1955

Y. LXXXIV

й

8

)e

ı.

۱S

э,

Р. Ф. СМИРНОВА, И. М. РУМАНОВА и д. чл. Н. В. ВЕЛОВ

КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА КУСПИДИНА

Куспидин Ca4Si₂O₇F₂ в природе встречается на контактах изверженных пород одновременно с волластонитом, диопсидом, иногда с кальциевыми гранатами. В металлургии куспидин характерен для основных электросварочных шлаков. Кюстерит, в формуле которого по сравнению с куспидином часть F замещена на OH—Ca4Si₂O₇(F,OH)₂, повидимому, является лишь разновидностью куспидина.

В формуле куспидина характерна диортогруппа [Si₂O₇], и расшифровка его в рентгеновской лаборатории Института кристаллографии АН СССР явилась продолжением работ по минералам с диортосиликатными группами, которые на протяжении последних четырех лет были последовательно установлены в ильваите, эпидоте, цоизите. Все это также Са-минералы, однако с ортосиликатной формулой, и потому диортосиликатные группы в них были неожиданностью:

> Ca $\ddot{F}e_2FeSi_2O_8OH = Ca\ddot{F}e_2FeO[Si_2O_7]OH$ (ильваит), Ca₂Al₂FeSi₃O₁₂OH = Ca₂Al₂FeO[Si₂O₇][SiO₄]OH (эпидот),

 $Ca_2Al_3Si_3O_{12}OH = Ca_2Al_3O[Si_2O_7][SiO_4]OH \quad (\Pi O II 3 III).$

Куспидин весьма долго считался метасиликатом, близким к волластониту, и диортосиликатная его химическая формула была установлена Ф. Замбонини (Zambonini, 1935) лишь спустя 40 лет после его открытия.

Рентгенометрических данных по куспидину в литературе нет.

Первыми исследователями (A. Scacchi, 1876; A. Arzruni, 1877) дано (гониометрическое) отношение осей a:b:c=0.7243:1:1.9342 при моноклинном угле $\beta \approx 90^{\circ}$ (89°22').

В нашем распоряжении были бесцветные монокристальные зерна из окрестностей Везувия эллипсоидальной формы с наибольшим размером 1.2 мм, но совершенно без граней. Их ориентировка была целиком проведена методом М. М. Уманского—С. С. Квитки (1951) по лауэграммам.

Из диаграмм вращения, а также из нулевых разверток мы получили:

a=7.53 kX, b=10.41 kX, c=20.30 kX при β=90°, что дает a : b : c=0.723 : 1 : 1.949.

На развертках слоевых линий вращения вокруг b, а также на других развертках отсутствовали рефлексы с нечетной суммой h+l, т. е. соответствующая моноклинная ячейка характеризуется центрированной гранью B=ac; подобные ячейки принято сводить к примитивным с половинным объемом. Оси a и b сохраняются, новой же осью c становится половина диагонали прежнего параллелограмма.

Ng 2

Параметры ячейки, лежащей в основе нашего исследования: a = 7.53 kX, b = 10.41 kX, c = 10.83 kX; $\beta = 69°56'$.

На рентгенограммах вращения вокруг оси *а* все нечетные слоевые линии весьма слабы, что свидетельствует о псевдопериоде $a' = \frac{a}{2} = 3.77$, которому подчиняется расположение большинства атомов.

При указанном выборе осей моноклинная федоровская группа определяется как $C_{2h}^5 = P\frac{2_1}{c}$. Это, как известно, одна из наиболее распространенных в органических и неорганических структурах групп; она удобна тем, что в ней центр симметрии устанавливают одни рентгеновские данные, и если не отпадают, то отходят на второй план кристаллофизические поиски (отсутствия) центра симметрии.

Кроме четырех пар центров симметрии, все другие положения в этой группе общие, четырехкратные.

Из удельного веса 2.97—2.99 и объема элементарной ячейки вычисляется содержание в ней 4 «молекул» Са4Si₂O₇F₂, т. е. в элементарной ячейке нужно разместить 16 атомов Са, 8 Si, 28 O и 8 F.

