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Abstract: We conducted an in situ crystal structure analysis of ferroselite at non-ambient conditions.
The aim is to provide a solid ground to further the understanding of the properties of this material in
a broad range of conditions. Ferroselite, marcasite-type FeSe2, was studied under high pressures up
to 46 GPa and low temperatures, down to 50 K using single-crystal microdiffraction techniques. High
pressures and low temperatures were generated using a diamond anvil cell and a cryostat respectively.
We found no evidences of structural instability in the explored P-T space. The deformation of the
orthorhombic lattice is slightly anisotropic. As expected, the compressibility of the Se-Se dumbbell,
the longer bond in the structure, is larger than that of the Fe-Se bonds. There are two octahedral
Fe-Se bonds, the short bond, with multiplicity two, is slightly more compressible than the long bond,
with multiplicity four; as a consequence the octahedral tetragonal compression slightly increases
under pressure. We also achieved a robust structural analysis of ferroselite at low temperature in the
diamond anvil cell. Structural changes upon temperature decrease are small but qualitatively similar
to those produced by pressure.
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1. Introduction

Iron selenides form economically important ore deposits and are relevant to the geochemical
cycle of chalcogenides. In material science, dichalcogenides are extensively explored for solar
energy applications because of their suitable thermoelectric and optical properties along with their
availability and low toxicity [1–3]. Compounds with the marcasite crystal structure display a variety
of intriguing physical properties intimately related to their structural arrangements [4]. Furthermore,
the marcasite structure type is adopted by several interesting high-pressure phases such as Fe, Rh and
Os pernitrides [5–7].

Ferroselite is a mineral of the chalcogenide series with end-member composition FeSe2 and with
the marcasite-type crystal structure. Ferroselite is the stable phase of iron diselenide at ambient
conditions. Upon heating at ambient pressure, FeSe2 does not show phase transitions until its
decomposition at 850 K [8]; upon heating at 1200 K under moderately high pressure (65 Kbar) iron
diselenide adopts the pyrite structure type [9,10]. Iron is bonded to six selenium atoms in ferroselite,
whereas selenium forms a monatomic bond and 3 bonds with iron (Figure 1). The FeSe6 edge-sharing
octahedra form chains along the c-direction, while the Se-Se dumbbell bond lies in the ab plane
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connecting octahedral chains. In the marcasite-type structure, symmetry constrains impose some
degree of distortion to the coordination geometries. The octahedron shows angular distortion and
features two different bond lengths, in ferroselite those with multiplicity two are slightly shorter than
the four equatorial bonds. Iron is located in 2a with all symmetry-constrained coordinated whereas
selenium, located in 4g, shows variable coordinates x and y.
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The specimen investigated in this study is a mineral from Paradox Valley, Uravan District, 
Montrose County, Colorado, USA obtained from the RRUFF collection (RRUFF.info/R070461). The 
composition reported in the RRUFF database [14] was determined via electron microprobe analysis. 
Measured elements were Se, Fe, Pb, S, Zn, Cu, Ag; within experimental resolution, the sample is pure 
and stoichiometric. 

Conditions of high pressure and of low temperature were generated with a 4-post diamond anvil 
cell (DAC) and with a liquid-flow helium cryostat (Figure 2). The DAC was equipped with conical 
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Figure 1. Representation of the crystal structure of marcasite-type FeSe2 generated with VESTA [11].
Iron atoms (blue) are coordinated to 6 selenium atoms (yellow) defining a tetragonally compressed
octahedron. Selenium dumbbells lie in the ab plane and connect the chains of octahedra running
parallel to the c-axis.

The thermal expansion of the ferroselite lattice has been explored from ambient conditions
up to decomposition temperatures [8], while magnetism and electrical properties were explored in
a broad range of temperatures [2]. Mechanically alloyed ferroselite nanocrystalline materials were
studied under pressure via absorption spectroscopy up to 19 GPa, showing no evidence of phase
transitions [12]. The elastic properties of FeSe2 were recently determined by means of first-principles
calculations [13].

