
RAZOR LIBRARY

Resolution Enhancement,
Smoothing, Derivatives,

Peak Picking, Peak Fitting,
and Baseline Estimation

using Bayesian,
Maximum Likelihood,
and Maximum Entropy

Spectral Analysis Methods

Version C4.0

@Copyright 1991 - 1998 by Spectrum Square Associates, Inc., Ithaca, NY 14850
All rights reserved.

COPYRIGHT: This software is protected by both United States copyright law and
international treaty provisions. No part of this publication may be reproduced or trans-
mitted in any forn1 or by any means, without prior written consent of Spectrum Square
Associates.

SPECTRUM SQUARE LICENSE AGREEMENT: This is a legal agreement between
the user of the enclosed software and Spectrum Square Associates, Inc. BY OPENING
THE SEALED DISK PACKAGE, YOU ARE AGREEING TO BE BOUND BY THE
TERMS OF THIS AGREEMENT. IF YOU DO NOT AGREE TO THESE TERMS,
PLEASE RETURN THE UNOPENED DISK PACKAGE AND THE ACCOMPANYING
MANUAL, FOR A FULL REFUND.

GRANT OF LICENSE: Spectrum Square Associates grants you the right to use the
enclosed software on a single computer. You may make copies of the software for backup
purposes, provided that you label all copies with the copyright notice.

You may not distribute any software incorporating any portions of Razor Library source
code, object modules, or library files, without obtaining a separate License Agreement
from Spectrum Square Associates. Royalties will apply.

DISCLAIMER OF WARRANTY: THIS SOFTWARE AND MANUAL ARE SOLD
"AS IS" AND WITHOUT WARRANTIES AS TO PERFORMANCE OR MERCHANTABIL-
ITY. The seller's salespersons may have made statements about this software. any such
statements do not constitute warranties and shall not be relied on by the buyer in deciding
whether to purchase this sotware.

THIS SOFTWARE IS SOLD WITHOUT ANY EXPRESS OR IMPLIED WAR-
RANTIES WHATSOEVER. Because of the diversity of conditions under which the soft-
ware may be used, no warranties of fitness for a particular purpose is offered. THE USER
IS ADVISED TO TEST THE SOFTWARE THOROUGHLY BEFORE RELYING ON
IT. THE USER MUST ASSUME THE ENTIRE RISK OF USING THE SOFTWARE.
Any liability of seller or manufacturer will be limited exclusively to product replacement
or refund of the purchase price.

IN NO EVENT SHALL SPECTRUM SQUARE ASSOCIATES OR ITS SUPPLI-
ERS BE LIABLE FOR ANY DAMAGES WHATSOEVER (INCLUDING, WITHOUT
LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS, BUSINESS INTER-
RUPTION, OR OTHER PECUNIARY LOSS) ARISING OUT OF THE USE OF OR
INABILITY TO USE THIS PRODUCT, EVEN IF SPECTRUM SQUARE ASSOCIATES
HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

GOVERNING LAW: This License Agreement shall be governed by the laws of the
State of New York.

Quick Start

. Copy all the Razor Library files into the desired directory on the destination
hard drive.

. Select the chapter of this manual which describes the Maximum Likelihood,
Maximum Entropy, or Bayesian method you wish to use. The calls for the
principal routines are found on the following pages:

rzresm - RazorEntropySmooth - page 8

rzrpsm - RazorPoissonSmooth - page 14

rzrnsm - RazorNormalSmooth - page 20

rzrdiv - RazorDivide - page 33

rzrash - RazorASharp - page 46

rzrdec - RazorDeconvolve - page 52

rzrluc - RazorLucy - page 59

rzrstr - RazorStrip - page 74

rzrdif - RazorDerivative - page 79

rzrpic - RazorPick - page 89

rzrfit - RazorFit - page 97

rzrbas - RazorBase - page 139

rzrqba - RazorQuickBase - page 147

rzredg - RazorEdge - page 152

rzrcut - RazorCut - page 155

rzrnoi - RazorNoise - page 158

. Study the annotated source code supplied in handle.c for an example of how
to implement the desired algorithm.

. Technical Support:
Dr. Lin DeNoyer
Dr. Jack Dodd

Ph: 607-272-6735 Email: Ikdl@cornell.edu
Ph: 607-847-6944 Email: jackdodd@ciarityconnect.com

n

Changes for Vers 4.0
(released May 1998)

. A new baseline algorithm rzredg has been added.

. rzrfit reqnires larger arrays datmat and work. These changes have been made to
prepare for input limits on the fitted parameters.

. rzrfit convergence has been improved.

Changes for Vers 3.2
(released May 1997)

. rzrfit allows user to specify scale factor for Poisson-noise data. See new instructions
for vnoise on p. 98.

. The (scaled) entropy for rzrdec has been given the correct (negative) sign.

Changes for Vers 3.1
(released July 1996)

. A new function rzrstr, which is a linearized form of the classic equation for
Maximum Entropy deconvolution (p. 68), is described on p. 73. This function
provides a superior alternative to Fourier deconvolution.

. The mathematical foundations of rzrdec are fully described in the manual. (See
p. 68). rzrdec IS classic Maximum Entropy deconvolution.

. The functions rzrdec, rzrash, rzrluc, rzrstr, and rzrfit allow the user to either
input a noise value, or request auto-calculation of the noise in the input data. A
new method for calculating the noise in the data gives better results in low-noise
cases.

. rzrfit will fit a model to selected regions within a file. See new instructions for
vnoise on p. 98.

Changes for Vers 3.0
(released February 1996)

. rzrdec has been improved. Entropy of the resolution-enhanced configuration is
calculated each iteration. The input parameters for this function have changed.

111

. rzrfit has new capabilities. Peaks may be 'linked' to each other in a master/slave
relationship. A single master peak may be linked to any number of slave peaks
through position offsets, height ratios, width ratios, or other parameter ratios. Link-
ing peaks in this manner is especially valuable for x-ray spectroscopy. The Pearson7
peakshape now comes in both symmetric and asymmetric varieties. The input pa-
rameters for rzrfit have changed.

. The rzrfit engine has been fortified for heavy-duty work. This peak-fitting engine
will converge under harsh conditions which cause others to fail.

. All integers are now declared as long (4-byte) integers, which allows processing
of longer data arrays, and helps maintain uniformity for compilation with many
differentcompilers.

Changes for Versions 2.0 - 2.6
. rzrfit will automatically process all the peaks in a large data array. It will automat-

ically identify a peak 'bunch', and process those peaks together, then move on to
identify and process the next bunch. This bunch-mode of processing is a lot faster
than the all-at-once method!

. rzrfit contains two new analytic peakshapes, Pearson VII and Log Normal.

. rzrfit automatically checks itself for convergence, and tells you when it is finished.

. When you set up a peakshape by identifying an isolated peak from a data file or
a data array, you usually need to remove a baseline, and often need to smooth, the
real data peakshape. A new utility rzrcpk (extract peak) performs these functions
with ease. (See Page 179 and handle.for).

. A new utility rzpkst will resort the peak arrays filled by rzrpic and rzrbas. The
peaks may be sorted by significance, height, width, or location. rzpkst is described
on Page 175, and source code for using this utility is given in handle. for.

. A new utility rzdfil will help you fill the datmat input array for rzrfit, using the
output arrays from rzrpic and rzrbas. See Page 177, and handle.for.

. rzrpic and rzrbas will automatically search for negative peaks, if a negative peak
is presented in the shape array.