Экспериментальный материал включал помимо рентгенограмм вращения 9 разверток слоевых линий вращения вокруг оси *a*, 9 разверток слоевых линий вокруг *b* и нулевую развертку вокруг *c'*, все на Мо-излучении как обеспечивающем большее число рефлексов по сравнению с Си-излучением, что существенно при использовании статистического метода.

По значениям F_{hol}^2 и F_{okl}^2 были построены проекции диаграмм межатомных векторов (патерсоновские). На них резко проявияся псевдопериод $a' = \frac{a}{2}$, но при 16 атомах Са в общих положениях какие-либо другие выводы были трудны, и мы воспользовались патерсоновскими синтезами в дальнейшем лишь для сравнения с результатами, полученными другими способами.

Как обычно при прямых способах определения, модули структурных амплитуд были помножены на температурный фактор (с коэффициентом $B=0.6^1$) и пересчитаны в «единичные амплитуды» с точностью до про-извольного множителя.

Как показано З. В. Звонковой и Г. С. Ждановым (1952), но в особенности И. М. Румановой (1954а, 1954б) и Е. Г. Фесенко (Фесенко, Руманова, Белов, 1955), этого вполне достаточно для чисто статистического метода, если он не комбинируется с методом неравенств. К шкале, пропорциональной единичным структурным амплитудам, были приведены все 2500 рефлексов.

Две предыдущие расшифровки рентгеновской аборатории Института кристаллографии АН СССР (эпидот и циозит) были выполнены без «проб и ошибок» при помощи тех способов примого определения знаков, которые предложены за последние годы.

В обеих расшифровках основная масса знаков структурных амплитуд определялась статистическим методом, чему, однако, предшествовала стадия установления группы «опорных» знаков, которая в одном случае была выделена, исходя из неравенств Харкера—Каспера, в другом жечерез операцию сопоставления, которой подвергались по очереди различные пары из опорной группы. Последний метод дважды излагался в печати в двух статьях И. М. Румановой (1954а, 1954б) и особенно подробно в диссертации Е. Г. Фесенко (1954).

¹ Т. е. значительно меньшим единицы, рекомендуемой Б. К. Вайнштейном (1954), и 0.7—0.8, использованных в других работах (Ito, 1952; Фесенко, Руманова и Белов, 1955). Ег рых со одинан фиксан что в структ димые

1951):

Согл подобно турах (с между внутри

В пе уz как о псевдопо четными чение д

Из 24 ципу нат честве то туд на вались в ничных а соответст шение.

Всего Модус пости зна числе, оп отдельны Все вклю творяли В рез

<вязались

1 Hanj

113—13 . една (4.15) сопоставля

Кристаллическая структура куспидина

161

Его основанием является возможность для отобранной сопоставляемой пары выписать целый ряд статистических равенств, каждое из которых содержит в правой части произведения амплитуд с соответственно одинаковыми абсолютными значениями *hkl*, но сами амплитуды при фиксации индексов становятся либо равными, либо противоположными, что в свою очередь определяется симметрией (федоровской группой) структуры. Для группы C_{2h}^5 соответствующие зависимости, легко выводимые из развернутого выражения структурного фактора (Белов, 1951):

 $\begin{array}{l} \left\{ \mathbf{F}_{kkl} = \mathbf{F}_{k\bar{k}l} = \mathbf{F}_{\bar{h}\bar{k}\bar{l}} = \mathbf{F}_{\bar{h}\bar{k}\bar{l}} \\ \mathbf{F}_{\bar{h}\bar{k}l} = \mathbf{F}_{h\bar{k}\bar{l}} \neq \mathbf{F}_{h\bar{k}\bar{l}} \\ \mathbf{F}_{h\bar{k}l} = -\mathbf{F}_{h\bar{k}\bar{l}} = -\mathbf{F}_{h\bar{k}\bar{l}} = \mathbf{F}_{\bar{h}\bar{k}\bar{l}} \\ \mathbf{F}_{\bar{h}\bar{k}l} = -\mathbf{F}_{h\bar{h}\bar{l}} \neq \mathbf{F}_{h\bar{k}\bar{l}} \\ \mathbf{F}_{\bar{h}\bar{k}\bar{l}} = -\mathbf{F}_{h\bar{h}\bar{l}} \neq \mathbf{F}_{h\bar{k}\bar{l}} \\ \end{array} \right\} \text{ прм } k+l=2n+1.$

а-

[a

01 01

эй

C-

эй

e-

e-

ии 13-

[a .