To study the bulk and atomic response of FeSe2 to external high pressure and to low temperature
we performed synchrotron single-crystal microdiffraction experiments using a diamond anvil cell and
a cryostat to generate target conditions. We performed three different experiments: (i) compression at
ambient temperature up to ~46 GPa; (ii) cooling down to 50 K at ambient pressure; (iii) a combined
high-pressure low-temperature experiment down to 110 K at 3.8 GPa. Both low-temperature
experiments were conducted with single crystals loaded in a diamond anvil cell (DAC) contained in
a cryostat (hereafter DAC and cryostat).

2. Materials and Methods

The specimen investigated in this study is a mineral from Paradox Valley, Uravan District,
Montrose County, Colorado, USA obtained from the RRUFF collection (RRUFF.info/R070461).
The composition reported in the RRUFF database [14] was determined via electron microprobe
analysis. Measured elements were Se, Fe, Pb, S, Zn, Cu, Ag; within experimental resolution, the sample
is pure and stoichiometric.

Conditions of high pressure and of low temperature were generated with a 4-post diamond anvil
cell (DAC) and with a liquid-flow helium cryostat (Figure 2). The DAC was equipped with conical
diamonds anvils [15] of 85◦ aperture and 0.3 and 0.6 mm culet diameter for high pressure and low
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temperature experiments respectively. Gaskets were fabricated from pure Re or W foils; 160 and
360 µm diameter holes in the center of 35 µm thick indentations provided the sample chambers for the
high-pressure and the low-temperature experiments respectively. The sample chambers were filled
with pre-pressurize neon in order to maintain quasi-hydrostatic stress on the crystals in the whole
range of experimental conditions.

X-ray microdiffraction data (Figure S1) were collected at the insertion device station 16ID-B
of HPCAT, Sector 16, Advanced Photon Source, Argonne National Laboratory. Experiments were
performed using hard X-rays (λ = 0.40662, 0.36793 Å) focused to about 5 × 5 µm FWHM at the sample
position. The experimental station was equipped with a heavy-duty motorized sample stage suitable
for measurements with a cryostat for high pressure studies. The cryostat provided wide angular X-ray
access and was equipped with a gas membrane for pressure control. Diffracted X-rays were collected
with the rotation method (verticalω axis) using a MAR165-CCD area detector (marXperts, Norderstedt,
Schleswig-Holstein, Germany) and a MAR345IP detector (marXperts, Norderstedt, Schleswig-Holstein,
Germany), both were calibrated using powder patterns of CeO2 standard and the GSASII software [16].
The rotation range was 72◦ for high-pressure data and 60◦ for low-temperature data, the X-ray access
was reduced by the gas membrane and cryostat body in the latter case. For the samples in the cryostat
diffraction images were collected with the detector (CCD) at three different locations in the horizontal
direction perpendicular to the beam. The maximum resolution achieved was 0.6 Å.
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Figure 2. Schematic representation of the high-pressure low-temperature setup at beamline 16ID-B of
the APS, ANL.

Pressure was calibrated using the equation of state of platinum [17] for ambient temperature data
and ruby [18] for low-temperature data. Temperature was measured using silicon diode temperature
sensors positioned on the DAC body and on the copper block, the two differ by less than two
degrees during data collection. Data reduction was performed GSE_ADA & RSV [19], WinGX [20],
and DIOPTAS [21]. Structural refinements were carried out using Shelxl [22]. Standard powder
patterns were analyzed with GSASII [16].
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3. Results and Discussion