IV

Contents

1 Razor Library Description
1.1 Advanced Statistical Functions .
1.2 Principal Razor functions
1.3 User input and programmer control
1.4 Example source code
1.5 Source for service functions

1
1
2
3
3
4

2 RazorSmooth - rzresm/rzrpsm/rzrnsm
2.1 Smoothing which Preserves Resolution
2.2 Which one to use?
2.3 rzresm - Razor Entropy Smooth
2.4 Example using rzresm
2.5 rzrpsm - Razor Poisson Smooth
2.6 Example using rzrpsm
2.7 rzrnsm - Razor Normal Smooth
2.8 Exampleusing rzrnsm

2.9 MaximumLikelihood Smoothing- Theory
2.10 The purpose of a smoothing formula.
2.11 Maximum Likelihood Foundation
2.12 Smoothing Equations.
2.13 Three solutions
2.14 Limitations of rzrpsm and rzrnsm

5
5
5
7

11
13
17
19
23
25
25
26
26
29
30

3 RazorDivide - rzrdiv
3.1 Noise Reduction for Ratio Spectra.
3.2 rzrdiv................
3.3 Example using rzrdiv
3.4 Reducing Noise in Transmission Spectra

31
31
31
36
39

4 RazorSharp - rzrash/rzrdec/rzrluc
4.1 Resolution Enhancement without Artifacts
4.2 rzrash - RazorASHarp

43
43
45

v

VI

4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11

4.12
4.13
4.14

CONTENTS

Example using rzrash 49
rzrdec - RazorDEConvolve 51
Example using rzrdec 56
rzrluc - RazorLUCy 58
Example using rzrluc 62
Statistically Sound Restoration 64
The Bayesian Principle 64
How Bayesian/Maximum Likelihood/Maximum Entropy Restoration Works 64
Equations used by rzrash and rzrdec and rzrluc 66
4.11.1 Maximum LikelihoodRestoration 66
4.11.2 Bayesian and Maximum Entropy Restoration 67
4.11.3 Razor Library's two restoration methods 67
4.11.4 rzrdec solution . 69
4.11.5 rzrluc solution 69
4.11.6 rzrash solution 70
What about Fourier deconvolution? 71
A Final Word of Advice 72
rzrstr - RazorStrip . 73

5 RazorDerivative - rzrdif
5.1 A Fundamental Approach to Derivatives
5.2 Example using rzrdif.
5.3 Equations of Bayesian Derivatives

77
77
82
84

6 RazorPick - rzrpic
6.1 Accurate Peak-Picking for Merged Peaks
6.2 rzrpic.........
6.3 Example using rzrpic .

87
87
88
93

7 RazorFit - rzrfit
7.1 Accurate Peak Areas, with Confidence Limits
7.2 rzrfit
7.3 First Example using rzrfit
7.4 Second Example using rzrpic and rzrfit
7.5 Third Example using rzrbas and rzrfit
7.6 The RazorFit algorithm.
7.7 The RazorFit model.
7.8 RazorFit and Maximum Likelihood
7.9 Downhill to a minimum
7.JO Confidence Limits ...
7.11 Limitations of RazorFit .

95
95
96

105
109
114
121
121
122
124
126
126

CONTENTS va

8 Peakshape Catalog
8.1 Captured DataPeak
8.2 Gaussian......
8.3 Lorentzian.....
8.4 Sum Gaussian + Lorentzian
8.5 Product Gaussian*Lorentzian .
8.6 Asymmetric Gaussian.
8.7 Asymmetric Lorentzian
8.8 Symmetric and Asymmetric Pearson7
8.9 Log Normal . .
8.10 Baseline types

127
128
129
129
129
130
130
131
131
132
134

9 Baselines - rzrbas/rzrqba/rzredg/rzrcut
9.1 Baseline Fitting and Removal

9.1.1 RazorBase
9.1.2 RazorQuickBase and RazorEdge

9.2 rzrbas.........
9.3 Example using rzrbas
9.4 rzrqba.........
9.5 Example using rzrqba
9.6 rzredg.
9.7 rzrcut......

135
135
135
136
137
144
146
149
151
154

10 RazorNoise - rzrnoi
10.1 rzrnoi
10.2 Exampleusing rzrnoi

157
157

. 161

11 Service Functions
11.1 Fourier transforms - for speed
11.2 Transform padding - rzprep
11.3 rzparm
11.4 rzsizn tells array sizes.
11.5 Error messages from rzrerr. .
11.6 rzpkst - Sorts peaks from rzrpic/rzrbas
11.7 rzdfII. - Loads peaks from rzrpic/rzrbas into datmat .
11.8 rzrxpk - Removes baseline, smooths peakshape
11.9 New peakshapes

163
163
164
170
172
174
175
177
179
180

VlII CONTENTS

Chapter 1

Razor Library Description

Razor Library is furnished as an object code library. All versions assume the presence
of a numeric coprocessor.

The Razor Library contains:

. An object code library, RZRxxxx.LIB. Royalties apply for commercial distribution
of programs containing Razor Library object code.

. Source code is provided for many functions, in the file rzrserve.c. You are free to
modify any source code for your own use.

. A simple handling program, handle.c, is provided in source, and as an executable
program, to illustrate the calls and necessary input for each of the principal functions.

. Sample data files are included to illustrate Razor's capabilities.

The C Razor Library is written in almost ANSI C, in order to be compatible with
as many compilers as possible. Object code for other C and Fortran compilers, and for
other operating systems, is available. Call Spectrum Square Associates, 607-272-2352,
for information.

1.1 Advanced Statistical Functions

The core of Razor Library consists of fourteen principal functions. Twelve of these func-
tions are based upon Maximum Likelihood and/or Maximum Entropy principles. They
have already proven useful in both spectroscopy and chromatography, for smoothing (Ra-
zorSmooth), enhancing resolution (RazorSharp), peak fitting (RazorFit), peak picking
(RazorPick), reducing noise in ratio spectra (RazorDivide), and baseline removal (Razor-
Base). The functions are quite general, and may be used on any linear data array where
the data have been sampled in equispaced intervals.

I

2 CHAPTER 1. RAZOR LIBRARY DESCRIPTION

All of the RazorSmooth, RazorPick, RazorFit, RazorSharp, RazorDerivative,
RazorDivide, and RazorNoise statistical functions are based on Maximum Likeli-
hood/Maximum Entropy and Bayesian principles. They were developed and/or pro-
grammed by PhD physicists at Spectrum Square Associates. The mathematical equations
behind these statistical methods are given in the appropriate chapters of this manual.

At present, the only other implementation of these powerful methods are the PC-
based products RAZOR SR., SQUARE TOOLS, and RAZOR for GRAMS/386, also
developed at Spectrum Square. RAZOR SR. is a complete spectral data processing
program with extensive batch capabilities and additional functions specifically tailored
for diode arrays and for micro-Raman analysis. SQUARE TOOLS and RAZOR for
GRAMS/386 are sets of addon programs for Galactic Industries' data analysis programs
Spectra Calctm, Lab Calctm, and GRAMS/386tm.

1.2 Principal Razor functions

Fourteen principal functions are described in subsequent chapters of this manual. The
programmer has access to all of the Maximum Likelihood and Maximum Entropy ca-
pabilites of Razor Library through these functions. Razor capabilities and its fourteen
principal functions are:

RazorSmooth: Maximum Likelihood estimation of the smooth parent distribution of a
noisy data set.

RazorEntropySmooth - rzresm
RazorPoissonSmooth - rzrpsm
RazorNorrnalSmooth- rzrnsm

RazorDivide: Maximum Likelihood smoothing of the ratio of two noisy data sets, such
as smoothing sample/reference spectra.

- rzrdiv

RazorSharp: Maximum Likelihood and Maximum Entropy/Bayesian resolution sharpen-
ing and enhancement.

RazorA-Sharp - rzrash
RazorDeconvolve - rzrdec
RazorLucy - rzrluc

RazorDerivative: Bayesian Derivatives.