₹C-

од.

ие

MH.

ии

лx

)M.

0--

H-

а

б

Согласно детально разработанной (Руманова, 1954а, 1954б) теории подобного определения знаков опорных амплитуд, в моноклинных структурах (с особым направлением по оси y), наибольшее число зависимостей между знаками на основании симметрии группы возможно получить внутри группы амплитуд 0kl или hk0, но не h0l.

В первую очередь мы обратились к проекции электронной плотности уг как отвечающей самому короткому периоду (a) и в два раза меньшему псевдопериоду; кроме того, в построении ее не участвуют рефлексы с нечетными h, слабость которых (псевдопериод a/2) весьма снижала их значение для статистического метода.

Из 244 рефлексов 0kl в группу опорных было отобрано 30% по принципу наибольших «единичных» амплитуд. По тому же принципу, но в качестве только определяющих было выделено по 25% от единичных амплитуд на каждой четной слоевой линии, и еще 15% рефлексов использовались в качестве вспомогательных, т. е. при меньшей величине их единичных амплитуд мы придавали меньшее значение тем случаям, когда соответствующие определяющие пары давали противоположное решение.

Всего определяющими послужили 70+336=406 рефлексов.

Модус вероятности, принятый нами при установлении тождественности знаков сопоставляемых амплитуд из опорной группы, был 1 при числе определяющих пар, меньшем 5, и >0.75 при большем числе. (Для отдельных сопоставляемых пар число определяющих достигало 20).¹ Все включенные в опорную группу 70 единичных амплитуд 0kl удовлетворяли этому условию.

В результате 106 сопоставлений все 70 рефлексов в отношении знаков связались в цепи, в каждой из которых знак выражался одной условной

¹ Например, для пары (0.13.4): (0.17.4) мы имеем:

0,15,1	0.2.8	$\overline{4.15.6}$	4.2.10	
0.15.7	0.2.11	$\overline{4}.15.\overline{9}$	4.2.18	
0.15.11	0.2.7	4.15.13	4.2.17	
$0.15.\bar{1}1$	0.2.15	6.15.7	6.2.11	
$2.\overline{15}.5$	2.2.9	6.15.17	$\overline{6.2.13}$	
2.15.15	2,2.19	$\bar{6}.15.\bar{1}\bar{7}$	6.2.21	
4.15.13	4.2.9	8.15.11	8.2.15	

Из 13 определяющих нар получаем соотношение S_{0.13.4} = -S_{0.17.4}, и лишь одна (4.15.6) : (4.2.10) дает противоположное решение, т. е. вероятность того, что знаки сопоставляемых пар различны, равна 93%.

буквой. Чтобы уменьшить число цепей (с семи до четырех), мы обратились к основной статистической формуле $S_{H+K} = S \overline{(S_H \cdot S_K)}$ и получили первые 25 соотношений между условными буквами. Все они оказались не противоречащими друг другу и приводили к зависимостям:

$$A = -x = -y = -z$$
 $p = q$ $a = p\overline{x}$.

Буква A давала знаки в той цепочке, которая была составлена рефлексами с обоими четными индексами, и определилась конкретно как минус, тогда как остальные буквы выразились через два значения, которые по теореме о зависимости знаков структурных амплитуд от выбора начала в том или ином из 8 центров симметрии в примитивной ячейке (Zachariasen, 1952) мы могли задать произвольно. Было выбрано x=+ и p=-. Знаки всех (70) опорных амплитуд еще раз были проверены чисто статистическим методом, что не привело к уменьшению числа опорных знаков, и мы приступили к определению знаков всех прочих амплитуд также статистическим методом на основании опорных с модусом вероятности ≥ 0.70 . Удовлетворительного ответа не получилось в отношении знаков 54 амплитуд из общего числа 244.