3.1. Ambient Conditions Structural Refinements

Measuring structure factors in the diamond anvil cell with a micron-sized X-ray beam is an
established technique providing extremely valuable and robust results in spite of its challenges.
In addition to high-pressure measurements, here we collected data from small single crystals loaded
in the DAC which was then loaded in a cryostat (Figure 2). The cryostat we used for high pressure
measurements is a relatively bulky device with several connections, the most cumbersome being the
liquid helium supply line and the vacuum line. These connections caused an increase in the sphere
of confusion of the rotation axis. Because crystals are roughly 20 µm in diameter and the beam is
around 5 µm FWHM, we anticipated that the X-ray flux on the crystals would vary more dramatically
during data collection compared with ambient temperature measurements. As a consequence, the set
of observed structure factors would not be in scale. Furthermore, for relatively low-symmetry crystals,
a reliable empirical correction calculated from comparing sets of equivalent reflections might be
difficult to define due to the low data redundancy. To compensate for such effects we loaded three
crystals with different crystallographic orientations in the diamond anvil cell for low temperature
work (Table S1). Furthermore, we collected several rotation images in a small grid pattern around
the crystal center for a few datapoints. In Table 1 literature data are compared with some of our
results. All data collections were performed with samples in environmental cells, DAC and DAC
and cryostat, before conditions were changed. In addition to the scale factor, we refined the two
symmetry-unconstrained fractional coordinates of Se and isotropic displacement parameters for both
atoms for a total of 5 variables. Overall results are in good agreement. We note that: (i) because we
always measured a good number of reflections and we only had 2 positional parameters to refine for the
heavier element, these were always reasonable, including high R factors refinements; (ii) merging grid
diffraction patterns provided in most cases excellent results and low disagreements between equivalent
reflections and better results than empirical corrections; (iii) datasets are not uniform because, we infer,
the increase in the sphere of confusion caused by the cryostat is not fully reproducible. In conclusion,
it appears beneficial to acquire redundant datasets, this allows for adopting different data reduction
strategies and provides the best likelihood that robust refinements can be obtained.

Table 1. Ambient-conditions unit-cell parameters and atomic fractional coordinates from the literature
and from this work (see text).

Sample Nall, Nind a (Å) b (Å) c (Å)
Req, R1

(%) x (Se) y (Se) Ueq-Fe
(Å2)

Ueq-Se
(Å2)

Ref. [23] 4.8002(4) 5.7823(5) 3.5834(4) 0.2127(6) 0.3701(5)
Ref. [24] 4.804(2) 5.784(3) 3.586(2) 0.2134(2) 0.3690(1)

RRUFF (a) 4.795(3) 5.777(4) 3.584(1)
Ref. [2] 4.8031(6) 5.7849(2) 3.5840(4) 0.2127(2) 0.3691(7)

Measurement in the DAC
DAC 204, 98 4.801(3) 5.787(2) 3.5859(7) 12, 4.9 0.213593) 0.3692(2) 0.0095(5) 0.0099(5)

Measurement in the DAC and cryostat
C1 (b) 205, 82 4.804(4) 5.781(3) 3.5814(7) 8.4, 4.4 0.2133(3) 0.3692(1) 0.0056(5) 0.0059(4)
C2 (c) 253,103 4.8016(9) 5.777(1) 3.5850(8) 9.6, 5.4 0.2137(2) 0.36921(13) 0.0090(5) 0.0090(4)
C3 (b) 214,94 4.799(1) 5.785(2) 3.5820(4) 33, 12 0.2130(7) 0.3699(3) 0.0067(12) 0.0086(10)

(a) same specimen of the present work RRUFF.info/R070461; (b) no grid scan, no empirical corrections;
(c) three detector positions, hkl from merged grid scans, no empirical corrections.