- rzrdif

RazorPick: Maximum Likelihood/Bayesian peak picking.
- rzrpic

RazorFit: Maximum Likelihood fitting model peaks to data.
- rzrfit

1.3. USER INPUT AND PROGRAMMER CONTROL 3

RazorBaseline: Maximum Likelihood and other methods for estimating the baseline of
a data set.

RazorBase - rzrbas
RazorQuickBase - rzrqba
RazorEdge - rzredg
RazorCut - rzrcut

RazorNoise: Maximum Likelihood estimation of the noise vector of a data set.

- rzrnoi
The fourteen principal statistical functions of the Razor Library are provided only as

object code.

1.3 User input and programmer control

The fourteen principal functions require additional user input besides the data array. This
input usually takes two forms: knowledge about the type of noise present in the data,
and knowledge of the intrinsic shapes of peaks in the data.

In this manual, the required input for each algorithm is emphasized at the beginning
of the chapter which describes the algorithm. Often, such input must be based upon
measurements derived from an observed spectrum. The mechanism for obtaining the user
input is the responsibility of the programmer.

Programmer notes are given for many of the functions, describing shortcuts, ways to
save space, or other technical aspects of the functions.

Some of the functions are iterative. Iterations are always under the control of the
programmer. The programmer notes describe appropriate convergence criteria, or tell
the programmer when to quit. The programmer always has the option of displaying
intermediate results for the user, if he wishes. Every effort has been made to avoid
the "black box" syndrome, by making as many parameters as possible accessible to the
programmer.

1.4 Example source code

Most programmers will want to get these routines up and running as rapidly as possible.
We have provided a demonstration program called handle for that purpose. Handle is a
very simple example of how input and output may be implemented. The file handle.c
contains documented source code which you are free to use, or modify for incorporation
into your own data processing system. (Handle contains no graphical interface, however.)

4 CHAPTER 1. RAZOR LIBRARY DESCRIPTION

1.5 Source for service functions

Source code is provided for all service functions, in the file rzrserve.c. A discussion of
those routines which you may wish to change, and the circumstances under which you
might wish to change them, is given in Chapter II.

The most important service functions you should be aware of are those which generate
analytical peak shapes. The RazorFit algorithm requires explicit analytical peak shapes,
and Razor Library contains a set of functions which are of the proper format, and which
are called by RazorFit. You may add additional peak shapes as your needs demand. See
the source listing for instructions. Many of the other principal functions also require peak
shapes. You may wish to use the shapes functions to generate peak shapes in memory,
whenever appropriate.

Chapter 2

RazorSmooth - rzresm/rzrpsm/rzrnsm

2.1 Smoothing which Preserves Resolution

RazorSmooth is set of Maximum Likelihood and Maximum Entropy smoothing functions
for many types of noise problems. The functions estimate the smoothed data set that
would be achieved if the user could average many, many scans similar to the one
at hand. Such a smoothed data set is usually called the parent distribution. The theory
is described in 'Maximum Likelihood smoothing of noisy data,' published in American
Laboratory, March 1990, in International Laboratory, June 1990, and in later sections
of this chapter. The functions provide the maximum amount of smoothing possible,
consistent with minimum loss of resolution in the displayed data.

The RazorSmooth functions give:

. Optimum smoothing for the declared noise statistics.

. Almost no loss of resolution when peakshapes are accurately known. (Clearly,
there would be no loss of resolution if one could obtain the true parent distribution.
However, the estimated parent distribution never achieves the ideal.)

2.2 Which one to use?

The programmer (or user) must decide whether the noise statistics are closer to a Normal
distribution or a Poisson distribution.

Razor Poisson Smooth (rzrpsm), for Poisson noise, is an iterative solution which
requires considerably more time. It constrains the smoothed solution to be positive.
(Page 14.)

Razor Entropy Smooth (rzresm) is a fast, excellent approximation to the full Max-
imum Likelihood solution for Normally- distributed noise. (Page 8.)

5

6 CHAPTER 2. RAZORSMOOTH - RZRESMJRZRPSMJRZRNSM

Razor Normal Smooth (rzrnsm), for Nonnal noise, is an iterative solution which
requires considerably more time. It constrains the smoothed solution to be positive.
(Page 20.)

2.3. RZRESM - RAZOR ENTROPY SMOOTH 7

2.3 rzresm - Razor Entropy Smooth

Razor Entropy Smooth provides a Maximum Likelihood estimate of a noise-free parent
spectrum, where the observed spectrum is a single noisy example drawn from this parent.
The noise is assumed to come from a Normal distribution.

rzresm is a fast, excellent approximation to the full Maximum Entropy solution for
Nom1ally-distributed noise. It is also a Bayesian method. (Section 2.12. Page 26.)

The required user input for rzresm is:

. Data array.

. Peakshapes - either true or estimated. It is not critical that the user choose an exact
peakshape for rzresm. When all the peaks in the data are not the same, the user
should select a smooth peakshape characteristic of the narrowest feature of interest
in the data. Do not choose a peakshape that is too wide, else you will obtain false
results.

Processing notes:

. The estimated parent spectrum is not constrained to be positive in this solution.

Programmer notes:

. rzresm requires 3 full-sized aITays,ydata, yout, and trans.

The number of arrays may be reduced to 2 by setting the output array yout to the
input array ydata.

. ydata will not be altered outside the data region 0 - n2, unless you elect to do the
processing in-place by setting yout = ydata.

. If you are processing many scans, all of the same length, and using the same
peakshape for all, save processing time with this tactic. Call rzresm the first time
with newpk = I, thereafter with newpk unchanged. When newpk = I, all the
functions in Razor Library transfer a properly scaled, properly phased, copy of the
input shape array into the array trans, and then perform an FFT on the trans array.
When newpk > I, the functions ignore shape, and use trans directly. This saves
the time of a Fourier transform on trans. (Note that when newpk > I, shape can
be a dummy array of length I, since it will not be used.)

8 CHAPTER 2. RAZORSMOOTH - RZRESMlRZRPSMlRZRNSM

long rzresm(float ydata[], long n2, float shape[], long n12,
float yout[], float trans[], long *n, long *newpk,
long *nfwhm, double *sigma)

Input arrays which must be filled:
ydata, filled between 0 and n2, length n2+ 1
shape, filled between 0 and nl2

NOTE: shape will be read only, not altered.
NOTE: If newpk > I, shape will not be read.

Additional arrays to be furnished:
yout, length n
trans, length n

Input variables: n2, n12, n, newpk
n2 is the index of the last data value in ydata
nl2 is the index of the last data value in shape
n is the size of arrays ydata, yout and trans
newpk indicates whether or not shape is a new peakshape

Output arrays:
yout, filled between 0 and n2

Output variables:
n = amount of array space used

NOTE: if n is returned negative, abs(n) = amount of array space
needed (but not available). Operation not successful.

newpk = n if trans was successfully loaded from shape
nfwhm = full-width-at-half-maximum of peakshape
sigma = RMS noise in ydata

Function return values:
rzresm = 0 if successful

If rzresm < 0, error occurred
Use rzrerr (page 174) to obtain error text

Description of variables

ydata on input is the raw data array. It should contain the raw data between data points
o and n2. ydata will not be altered outside this range.

ydata must have a minimum size equal to the smallest power of two larger than
(n2+1+3*nfwhm). See the discussion below for n.

n2 is the last location of data in the ydata array. n2 is to be furnished as input.

shape is an input array which holds the peakshape of the narrowest spectral feature in
ydata which is of interest to the user. The relevant peakshape is located between
data points 0 and nl2 in shape.