По 190 снабженных знаками амплитудам была построена проекция *yz* структуры куспидина, на которой выступило почти в два раза меньшее число пиков по сравнению с числом атомов в согласии с псевдопериодом a' = a/2 (т. е. атомам с координатами x, y, z соответствуют такие же с $x + \frac{1}{2}$, y, z), подобно тому, что было обнаружено в недавно расшифрованной в Институте кристаллографии АН СССР (Вайнштейн, 1952) структуре NiCl₂·2H₂O, а также в структуре тиллеита Ca₅Si₂O₇(CO₈)₂ (Smith, 1953), минералогически близкого к куспидину. Все межатомные расстояния в проекции уz хорошо согласовались по величине и направлению с диаграммой межатомных векторов в той же проекции.

По координатам, которые следовали из синтеза для сдвоенных атомов, были вычислены структурные амплитуды для всех Okl. Не совпали с определенными статистически знаки 6 рефлексов с малыми единичными амплитудами. Синтез по амплитудам с рассчитанными знаками и со включением тех 54 амплитуд, знаки которых не определились статистически, привел к почти не изменившейся проекции диаграммы электронной плотности, показанной в изогипсах на рис. 1.

Сравнение знаков, рассчитанных по окончательным координатам, с определенными статистически показало различие в двух случаях, а не в шести, как то выявилось после первого синтеза.

Коэффициент достоверности, рассчитанный по окончательным координатам, составил 22.4% для всех 244 ненулевых рефлексов и 24.3%, учитывая 26 нулевых, т. е. всего для 270 рефлексов.

Для установления координат x, а также для более точной фиксации координат y и z перекрывавшихся атомов необходимы были другие проекции. Первой была построена xz. Из 211 рефлексов нулевой развертки вращения вокруг b 86 имели нечетные h. В моноклинной системе с особым направлением b, хотя $\mathbf{F}_{\bar{h}0l} = \mathbf{F}_{\bar{h}0\bar{l}}$, но $|\mathbf{F}_{h0\bar{l}}| \neq |\mathbf{F}_{\bar{h}0\bar{l}}|$ и также $|\mathbf{F}_{h0\bar{l}}| \neq$ $\neq |\mathbf{F}_{h0\bar{l}}|$. Поэтому нет возможности, выбрав какую-либо сопоставляемую пару $h_A 0l_A$ и $h_B 0l_B$, найти для нее определяющие, связанные элементами симметрии (кроме одной). Знаки всех $\mathbf{F}_{h0\bar{l}}$ могут определяться лишь но основной статистической формуле из рефлексов общего типа hkl.

Опорная группа рефлексов *hkl* могла быть отобрана из разверток: вокруг любой оси, и мы обратились в первую очередь к четным разверткам вращения вокруг *a*, которые использовались при построении проекции *yz*. Все не для 60 (пр щих па щихся опорно пользу с h=2n

Pzc. I. Ky

Труднос Ісказальсі ізаков лиш Ізаков с І ізаков доу ізаков доу ізаков доу істеу В ся істеу В ся

Кристаллическая структура куспидина

С**И**-

ли

СЬ

)0ак

ые

ла ia-гаіаже ти сов

ия 16-10же ро-52) 3)2: ые 18-

)В,)С---М---Ю---И, Т---

м, не

ό,

и 0аи

UZI

Б.

к

г-

163

Всего было сопоставлено 999 нар hkl. Количество определяющих было не для всех одинаково: для рефлексов с $k_1 \neq k_2$, $l_1 = l_2$, $h_1 = h_2$ оно достигало 60 (при модусе вероятности $\geq 70\%$), для рефлексов с $k_1 = k_2$ определяющих пар было значительно меньше — 4, 3 и даже 1. На основании имеющихся соотношений были составлены цепи и определены знаки рефлексов опорной группы hkl с h=2n, в которую вошло всего 622 рефлекса. Используя эту группу рефлексов, легко было определить знаки F_{hol} с h=2n при большом количестве определяющих произведений (до 48).