3.2. High Pressure

Diffraction data of ferroselite were collected up to 46 GPa (Table 2). There are no indications
of phase transitions but the highest pressure pattern shows moderate peak broadening that might
be the result of non-hydrostatic stress as well as the manifestation of an incipient phase transition.
The datapoint at 3.63 GPa was collected with the DAC and cryostat before decreasing temperature,
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structural parameters at this pressure are in the same trend of data collected in the DAC, confirming our
ability to collect full datasets in these conditions without introducing systematic errors in our analysis.
The anisotropy of the deformation of the orthorhombic cell of ferroselite under quasi-hydrostatic
compression is clear after 17 GPa. As shown in Figure 3 the lattice is more compressible in the
direction of the a-axis and is stiffer along the b-axis. This observation is consistent with the recently
predicted behavior [13]. The bulk compression of marcasite-FeSe2 can be modeled by a second-order
Birch–Murnaghan EoS with an ambient bulk modulus, K0, of 121.6 GPa (blue curve in Figure 4).
Although we collected too few datasets to reliably fit a third order EoS, it can be inferred from the
plot in Figure 4 that a third order EoS might be more appropriate to describe the compressibility of
this material, data in the low-pressure range fall below the blue curve whereas the highest pressure
datapoint falls above the curve. Also, values significantly larger than 4 for the first derivative of the
bulk modulus, K0

′, have been suggested for FeS2 marcasite [25] and several other marcasite-type
chalcogenides. Fixing K0

′ to 4.6, a value that both leads to best fitting and is close to the value in
marcasite, and using the third-order Birch–Murnaghan EoS results in a K0 of 114.1 GPa. More data
ought to be collected in order to better constrain the bulk modulus and its first derivative. We could
not however satisfactorily fit our data with the same EoS equation and using the recently proposed
bulk modulus of 74.7 GPa [13].
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Table 2. Unit-cell parameters and atomic fractional coordinates of ferroselite at high pressure.

P (GPa) a (Å) b (Å) c (Å) x (Se) y (Se) Ueq-Fe (Å2) Ueq-Se (Å2)

1.7 4.771(2) 5.756(1) 3.5663(6) 0.2129(4) 0.36884(13) 0.0079(6) 0.0083(5)
3.83 (a) 4.751(2) 5.729(2) 3.5467(11) 0.2125(60 0.3687(7) 0.014(2) 0.013(2)

8.1 4.698(3) 5.667(2) 3.5088(7) 0.2123(6) 0.3688(2) 0.0083(8) 0.0090(7)
17.3 4.603(3) 5.581(2) 3.4492(9) 0.2123(3) 0.36854(9) 0.0085(5) 0.0088(5)
24.4 4.555(2) 5.524(12) 3.4090(5) 0.2114(4) 0.3683(2) 0.0066(9) 0.0057(7)
32 4.488(4) 5.471(3) 3.3734(11) 0.2111(6) 0.3676(2) 0.0063(13) 0.0064(12)
46 4.404(3) 5.391(2) 3.3185(9) 0.2103(4) 0.36689(13) 0.0066(9) 0.0070(8)

(a) DAC and cryostat measurement, refinement from merged grid scan images.
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Figure 4. Bulk compressibility of FeSe2. The blue symbol shows data collected at ambient pressure in
DAC and cryostat. The blue line shows a second order Birch–Murnaghan EoS fit, the red line a third
order Birch–Murnaghan EoS fit (see text).

Robust crystal structure analysis allows for exploring the changes in atomic arrangement with
pressure. Figure 5 shows the pressure dependence of interatomic distances and their relative variations.
As could be expected, the longest bond, the Se-Se dumbbell, shows the greatest compressibility.
The octahedral bonds however show a less obvious behavior, with the shorter bond being more
compressible than the longer bond, hence the octahedral distortion increases with pressure.
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3.3. Low Temperature

Structural data of FeSe2 were collected ambient pressure at three temperatures 198.2, 148.4,
and 50.4 K and at about 3.7 GPa at 197 and 116 K (Table 3). Upon attempting to maintain a constant
pressure in the sample chamber during further cooling by increasing the gas membrane pressure,
the experiment failed abruptly when the load on the DAC applied with the gas membrane was rapidly
transferred to the diamond anvils upon overcoming the DAC friction.
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Table 3. Unit-cell parameters and atomic fractional coordinates at low temperature and both ambient
pressure and high pressure. For ambient pressure, weighed averages of three crystals are reported.