2.3. RZRESM - RAZOR ENTROPY SMOOTH 9

nl2 is input and the index of the last data point of the peakshape in shape. We recommend
that n12+I be at least 6*nfwhm, and that the peak be approximately centered in the
(0,nI2) interval.

yout is the output smoothed data array. It will be smoothed between data points 0 and
n2, and should be ignored outside this range.

yout must have a minimum size equal to the smallest power of two larger than
(n2+1+3*nfwhm). See the discussion below for n.

trans is an array of size n which will be used to house the Fourier transform of the
peakshape. The amount of space used in trans is calculated in rzprep. See the
discussion below for n.

trans is either empty or filled, depending on the parameter newpk. Whenever
newpk = I, it is assumed that the contents of shape have been altered, and trans
is properly loaded by rzresm. When newpk > I, it is expected that trans has not
been changed since the last time it was filled. See the discussion below for newpk.

n is input as the amount of space furnished in the yout, and trans arrays.

The function rzsizn will calculate n, the minimum amount of space needed. The
required size of n is detennined by n2 and by the width of the peak in the shape
array. Obtain the minimum required n with this call:

n = rzsizn(n2,shape,nI2)

On output, n is the amount of space used for the Fourier transforms in the yout,
and trans arrays. If n is negative on output, the amount of space furnished was
inadequate, and no processing has taken place. If n is returned negative, then abs(n)
is the amount of space needed in the above arrays.

The space required for the Fourier transform is always calculated in rzprep, de-
scribed in Chapter II. When newpk = I, rzprep calculates the required size of the
Fourier transform as the smallest power of two larger than (n2+1+3*nfwhm). You
may wish to calculate n in an alternate fashion. See Chapter II.

NOTE: When rzresm returns after successful processing, it fills both newpk and n
with the transform size. If you with to process additional data with the same peak-
shape, you need not change either newpk or n, provided that (a) your peakshapes
do not change, and (b) your input ydata sizes (n2+1) do not increase.

newpk on input is an integer flag set which should be initially set to I. It informs
the peakshape processor that a new peakshape is present in shape. The processor
measures certain parameters of the new peakshape, and then fills the trans array
with the Fourier transform of a properly shifted and scaled peakshape. When the
peakshape processor finishes successfully, it will output newpk = n, where n is the
actual space used in trans.

10 CHAPTER 2. RAZORSMOOTH- RZRESM/RZRPSM/RZRNSM

The peakshape processor uses that valuable commodity, CPU time, for a Fourier
transform. On input, the programmer can circumvent the peakshape processor with
newpk > 1. Whenever rzresm is called with newpk > 1, ensure that:

(a) The user wants to use the previous peakshape for the current processing, and
trans is not changed.

(b) The size of the array needed to transform the new data set is no larger than the
n used previously. If this second criterium is violated, the output value of rzresm
will be rzresm = -2.

nfwh m is output as the number of data points between the half-maxima of the peakshape
feature in shape.

sigma is output as the standard deviation (root- mean-square) of the noise which has
been removed by the smoothing process.

2.4. EXAMPLE USING RZRESM 11

2.4 Example using rzresm

Raman microprobe spectra rarely have enough photons. SPEC6, which is a microprobe
spectrum of a carbon thin film, is no exception. We smoothed the spectrum shown below
using a Lorentzian, 150 points wide, stored in PEAK6.

Data file: SPEC6

Peakshape file: PEAK6

Using HANDLE:

RAZOR LIBRARY for Spectral Analysis - G There is only one best way!
MaximumLikelihood (ML) , Maximum Entropy (ME), and Bayesian processing .

ESM=EntropySMooth. Smooths Normal (thermal/gaussian) noise. ME

PSM=PoissonSMooth. Smooths Poisson (counting) noise. ML.

NSM=NormalSMooth. Smooths Normal noise. ML.

DIV=RazorDi vide. Calculates transmission spectra. ML.

ASH=RazorASharp. Enhances resol ut ion. ML.

DEC=RazorDeconvolve. Maximum Entropy deconvolution. ME/Bay esian.

LUC=RazorLucy. Classic ML deconvolution. ML.

DIF=RazorDerivative. Derivatives Oth-nth. Bayesian.

PIC=RazorPick. Finds peak positions for FIT. ML/Bayesian.

FIT=RazorFit. Fits model peaks to data. ML.

BAS=RazorBase. Finds baseline. ME/Bayesian.

QBA=RazorQuickBase. Finds baseline.

EDG=RazorEdge. Fits baseline to lower edge of data.

NOI=RazorNoise. Finds noise spectrum. ML.

GEN=Generates synthetic peakshape.

SAV=Save result, QUI=Qui t.

Choose an operation (3 uppercase characters) ESM

Enter name of spectrum: SPEC6

Enter name of peakshape: PEAK6

Enter RZRESM. Please wait for processing. . .

The RMS noise is 0.00711781

The FWHM of the peakshape is 149

The size of the array space used was 2048

RESULT MAY BE SAVED TO A FILE

Press ENTER to return to menu.

.397

.Z?!J
y
U .Z5e

"I .ZZZ
T
S .194

.165

.137

.1911

.9119

.85Z

.9Z3

-.1195

12 CHAPTER 2. RAZORSMOOTH - RZRESMIRZRPSMlRZRNSM

ESII=Entropy5IIaoth: The standard deviation of ued noise I.. .1I91415JH1Z
Resul't ""y be __ to a tile

1169 1<t9& 15ZZ 15i9 157& u;ez 1629 1655 u;ez 1700
X UKITS

2.5. RZRPSM - RAZOR POISSON SMOOTH 13

2.5 rzrpsm - Razor Poisson Smooth

Razor Poisson Smooth (rzrpsm) provides a Maximum Likelihood estimate of a noise-
free parent spectrum. The observed spectrum is a single a noisy example drawn from this
parent spectrum. The noise is assumed to come from a Poisson distribution.

The required user input for rzrpsm is:

. Data array. The input data set must be positive, as is appropriate for data with
Poisson noise. It is the user's responsibility to remove the correct offset from
the raw data before using rzrpsm.

. Peakshapes - either true or estimated. It is not critical that the user choose an exact
peakshape for rzrpsm. When all the peaks in the data are not the same, the user
should select a smooth peakshape characteristic of the narrowest feature of interest
in the data.

Processing notes:

. The function produces an estimated parent spectrum which is constrained to be
positive.

. This function is iterative, and therefore takes considerably more time than rzresm.

Programmer notes:

. rzrpsm requires 4 full-sized arrays. If space is a problem, see Section 11.2.

. Set iter = 0 for the initial call. rzrpsm will then maintain iter for you. rzrpsm
needs 15 to 25 iterations. Some peakshapes converge faster. When the peakshape
is Gaussian, the convergence is faster than when the peakshape is Lorentzian.

14 CHAPTER 2. RAZORSMOOTH - RZRESM/RZRPSM/RZRNSM

long rzrpsm(float ydata(], long n2, float shape(], long n12,
float yout(], float w[], float trans(], long *n, long *newpk,
long *iter, long *nfwhm, double *sigma)

Input arrays which must be filled:
ydata, filled between 0 and n2, length n
shape, filled between 0 and nl2

NOTE: If newpk = 0, shape will not be used.
NOTE: shape will be read only, not altered.

Additional arrays to be furnished:
yout, length n
w, length n
trans, length n

Input variables: n2, n12, n, newpk
n2 is the index of the last data values in ydata
nl2 is the index of the last data value in shape
n is the size of arrays ydata, yout and trans
newpk indicates whether or not shape is a new peakshape
iter is the iteration count

Output arrays:
yout, filled between 0 and n2

Output variables:
n = amount of array space used

NOTE: if n is returned negative, abs(n) = amount of array space
needed (but not available). Operation not successful.

newpk = 0 if trans was successfully loaded from shape
nfwhm = full-width-at-half-maximum of peakshape
sigma = RMS noise in ydata

Function return values:
rzrpsm = 0 if successful

If rzrpsm < 0, error occurred
Use rzrerr (page 174) to obtain error text

Description of variables

ydata on input is the raw data array. It should contain the raw data between data points
o and n2. ydata will be altered outside this range.

ydata must have a minimum size equal to the smallest power of two larger than
(n2+1+3*nfwhm). See the discussion below for n.

n2 is the last location of data in the ydata array. n2 is to be furnished as input.