Рис. 1. Куспидин. Проекция уг диаграммы электронной плотности в изогипсах.

Трудности со знаками рефлексов из опорной группы hkl с нечетными h оказались настолько велики, что пришлось ограничиться определением знаков лишь для рефлексов с нечетными h из зоны h0l. Тем не менее 19 рефлексов с h = 2n + 1 быстро сомкнулись в одну цепь, все звенья которой выразились через букву B. Поскольку ранее при произвольном задании знаков двух амплитуд нечетные h не фигурировали, то мы имели право букву B счесть плюсом и тем самым полностью использовать возможности произвольного назначения трех знаков.

На основе опорной группы с включением этих рефлексов удалось статистическим методом определить знаки еще 30 амплитуд h0l с нечетными h. Всего же для проекции xz определиящихся F_{hol} , равном 144. Синтез с нечетными h при общем числе определившихся F_{hol} , равном 144. Синтез Фурье по этим рефлексам выявил атомы Са, Si и часть O, но одновременно в нем были «привидения», мешавшие точной локализации атомов O, и синтез был повторен трижды с полным каждый раз пересчетом знаков структурных амплитуд, пока коэффициент достоверности для 211 рефлексов (без нулевых) не достиг 23.8%.¹

В проекции *xz* мы имели перекрытие $O_{IV} c O_V u O_I c F$. Не полностью отрывались от атомов Si атомы $O_{II} u O_{III}$. Все эти атомы перекрываются и в проекции *yz*, и нужна была еще одна проекция.

Таблица 1

Рвс, 2,

Атомы	100 x/a	100 <i>y</i> /b	100 z/c	
Ca _r '	17.2	18.8	42.0	
Ca _{TT}	66.8	12.9	42.0	
Ca_{TTT}	47.3	41.2	31.2	
Ca_{TV}	- 3.5	40.8	30.8	
Si_T	27.3	19.2	12.7	
Si _{TT}	84.8	19.2	12.8	
0_{T}^{-1}	6.5	20.8	12.5	
Ο _{ττ}	80.8	4.2	15.5	
0 _{TTT}	81.3	4,2	15.5	
$O_{\mathbf{T}\mathbf{V}}$	28.0	28.0	24.6	
$0_{\mathbf{v}}$	72.0	28.0	24.6	
Ο _{ντ}	41.5	24.0	-1.5	
$O_{\rm vir}$	-14.5	24.0	- 1.5	
\mathbf{F}_{T}	57.5	51,0	10.0	
F ₁₁	7.5	51.0	10.0	
	1			

Координаты базисных атомов структуры куспидина

Та же группа опорных рефлексов *hkl* позволила установить знаки замплитуд *hk*0.

В проекции xy не было тех систематических перекрытий, которые имели место в проекции 0kl и более случайных перекрытий, как в проекции k0l. Здесь статистический метод дал знаки 120 рефлексов из общего числа 151.

Синтез с использованием вычисленных знаков повторил первоначальный при полной почти ликвидации невысоких «привидений» и показан на рис. 2 в изогипсах.

Коэффициент достоверности проекции *hk*0 для 145 (вместе с 25 нулевыми) рефлексов равен 23.5 и 21.5% без нулевых.

В табл. 1 приведены координаты базисных атомов, усредненные по трем проекциям. Поскольку все атомы в четырехкратных общих положениях, то при 15 базисных атомах всего мы имеем 45 параметров.

¹ В поизите он был 0.22; в одной из лучших английских работ по Са-силикатам (Megaw, 1952) 0.245. В далее цитируемой работе по типленту (Smith, 1953) фигурирует 0.19 без указания на то, что там было принято во внимание лишь значительно менее половины рефлексов, а именно до Sine/ $\lambda = 0.48$ против 1.0 — предельного в нашей работе.

