случайно

в Ловозерском массиве в последние годы был открыт еще ряд высокомарганцевых минералов: сидоренкит Na₃Mn (PO₄) (CO₃) и манганотихит Na₆Mn₂(SO₄) (Co₃)₄, а во втором массиве установлены железистые аналоги этих минералов — бонштедтит и ферротихит.

Интересен манаксит и как один из немногих в Ловозерском массиве концентраторов калия — элемента, гораздо более характерного для Хибин. Его открытие на горе Аллуайв вполне согласуется с крайне широким распространением в данном районе пойкилитовых нефелино-содалитовых сиенитов весьма своеобразных пород, напоминающих (по Е. И. Семенову, 1972) хибинские рисчорриты. Формирование этих пород сопровождалось процессами содалитизации нефелина, а, как показывает сравнение формул нефелина и содалита, подобные процессы должны приводить к высвобождению петрогенетически значимых количеств калия. Этим, вероятно, и можно объяснить обнаружение на горе Аллуайвене только манаксита, но и целой серии неизвестных в других частях массива калийсодержащих минералов: астрофиллита, вадеита, щербаковита К-гмелинита и др.

Эталонные образцы манаксита переданы в Минералогический музей им. А. Е. Ферсмана Академии наук СССР, Москва. Регистрационный номер 575/3.

Список литературы

Головачев В. П., Дроздов Ю. Н., Кузьмин Э. А., Белов Н. В. Кристаллическая структура фенаксита FeNaK [Si₄O₁₀] (KNaFe [Si₄O₁₀]) // Докл. АН СССР. 1970. Т. 194. № 4. С. 818—820. Дорфман М. Д., Рогачев Д. Л., Горощенко З. И., Мокрецова А. В. Фенаксит — новый минерал // Тр. Минер. музея АН СССР. 1959. Вып. 9. С. 152—157. Семенов Е. И. Минералогия Ловозерского щелочного массива. М.: Наука, 1972. 307 с.

Семенов Е. И. Минералогия Ловозерского щелочного массива. М.: Наука, **1972.** 307 с. **Хомяков А. П.** Минералогические особенности щелочных пегматитов Хибино-Ловозерской провинции // Развитие минералогии и теохимии и их связь с учением о полезных ископаемых. М.: Наука, **1983.** С. 66—82.

Хомяков А. П. Минералогия ультраагпантовых щелочных пород. М.: Наука, 1990. 200 с.

Всесоюзный научно-исследовательский институт минерального сырья (ВИМС) Москва

Поступила в редакцию 20 июля 1991 г.

Всесоюзный научно-исследовательский институт минерального сырья (ВИСМ) Москва