2.5. RZRPSM - RAZOR POISSON SMOOTH 15

shape is an input array which holds the peakshape of the narrowest spectral feature in
ydata which is of interest to the user. The relevant peakshape is located between
data points 0 and nl2 in shape.

nl2 is input and the index of the last data point of the peakshape in shape. We recol1U11end
that n12+I be at least 6*nfwhm, and that the peak be approximately centered in the
(0,nI2) interval.

yont is the output smoothed data array. It will be smoothed between data points 0 and
n2, and should be ignored outside this range.

yout must have a minimum size equal to the smallest power of two larger than
(n2+ I+3*nfwhm). See the discussion below for n.

W IS a work array of size n which will be used for computations. W must have a
minimum size equal to the smallest power of two larger than (n2+1+3*nfwhm).
See the discussion below for n.

trans is an array of size n which will be used to house the Fourier transform of the
peakshape. The amount of space used in trans is calculated in rzprep. See the
discussion below for n.

trans is either empty or filled, depending on the parameter newpk. Whenever
newpk = I, it is assumed that the contents of shape have been altered, and trans
is properly loaded by rzrpsm. When newpk = 0, it is expected that trans has not
been changed since the last time it was filled. See the discussion below for newpk.

n is input as the amount of space furnished in the yout, w, and trans arrays.

The function rzsizn will calculate n, the minimum amount of space needed. The
required size of n is detern1ined by n2 and by the width of the peak in the shape
array. Obtain the minimum required n with this call:

n = rzsizn(n2,shape,nI2)

On output, n is the amount of space used for the Fourier transforms in the yout,
w, and trans arrays. If n is negative on output, the amount of space furnished
was inadequate, and no processing has taken place. If n is returned negative, then
abs(n) is the amount of space needed in the above arrays.

The space required for the Fourier transform is always calculated in rzprep, de-
scribed in Chapter II. When newpk = I, rzprep calculates the required size of the
Fourier transform as the smallest power of two larger than (n2+1+3*nfwhm). You
may wish to calculate n in an alternate fashion. See Chapter II.

NOTE: When rzrpsm returns after successful processing, it fills both newpk and n
with the transform size. If you with to process additional data with the same peak-
shape, you need not change either newpk or n, provided that (a) your peakshapes
do not change, and (b) your input ydata sizes (n2+1) do not increase.

16 CHAPTER 2. RAZORSMOOTH- RZRESMlRZRPSMlRZRNSM

newpk on input is an integer flag set which should be initially set to I. It infonns
the peakshape processor that a new peakshape is present in shape. The processor
measures certain parameters of the new peakshape, and then fills the trans array
with the Fourier transfonn of a properly shifted and scaled peakshape. When the
peakshape processor finishes successfully, it will output newpk = n, where n is the
actual space used in trans.

The peakshape processor uses that valuable commodity, CPU time, for a Fourier
transfonn. On input, the programmer can circumvent the peakshape processor with
newpk> 1. Whenever rzrpsm is called with newpk > I, ensure that:
(a) The user wants to use the previous peakshape for the current processing, and
trans is not changed.

(b) The size of the array needed to transfonn the new data set is no larger than the
n used previously. If this second criterium is violated, the output value of rzrpsm
will be rzrpsm = -2.

iter is an input index for the iteration loop. Set iter = 0 for the initial call only. The
function distinguishes between iter = 0 and iter> O. It will update iter automatically.

nfwhm is output as the number of data points between the half-maxima of the peakshape
feature in shape.

sigma is output as the standard deviation (root- mean-square) of the noise which has
been removed by the smoothing process.

2.6. EXAMPLE USING RZRPSM 17

2.6 Example using rzrpsm

The data file SPEC4 represents radio chromatography, where one is counting nuclear
disintegrations in a flow cell, and the background counts are 50% of the total signal. The
peakshape is derived from a strong peak in the same cell. The original data had more
noise than you will see in the peakshape data file PEAK4. One really should average a
lot of strong peaks to get a smooth representation. We only had one strong peak, so we
smoothed it, and used it. Because the peakshapes in a flow cell are so asymmetric, it is
important to use real data.

Data file: SPEC4
Peakshape fIle: PEAK4

Using HANDLE:

RAZOR LIBRARY for Spectral Analysis - G There is only one best way!

MaximumLikelihood (ML) , Maximum Entropy (ME), and Bayesian processing.

ESM=EntropySMooth. Smooths Normal (thermal/gaussian) noise. ME

PSM=PoissonSMooth. Smooths Poisson (counting) noise. ML.

NSM=NormalSMooth. Smooths Normal noise. ML.

DIV=RazorDi vide. Calculates transmission spectra. ML.

ASH=RazorASharp. Enhances resolution. ML.

DEC=RazorDeconvolve. Maximum Entropy deconvolution. ME/Bay esian.

LUC=RazorLucy. Classic ML deconvolution. ML.

DIF=RazorDerivative. Derivatives Oth-nth. Bayesian.

PIC=RazorPick. Finds peak posi tions for FIT. ML/Bayesian.

FIT=RazorFit. Fits model peaks to data. ML.

BAS=RazorBase. Finds baseline. ME/Bayesian.

QBA=RazorQuickBase. Finds baseline.

EDG=RazorEdge. Fits baseline to lower edge of data.

NOI=RazorNoise. Finds noise spectrum. ML.

GEN=Generates synthetic peakshape.

SAV=Save result, QUI=Quit.

Choose an operation (3 uppercase characters) : PSM

Enter name of spectrum: SPEC4

Enter name of peakshape: PEAK4

Entering RZRPSM with iter=O. Please wait for setup. ..

At iter 1 the RMS noise is 1.880

.

.

At iter 15 the RMS noise is 1.258

More iterations? Enter the additional number required [OJ

18 CHAPTER 2. RAZORSMOOTH ~ RZRESMlRZRPSMlRZRNSM

The standard deviation of the removed noise is 1.257

The FWHM of the peakshape is 141

The size of the array space used was 4096

RESULT MAY BE SAVED TO A FILE

PSI1 : PoissonSl1ooth: Iter: 11. HIlS noise: .1ZS949E+el
More iterations? Enter the additional OOJIIber required: [a]

7.333

&.667
Y
U &.900
H
I 5.333
T
S 4.667

4.900

3.333

2.667

2.900

1.333

.667

.900

SPEC4

19.00 13.41 1&.81 29.22 23.&3 27.93 39.44 33.85 37.25 49.66
X UHITS

2.7. RZRNSM - RAZOR NORMAL SMOOTH 19

2.7 rzrnsm - Razor Normal Smooth

Razor Normal Smooth (rzrnsm) provides a Maximum Likelihood estimate of a noise-free
parent spectrum. The observed spectrum is a single a noisy example drawn from this
parent spectrum. The noise is assumed to come from a Normal distribution.

The required user input for rzrnsm is:

. Data array. The input data set must be positive. as is appropriate for data with
Poisson noise. It is the user's responsibility to remove the correct offset from
the raw data before using rzrnsm.

. Peakshapes - either true or estimated. It is not critical that the user choose an exact
peakshape for rzrnsm. When all the peaks in the data are not the same. the user
should select a smooth peakshape characteristic of the narrowest feature of interest
in the data.

Processing notes:

. The function produces an estimated parent spectrum which is constrained to be
positive.

. This function is iterative. and therefore takes considerably more time than rzresm.

Programmer notes:

. rzrnsm requires 4 full-sized arrays. If space is a problem, see Section 11.2.