★ 3 Записки Минералог. общ., № 2

)сь эт-20в

res HO

, И ЮВ ЭК-

ы0 101

а

ю и а

H

и Т е Вычисленная по Б. К. Вайнштейну (1954) вероятная ошибка в найденных на проекциях положениях атомов составила для Ca 0.008 kX, для Si 0.012 kX, для О и F 0.025 kX. Это, как известно, пределы ошибок, связанных с неточностью определения интенсивностей. Малая разрешающая способность принятого у нас деления элементарного параллелограмма на 48² частей увеличивает ошибку в 1¹/₂-2 раза.

BHI

и (О

лент

диор

в ле

диор

тогр

каль

оси н вен , с пет

Це

стояни все Са

ловлці

1.64 k

в друг

Еще і

Однак

Фурье

2,52 k

r ryć

чаютс

ด์มาแ

B Kaj

B MOR

однај

A

Pa

Pa

ŀ

из

На рис. З изображена проекция структуры куспидина при луче зрения || оси x. Все атомы показаны кружками разного диаметра. Ось с составляет с a угол ≈70° и при совершенно ясном направлении Са-цепочек, а также осей диортогрупп вдоль оси x, плоскость уz неудобна как начало отсчета, поэтому мы в этой проекции использовали минералогическую, т. е. псевдоромбическую ячейку с углом β≈90°, которая центрирована

Рис. 3. Проекция уг структуры куспидина.

но второму пинакоиду. Федоровская группа C_{2h}^5 принимает вид $B\frac{21}{d}$, т. е. на проекции с лучом зрения вдоль оси *x* каждому атому с координатой *z* на высоте *x* соответствует (за счет *B*-центрированности) атом с координатой $z+\frac{1}{2}$ и высотой $x+\frac{1}{2}$, тогда как перекрываемому атому *z*, $x+\frac{1}{2}$ будет соответствовать $z+\frac{1}{2}$, *x*.

Согласно псевдопериоду a/2, каждый кружок изображает не один, а два (почти точно) перекрывающихся атома во всех случаях, за исключением атома O_I , который находится между (и немножко в стороне) двумя располагающимися друг под другом атомами кремния. Атомы O_I связаны только с Si, все прочие атомы О являются одновременно вершинами как Si-тетраэдров, так и Са-полиэдров. Атомы F служат общими вершинами только для Са-полиэдров.

Подобно тому, что характерно для ильваита, эпидота и цоизита, так и в куспидине основу структуры составляют колонки из достаточно правильных октаздров, сцепленных между собой парой противоположных ребер. Эти колонки тянутся вдоль оси *x*, но каждый октаздр из О и Fатомов имеет бо́льшие размеры, чем в указанных структурах, поскольку

в них расположены не Al (Fe), но крупные катионы Ca. По четыре колонки из Ca-октаздров соединены в широкие ленты, параллельные (012) и (012).

Геометрически эти ленты связаны скользящей плоскостью с. Между лентами располагаются диортосиликатные группы [Si₂O₇], причем ось диортогруппы параллельна осям колонок из Са-октаздров, т. е. оси х.

На рис. 4, также при луче зрения по оси x, выделены и соединены в ленты координационные октаэдры вокруг Са, между которыми зажаты диортогруппы [Si₂O₇]. Последние видны сверху, тогда как на рис. 5 диортогруппы показаны сбоку. Са-октаэдры настолько велики, что их вертикальные ребра равны удвоенной высоте Si-тетраэдров, в результате чего оси последних параллельны ребрам октаэдров, т. е. угол Si—O—Si равен ~180°, в отличие от угла Si—O—Si, равного ~130° в силикатах с цепочками из Al—Fe-октаэдров (эпидот, ильваит).

Рис. 4. Проекция уз структуры куспидина с выделенными координационными полиздрами вокруг Са и Si.

Центральный атом О_I в группе [Si₂O₇] не имеет себе подобного на расстоянии a/2, и расстояние Si—Si внутри группы меньше a/2, тогда как все Са-октаздры отстоят друг от друга по высоте точно на a/2, что и обусловливает псевдопериод a/2.