T (K) P (GPa) a (Å) b (Å) c (Å) x (Se) y (Se)

198.2 10−4 4.7885 5.7782 3.5821 0.2148(4) 0.3692(2)
148.4 10−4 4.7893 5.7775 3.5795 0.2135(2) 0.3691(2)
50.4 10−4 4.7834 5.7767 3.5789 0.2138(3) 0.3694(2)
197 3.68 4.751(2) 5.723(2) 3.5501(11) 0.2131(7) 0.3699(6)
116 3.64 4.7446(11) 5.772(2) 3.5512(8) 0.2130(6) 0.3695(7)

We expected the effect on structural parameters of lowering temperature from 300 to 50 K to be
small, close to the resolution of our experiment. Hence we loaded three crystals with different
orientations for this experiment in order to obtain a more complete sampling of the reciprocal
space and increase data redundancy. Because of the limited access to the reciprocal space different
crystallographic directions can be probed with different precision in differently oriented crystals
(Table S1) as can be inferred inspecting error bars in Figure 6A–C. As a consequence, unit cell variations
of individual crystals hardly show discernible patterns; however trends are appreciable when weighted
average are considered (Figure 6, black symbols). As for the high pressure behavior and for the high
temperature behavior [8], the greatest lattice parameters variations are observed in the direction of the
a-axis (Figure 6D). Unit-cell edges variations along the other principal axes are close to uncertainties.
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The anisotropy of the lattice variations observed with temperature decrease is qualitatively similar
to that observed with pressure. The unit-cell volume decreases by ~0.6% upon cooling from ambient
temperatures down to 50 K (Figure 7, Table 3), a change that corresponds to a pressure of 0.8–0.9 GPa
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depending on the EoS adopted (see above). The volume-pressure trend is appreciably non linear, and it
might in part reflect changes in the physical properties of the material upon cooling [2].

Variations of the Fe-Se bond lengths are also within uncertainties as shown in Figure 8. The Se-Se
bond shrinkage is clearer, so it could be argued that variations in the unit-cell length along the a-axis
and volume are mostly attributed to the monoatomic bond.

We were able to collected just two pressure points at combined low temperature and high
pressure (Table 3). Variations on the structure of ferroselite induced by temperature at this pressure are
within uncertainties.Crystals 2018, 8, x FOR PEER REVIEW  9 of 11 
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4. Conclusions

The physical properties of materials important for critical technologies such as solar energy ought
to be defined in great detail. Studying a material’s behavior in a broad range of conditions allows more
stringent constraints to modeling hence a better general understanding of the material. We conducted
a detailed examination of the crystal structure of marcasite-type iron diselenide at pressures up to
46 GPa, temperatures down to 50.4 K and combined high pressure and low temperature conditions
of ~3.8 GPa and 197 and 116 K. The phase shows no clear signs of phase transitions in this range,
even though it is probably metastable at the highest pressures, considering that it transforms to the
pyrite structure above ~6.5 GPa upon heating [9]. We described in details the anisotropy of the lattice
response to external conditions and changes in the atomic arrangement.

Maintaining sufficient centering of microcrystals while performing rotation data collections of
samples in bulky environmental cells such as combined DAC and cryostat is challenging and not
necessarily reproducible. Hence we find that collecting redundant datasets, in this case grid scans, is the
safest way to gather datasets from which reliable structure factors can be extracted. Multiple crystal
orientations allow obtaining a uniform precision in lattice parameters determinations in addition to
better coverage of the reciprocal space.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4352/8/7/289/s1,
Figure S1: Representative diffraction pattern of ferroselite collected in the DAC, Table S1: Orientation matrices of
the three crystals (C1, C2, C3) studied at low temperature.
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