. Set iter = 0 for the initial call. rzrnsm will then maintain iter for you. rzrnsm
needs 15 to 25 iterations. Some peakshapes converge faster. When the peakshape
is Gaussian, the convergence is faster than when the peakshape is Lorentzian.

20 CHAPTER 2. RAZORSMOOTH - RZRESM/RZRPSM/RZRNSM

long rzrnsm(float ydata(], long n2, float shape[], long n12,
float yout(], float w[], float z[], float trans[], long *n, long *newpk,
long *iter, long *nfwhm, double *sigma)

Input arrays which must be filled:
ydata, filled between 0 and n2, length n2 + 1
shape, filled between 0 and nl2

NOTE: If newpk = 0, shape will not be used.
NOTE: shape will be read only, not altered.

Additional arrays to be furnished:
yout, length n
w, length n
z, length n
trans, length n

Input variables: n2, n12, n, newpk
02 is the index of the last data values in ydata
nl2 is the index of the last data value in shape
n is the size of arrays ydata, yout and trans
oewpk indicates whether or not shape is a new peakshape
iter is the iteration count

Output arrays:
yout, filled between 0 and n2

Output variables:
n = amount of array space used

NOTE: if 0 is returned negative, abs(n) = amount of array space
needed (but not available). Operation not successful.

newpk =
° if trans was successfully loaded from shape

ofwhm = full-width-at-half-maximum of peakshape
sigma = RMS noise in ydata

Function return values:
rzrnsm = ° if successful

If rzrnsm < 0, error occurred
Use rzrerr (page 174) to obtain error text

Description of variables

ydata on input is the raw data array. It should contain the raw data between data points
o and n2. ydata will not be altered outside this range.

ydata must have a minimum size equal to the smallest power of two larger than
(02+1+3*nfwhm). See the discussion below for n.

n2 is the last location of data in the ydata array. n2 is to be furnished as input.

2.7. RZRNSM - RAZOR NORMAL SMOOTH 21

shape is an input array which holds the peakshape of the narrowest spectral feature in
ydata which is of interest to the user. The relevant peakshape is located between
data points 0 and nl2 in shape.

nl2 is input and the index of the last data point of the peakshape in shape. We recommend
that nl2+ I be at least 6*nfwhm, and that the peak be approximately centered in the
(0,nI2) interval.

.

yout is the output smoothed data array. It will be smoothed between data points 0 and
n2, and should be ignored outside this range.

yout must have a minimum size equal to the smallest power of two larger than
(n2+1+3*nfwhm). See the discussion below for n.

W IS a work array of size n which will be used for computations. W must have a
minimum size equal to the smallest power of two larger than (n2+1+3 *nfwhm).
See the discussion below for n.

Z IS a work array of size n which will be used for computations. W must have a
minimum size equal to the smallest power of two larger than (n2+1+3*nfwhm).
See the discussion below for n.

trans is an array of size n which will be used to house the Fourier transform of the
peakshape. The amount of space used in trans is calculated in rzprep. See the
discussion below for n.

trans is either empty or filled, depending on the parameter newpk. Whenever
newpk = I, it is assumed that the contents of shape have been altered, and trans
is properly loaded by rzrnsm. When newpk = 0, it is expected that trans has not
been changed since the last time it was filled. See the discussion below for newpk.

n is input as the amount of space furnished in the yout, w, and trans arrays.

The function rzsizn will calculate n, the minimum amount of space needed. The
required size of n is determined by n2 and by the width of the peak in the shape
array. Obtain the minimum required n with this call:

n = rzsizn(n2,shape,nI2)

On output, n is the amount of space used for the Fourier transforms in the yout,
w, and trans arrays. If n is negative on output, the amount of space furnished
was inadequate, and no processing has taken place. If n is returned negative, then
abs(n) is the amount of space needed in the above arrays.

The space required for the Fourier transform is always calculated in rzprep, de-
scribed in Chapter I!. When newpk = I, rzprep calculates the required size of the
Fourier transform as the smallest power of two larger than (n2+1 +3*nfwhm). You
may wish to calculate n in an alternate fashion. See Chapter II.

22 CHAPTER 2. RAZORSMOOTH - RZRESM/RZRPSM/RZRNSM

NOTE: When rzrnsm returns after successful processing, it fills both newpk and n
with the transform size. If you with to process additional data with the same peak-
shape, you need not change either newpk or n, provided that (a) your peakshapes
do not change, and (b) your input ydata sizes (n2+1) do not increase.

newpk on input is an integer flag set which should be initially set to 1. It informs
the peakshape processor that a new peakshape is present in shape. The processor
measures certain parameters of the new peakshape, and then fills the trans array
with the Fourier transform of a properly shifted and scaled peakshape. When the
peakshape processor finishes successfully, it will output newpk = n, where n is the
actual space used in trans.

The peakshape processor uses that valuable commodity, CPU time, for a Fourier
transform. On input, the programmer can circumvent the peakshape processor with
newpk> 1. Whenever rzrnsm is called with newpk > 1, ensure that:
(a) The user wants to use the previous peakshape for the current processing, and
trans is not changed.

(b) The size of the array needed to transform the new data set is no larger than the
n used previously. If this second criterium is violated, the output value of rzrnsm
will be rzrnsm = -2.

iter is an input index for the iteration loop. Set iter = 0 for the initial call only. The
function distinguishes between iter = 0 and iter> O. It will update iter automatically.

nfwhm is output as the number of data points between the half-maxima of the peakshape
feature in shape.

sigma is output as the standard deviation (root- mean-square) of the noise which has
been removed by the smoothing process.

2.8. EXAMPLE USING RZRNSM 23

2.8 Example using rzrnsm

Data fIle: SPEC2
Peakshape file: PEAK2

Using HANDLE:

RAZOR LIBRARY for Spectral Analysis - G There is only one best way!

Maximum Likelihood (ML) , Maximum Entropy (ME) , and Bayesian processing.
ESM=EntropySMooth. Smooths Normal (thermal/gaussian) noise. ME

PSM=PoissonSMooth. Smooths Poisson (counting) noise. ML.

NSM=NormalSMooth. Smooths Normal noise. ML.

DIV=RazorDi vide. Calculates transmission spectra. ML.

ASH=RazorASharp. Enhances resolution. ML.

DEC=RazorDeconvolve. Maximum Entropy deconvolution. ME/Bay esian.

LUC=RazorLucy. Classic ML deconvolution. ML.

DIF=RazorDerivative. Derivatives Oth-nth. Bayesian.

PIC=RazorPick. Finds peak positions for FIT. ML/Bayesian.

FIT=RazorFit. Fits model peaks to data. ML.

BAS=RazorBase. Finds baseline. ME/Bayesian.

QBA=RazorQuickBase. Finds baseline.

EDG=RazorEdge. Fits baseline to lower edge of data.

NOI=RazorNoise. Finds noise spectrum. ML.

GEN=Generates synthetic peakshape.

SAV=Save result, QUI=Quit.

Choose an operation (3 uppercase characters) : NSM

Enter name of spectrum: SPEC2

Enter name of peakshape: PEAK2

Entering RZRNSM wi th i ter= O. Please wai t for setup. . .
At iter 1 the RMS noise is 5.5789

.

.
At iter 15 the RMS noise is 4.190

More iterations? Enter the additional number required [0]

The standard deviation of the removed noise is 4.190

The FWHM of the peakshape is 80

The size of the array space used was 2048

RESULT MAY BE SAVED TO A FILE

24 CHAPTER 2. RAZORSMOOTH - RZRESM/RZRPSM/RZRNSM

ItSII ._ISIbrth: Iter = 14. IllS mlse= .41Z183Eo4Il
IteNtlcms? Enter 'the Addltl 1 ___ required: [8]

12,00
95.S?