Расстояния Si—O в кремнекислородных тетраэдрах в пределах 1.57— 1.64 kX в хорошем согласии со средним значением этих расстояний (1.62 kX) в других силикатах. Ребра O—O у Si-тетраэдров в пределах 2.50—2.70 kX. Еще недавно расстояния 2.50 kX считались малыми в [SiO4]-тетраэдрах. Однако в ряде последних работ с более или менее точными синтезами Фурье мы находили расстояния 2.52 kX, 2.54 kX — в цоизите; 2.49— 2.52 kX — в афвиллите (Megaw, 1952) и 2.58—2.59 kX — в близком к куспидину тиллеите.

Расстояния Са—О в октаздрах в пределах 2.22—2.59 kX; т. е. отличаются от суммы ионных радиусов на ±8%. В поизите эти расстояния были 2.30—2.80 kX, а в тиллеите 2.17—2.72 kX.

Атомы Са расположены в октаэдрах подобно тому, как это имеет место в кальците, тиллеите, а также в ларните (Ca2SiO4), но что вообще редко в моноклинных структурах, где координация Са обычно семерная. Если; однако, не ограничиваться расстояниями Ca—O=R_{Ca}+R₀=2.40kX±10%; Р. Ф. Смирнова, И. М. Руманова и Н. В. Белов

то мы найдем у атомов Са_I и Са_{II} по седьмому соседу с расстоянием 2.84— 2.85 kX. От атомов Са_{III} и Са_{IV} седьмой О отстоит значительно дальше, а именно на 3.50 kX. Замечательно, что седьмой сосед только у половины атомов Са чрезвычайно благоприятно сказывается на балансе валентностей, как то показано в табл. 2.

Баланс	валентностей	в	куспидине
--------	--------------	---	-----------

Таблица 2

Толи

Пов

Если

Бел трип. Тр. Вай

NiCl₂ · 2H Вай

электрони 3 80 структурн Рум илитуд ста Рум турных ам Ума ненных кр Φ e cj ческая стр Arz S. 398---39 Ito Meg Sca viani, Ren Smi Zac **Crystal St** Zam

имеют имеют і

октаэдр

чтобы о никован куспиди пами [S] деляет) Цепо знак ку [CO₃] и Стру установл ксов.

· · · · · · · · · · · · · · · · · · ·					
Анионы	oı	0 ₁₁ , 0 ₁₁₁	0 _{1V} , 0 _V	$O_{\mathbf{VI}}, O_{\mathbf{VII}}$	F _I , F _{II}
Координационное число Са ₁ и Са ₁₁ равно 6 Координационное число Са ₁ и Са ₁₁ равно 7	2 2	$1\frac{2}{8}$ $2-\frac{1}{21}$	2 $2 - \frac{1}{21}$	2 $2 - \frac{2}{21}$	$1\frac{1}{3}$ $1\frac{1}{5}$

В одинаковых природных условиях с куспидином встречается минерал тиллеит, в котором двум одновалентным анионам фтора в куспидине соответствуют два двувалентных анионных радикала (CO₃), в связи с чем появляется добавочный Са-катион : Ca₅Si₂O₇(CO₃)₂. Проекция структуры тиллеита в координа-

ционных полиэдрах показана на рис. 6.

Рис. 5. Сочетание диортогруппы [Si₂O₇] с Са-октаэдрами в куспидине.

Рис. 6. Проекция структуры тиллеита с выделенными координационными полиздрами вокруг Са, Si и С.

В типленте примерно те же размеры b и a, но только в минералогическом и структурном описании ось a заменена осью c, причем точно так же имеется исевдопериод a/2 (c/2), вызывающийся теми же причинами.

Согласно рис. 6, и в тиллеите колонки из октаэдров также связаны в ленты, но эти ленты в два раза уже, будучи составлены каждая из двух только колонок. Ленты двух ориентаций в тиллеите связаны в зигзагообразные стенки с общим направлением вдоль оси *b*. В каждый зигзаг вставлена группа [Si₂O₇] с осью, параллельной оси цепочек из Ca-октаэдров. Между собой стенки связаны треугольными группами (CO₃), а также дополнительными (пятыми) Са-октаэдрами.