117.81
Y
U 78.45

"[6!!.119
r
S 61.33

sz:n

44.Z1

35.65

Zl.1I9

18.53

!!.!17

1.4117

1.888 lee.!! 288.8 388.7 488.6 599.5 688.4 788.3 888.Z !Iee.1
x IIIITS

2.9. MAXIMUM LIKELIHOOD SMOOTHING - THEORY 25

2.9 Maximum Likelihood Smoothing - Theory

Maximum Likelihood techniques are used by chemists and spectroscopists every day.
Methods such as least-square peak fitting, linear regression, and even the simple formula
for averaging a set of scans, all can be derived from Maximum Likelihood principles. We
have used Maximum Likelihood methods to derive a new, statistically sound method for
smoothing.

The remaining sections of this chapter are organized so that our readers may understand
the concepts, while skipping the mathematical sections, if they choose. We discuss our
premise in Section 2.10, and the Maximum Likelihood principle in Section 2.11. The
mathematical parts and equations in Section 2.12, where we set up the basic equations,
and Section 2.13, where we show which forms of the basic equations are being solved by
the RZRESM, RZRPSM and RZRNSM algorithms.

2.10 The purpose of a smoothing formula

Smoothing prescriptions should answer the question: what would the data look like if
the observer could average many, many scans? If one could make many measurements
of a sample, and stack scans, the underlying features of the physical process would be
revealed, without any sacrifice in resolution. The final averaged smooth curve, called the
parent spectrnm, is the desired result.

The purpose of a good smoothing formula should be to provide an estimate of the
parent spectrum from which a particular noisy sample (spectrum, chromatogram)
was drawn. This estimate should be formulated from physical knowledge about the
experiment which can be agreed upon in advance. The formula should not contain any
arbitrarily chosen parameters.

The idea behind Maximum Likelihood smoothing is simple: Each scan (of a spectrum),
and each run (in chromatography), can be thought of as a single noisy sample drawn from
some parent spectrum. Maximum Likelihood estimates the parent spectrum by answering
the question: "What is the most probable spectrum, or chromatogram, buried under all
this noise?"

Maximum Likelihood smoothing derives its power from the a priori information known
to the observer. When an observer looks at noisy data, he usually has a fairly good idea of
what is 'real', and what is noise. His judgement is governed by his intuitive knowledge of
what a 'real peak' looks like. In fact, it is precisely this intuitive knowledge of peakshapes
which allows him to select a parameter such as a filter width.

In Maximum Likelihood smoothing, we take the a priori knowledge of the peakshape,
as well as a priori information about the type of noise seen in the data, and cast both into
a mathematical framework. The result is a smoothing formula which is optimum, in the
sense that it provides the best possible estimate of what we would see if we could average
our data for a much longer time.

26 CHAPTER 2. RAZORSMOOTH - RZRESMiRZRPSMiRZRNSM

2.11 Maximum Likelihood Foundation

Suppose we have measured a data set {Yl,Y2, ... Yn}. The individual values in this data
set, the Yi, may be absorbances at different frequencies, or they may be radioactive disin-
tegrations counted as a function of time, or whatever is being measured. We really want to
know the values of the data set {Zl' Z2, .. ,zn}, where each Zi is a mean of many measure-
ments ofYi' In other words, the set {Zl' Z2, ...Zn} is the high signal/noise result we would
obtain if we could average for a long time. The relation between the set {Yl' Y2, ... Yn}
and the set {Zl' Z2, ".zn} is Yi = Zi + ni, where ni are the noise fluctuations. We will use
Maximum Likelihood to estimate {Zl, Z2,...zn}.

What does it mean to say we will estimate {Zl' Z2,",zn}? We have only one data sam-
ple {Yl,Y2, ...Yn}, and so we cannot estimate {Zl, Z2,...zn} by averaging. Furthermore,
we do not presume that {Zl, Z2, ",zn} can be modeled by some analytic function (i.e., a
polynomial, or a sum of 14 gaussians, etc.) whose parameters we might obtain through
a least-squares peak-fitting technique. Instead, we obtain our estimate as follows: We
require that the estimate conform to certain a priori knowledge about the noise charac-
teristics, and about the instrument. Beyond that, we assume that our observations have
occurred in a very ordinary room, in an ordinary comer of the universe.

Here is the kemal of Maximum Likelihood: We assume that the particular data sample
we have observed, the set {Yl,Y2, ...Yn}, is a typical, representative sample. This data
sample is so ordinary that there is no statistical difference between this one and many
thousands of other noisy data sets which might have occurred. The sample is therefore
representative of the most likely statistical behavior. Consequently, we will estimate the
parent spectrum {Zl, Z2,...zn} by writing an equation which describes the probability for
the data set {Yl' Y2, ...Yn}, and then we will maximize that probability, under conditions
which also satisfy all known a priori constraints.

2.12 Smoothing Equations

We want to set up an equation which describes the probability of obtaining the data set
{Yl, Y2, ...Yn}, in terms of the parent spectrum {Zl, Z2,...zn}. For a given parent spectrum,
the probability p for the sample {Yl' Y2, ...Yn} is determined by the probability distributions
for the noise {nl' n2, ...nn}' P is usually called the likelihood function.

We now incorporate our a priori knowledge about the nature of the noise. Usually
we know the statistical characteristics of the noise in an experiment. When we are
counting individual particles, such as beta or gamma particles from radioactive decay, x-
rays, or photons in a low-light situation, the fluctuations ni in the data usually come from
Poisson distributions. Poisson noise has the property that the root-mean-square (rms) noise
amplitude is proportional to the square root of the signal amplitude. On the other hand,
when detector noise dominates, as in system noise in amplifiers, in thermal detectors, and
in many other cases, then the noise is independent of the signal amplitude, additive, and

2.12. SMOOTHING EQUATIONS 27

describable by a Normal distribution. There are cases where neither Normal nor Poisson
statistics apply, as in photomultiplier dark current. Whatever the noise, we must write an
equation which incorporates its statistics.

We are ready to write an equation for the probability of obtaining our observed
data {Yl,Y2,"'Yn}' From a parent spectrum {ZI,Z2,...Zn}, we have drawn a data set
{Yl, Y2,...Yn} containing data points Yl, Y2, "'Yn, where Yi = Zi + ni' The ni are the noise
values.

If the noise ni is random, and additive, with a Normal distribution, then the probability
for Yi is

1 (Yi - Zi)2
P(Yi I Zi) =

)(2)
exp[-

2 2].
7r ai Ui

If the noise ni is random noise with a Poisson distribution, then the probability for Yi
IS

z.Yie-Zi

P(Yi IZi)= .

I
.

Yi.

Assume that the noise ni is uncorrelated with the noise nj, for all i,j. Then the
likelihood of observing the set {Yl, Y2, ...Yn} is the product of the probabilities for each
of the Yi:

n

P(Y1, "'Yn IZI, ..., zn) = II p(Yi I Zi)
i=l

For Normal noise, this becomes

n 1 (Yi - Zi)2
P(Y1, "'Yn I Zl, ..., zn) = II)() exp[- 2].

i=l 27r (Ji 2(Ji

For Poisson noise,

The Maximum Likelihood prescription says we must maximize p. The maximization
is be done under a set of constraints. An important constraint is our knowledge of the
peakshapes. We assume that the parent spectrum is composed of many individual peaks,
of known shapes. However, we make absolutely no assumption about how many peaks
there are, how large they are, or where they are. In fact, we allow as many peaks as there
are data points in the observed spectrum or chromatogram! We may also have additional
knowledge about the parent spectrum, e.g., often the parent spectrum cannot be negative.
Any such constraints are allowed. In fact, the more we known about the underlying
smooth spectrum, or about the instrument, or the measurement bias, or the noise, etc, the
better will be our estimate of the parent spectrum.