169

Только ионы Са, находя щиеся в этих соединительных октаэдрах, имеют координацию 6 (центры симметрии), тогда как все прочие Са имеют координацию 7.

ы

ሞ-

2

eerнe

M91 ук.-

re-Re

ны vx 0аг 'a-

Повидимому, за счет различия в размерах групп [Si₂O₇] и [CO₈] все октаэдры в тиллеите сильно изуродованы.

Если ленты из Са-октаэдров куспидина связать друг с другом так, чтобы образовались зигзаги тиллеитового типа, то получится закон двойникования по (001), характерный для полисинтетических образований куспидина. Зеркальная плоскос ть мсжду соседними, вдсль оси x, группами [Si₂O₇] не нарушает непрер ывности колонок из Са-октаздров и определяет двойники по (100).

Цепочки из Са-октаэдров обусловливают положительный оптический знак куспидина; в тиллеите этот эффект цепочек стирается плоскими [СО3] и положительность вы ражена ничтсжным образсм,

Структура куспидина с ее 45 параметрами разрешена путем прямого установления знаков амплитуд у ~1500 из 2500 нетождественных рефле-KCOB.

Литература

Белов Н. В. (1951). Классный метод вывода пространственных групп симме-

Белов Н. В. (1951). Классный метод вывода пространственных групп симме-трии. Тр. Инст. кристаллогр., вып. 6, стр. 25—62. Вайн штейн Б. К. (1952). Электронографическое определение структуры NiCl₂ · 2H₂O. ЖФХ, ХХVI, 1774—1784. Вайн штейн Б. К. (1954). Количественные соотношения в рядах Фурье электронной плотности кристаллов. ЖЭТФ, 27, стр. 44—61. Звонковаз. В. и Г. С. Жданов (1952). Прямой метод определения внаков структурных амплитуд. ДАН СССР, 86, № 3, стр. 529—532. Руманова И. М. (1954а). Определение знаков «опорных» структурных ам-плитуд статистическими равенствами. Тр. Инст. кристаллогр., вып. 10, стр. 59—70. Руманова И. М. (1954а). Слатистическое определение знаков «опорных» структурных ам-турных амплитуд. ДАН СССР, 98, № 3, стр. 399—402. Уманова И. М. (19546). Статистическое определение знаков «опорных» структ турных амплитуд. ДАН СССР, 98, № 3, стр. 399—402. Уманок и М. М. и. С. С. К витка (1951). Рентгеновский анализ неогра-ненных кристаллов. Изв. АН СССР, сер. физич., ХУ, стр. 147—156. Фесенко Е. Г., И. М. Руманова и Н. В. Белов (1955). Кристалли-

Фесенко Е. Г., И. М. Румановаи Н. В. Белов (1955). Кристалли-ческая структура доизита. ДАН СССР, 102, № 2. А r z r u n i A. (1877). Über zwei neue Mineralien vom Vesuv. Zeit. Krist. Min., I,

S. 398-399.

S. 598-599.
I t o T. (1952). The Crystal Structure of Realgar. Acta Cryst., 5, p. 477-491.
M e g a w H. D. (1952). The Structure of Afwillite. Acta Cryst., 5, p. 477-491.
S c a c c h i A. (1876). Della Cuspidina e del Neocrisolito, nuovi minerali Vesuviani. Rend. R. Acc. Napoli.
S m i t h J. V. (1953). The Crystal Structure of Tillevite. Acta Cryst., 6, p. 9-18.
Z a c h a r i a s e n W. H. (1952). A New Analytical Method for Solving Complex
Crystal Structures. Acta Cryst., 5, p. 68-73.
Z a m h o n i n i F. (4935). Mineralogia Vesuviana Napoli n. 253

Zambonini F. (1935). Mineralogia Vesuviana. Napoli, p. 253.