28 CHAPTER 2. RAZORSMOOTH - RZRESM/RZRPSM/RZRNSM

We now proceed in one of two ways:
(I) We maximize the probability

by looking for the set {z} which maximizes p, and also satisfies the conditions
Z = 0 @s, where s is the characteristic shape of all single peaks, 0 is the object function,
and @ denotes convolution. In certain cases, such as photon counting, 0 must be positive.

(2) We maximize the probability

P(Zl, ..., Zn I Yl, ..., Yn),

by invoking Bayes Rule. This is now commonly called the Bayesian method. It used
to be called the MAP (Maximum A Posteriori) method.

Bayes Rule says that the probability P(Zl, ..., Zn I Yl, ,.., Yn) is related to the proba-
bility P(Yl, "',Yn IZl, ..., zn) through

In order to solvethe equation,we must alsoprovidethe a priori probabilitiesP(Yl' .." Yn)
for our observed spectrum and P(Zl, ..., zn) for all parent spectrums, Clearly, the proba-
bility for our single observation is P(Yl' ..., Yn) = 1.

A common expression of the a priori probability for the parent spectrum is given by
the combinatorial probability

(Zl + Z2 + ... + Zn = N)!
Zl!Z2!...Zn!

The combinatorial probability states that if you have N items which are to be sorted
into n boxes, the probability of obtaining an arrangement where Zl are in the first box,

Z2 are in the second box, etc, is proportional to the number of combinations of the N
distinct items which give box occupation numbers {Zl, Z2, ...zn}'

When all possible parent spectrums have the same a priori probability,

P(Zl, .." zn) = constant

, then the solution will be the same as that for case (I) above.
Again, we will require that the condition Z = 0 @ s, where s is the peakshape and 0

is the object function, is satisfied. In some cases, we may also require that 0 is positive.

2.13. THREE SOLUTIONS 29

2.13 Three solutions

Razor Library contains three separate smoothing methods, corresponding to three differ-
ent solutions of the equations posed in Section 2.12. The three methods, and the equations
which they solve, are given here.

Razor Entropy Smooth - RZRESM is both a Maximum Entropy and a Bayesian method.
It maximizes the probability

n 1
p(z IY) =

91)(27r)Ui
exp[

under the constraint that z = 0 @ s. The Maximum Entropy character becomes
evident if we take the logarithm of p,

n ()2y' - z.In(p(z I Y)) = 2] - ' 2 ' - Zilnzi) + constant terms
i=l 2ai

The term - I: zi1nzi is the same expression as the Shannon entropy for the spectrum
{ZI, Z2, ...zn}. Note that maximizing In(p(z IV)) is the same as maximizingp(z I V),
because the probability p(z I y) is always positive.

Razor Poisson Smooth - RZRPSM is an iterative solution to the Poisson probability
distribution equation

n z,Yie-Zi

p(y Iz) = II ' I = maximum,
i=l Yi.

under the constraints that Z = 0 @ s, and that 0 is positive.

Razor Normal Smooth - RZRNSM is an iterative solution to the Normal probability
distribution equation

n 1 (Yi - Zi)2 .p(y Iz) = II
)(2)

.exp[
2 2] = maxImum,

i=l 7f CJ} CJi

under the constraints that z = 0 @ s, and that 0 is positive.

30 CHAPTER 2. RAZORSMOOTH - RZRESM/RZRPSM/RZRNSM

2.14 Limitations of rzrpsm and rzrnsm

rzrpsm and rzrnsm are iterative algorithms which search for the maximum of the prob-
ability expressions shown in Section 2.13. They are not particularly fast, but we make
no apology for that here. The specific algorithms were chosen for their stability, and for
immunity to such details as cumulative truncation error.

For rzrpsm, 15 - 25 iterations are adequate for most data we have encountered.
However, if you find that rzrpsm does not provide you with a satisfactory result, we
request that you contact us. We would appreciate your sending us your difficult data.

rzrnsm is yet another story. Because it is very slow to converge, we think you might
decide to use rzresm for all your Normal data, just as we do.

Chapter 3

RazorDivide - rzrdiv

3.1 Noise Reduction for Ratio Spectra

RazorDivide is designed for transmission spectra, which have two especially difficult
noise problems. RazorDivide solves the problem of how to reduce the noise in these ratio
spectra.

The first noise problem arises when one divides a noisy sample spectrum by its noisy
reference, producing a transmission spectrum with more noise, and with different noise
statistics. If both the sample and reference spectra contained additive random noise
from Gaussian distributions, the resultant transmission spectrum has random noise with a
Cauchy distribution.

The second noise problem arises because of nonuniform spectral brightness of the
source, or because of nonuniform instrument transmission efficiency. The noise in the
resulting transmission spectrum often varies significantly in amplitude over the spectral
region under study. Often, the ends are much noisier than the center.

Faced with a noisy transmission spectrum, the impulse to smooth is strong. Here is
the problem: should one smooth the sample and reference spectra separately, smooth the
transmission spectrum, or do something else? We recommend something else.

RazorDivide is the Maximum Likelihood solution to this problem. It provides an
estimate a/the noiseless transmission spectrum which would result from averaging many,
many noisy spectra such as the one at hand.

The technique was described in a paper presented at the 1990 Pittsburgh Conference,
and is described in Section 3.4.

3.2 rzrdiv

rzrdiv is a rigorous Maximum Likelihood solution to the problem of 'smoothing' a spec-
trum produced by dividing one noisy spectrum by another noisy spectrum, in that it yields

31

32 CHAPTER 3. RAZORDIVlDE - RZRDIV

a statistical estimate of the ratio spectrum you would obtain if each of its components
were noise-free.

The required user input is:

. The unnormalized sample spectrum.

. The reference spectrum.

. A smooth peakshape characteristic of the narrowest feature of interest present In
the data. It is not critical that the user choose an exact peakshape for rzrdiv.

Processing notes:

. The resultant smooth transmittance spectrum is constrained to be between 0 and 1.

Programming notes:

. This algorithm is a space hog. It requires six! fill-size arrays, s, r, trans, u, v and
w.

Usually one is able to trade memory space for processing time in algorithm devel-
opment. We were able to do neither here. The rzrdiv algorithm uses a lot of array
space and a lot of time. Furthermore, it is slow to converge, requiring at least fifty
iterations.

. If the noise is not severe, then we reconm1end the use of rzresm separately on
sample and reference spectra, before division, as a quicker alternative.

. For the first call, set iter = O. rzrdiv will then maintain iter.

. The particular method we have used to estimate the smooth ratio spectrum is very
slow to converge, especially when the absorbances are small. We continue to work
on it...

3.2. RZRDIV 33

long rzrdiv(float s[], float r[], long n2,
float shape[], long n12, float u[], float v[],
float w[], float trans[], long *n, long *newpk,
long iter, long *nfwhm, double *sigma)

Input arrays which must be filled:
s, filled between 0 and n2, length n
r, filled between 0 and n2, length n
shape, filled between 0 and nl2

NOTE: shape will be read only, not altered.
NOTE: If newpk > I, shape will not be read.

Additional arrays to be furnished:
u, length n
v, length n
w, length n
trans, length n

Input variables: n2, n12, n, newpk, iter
n2 is the index of the last data value in sand r.
nl2 is the last position of data in shape.
n is the size of arrays s, r, u, v, wand trans.
iter, the iteration number, must be =

°
for the first call.

newpk indicates whether or not shape is a new peakshape.
If newpk = I, shape will be processed.

Output arrays:
r, filled between 0 and n2

Output variables:
n = amount of array space used

NOTE: if n is negative, abs(n) = amount of array space
needed (but not available). Operation not successful.

newpk = n if trans was successfully loaded
nfwhm = full-width-at-half-maximum of peakshape
sigma = RMS noise in r

Function return values:
rzrdiv = ° if successful

If rzrdiv < 0, error occurred
Use rzrerr (page 174) to obtain error text

Description of variables

s is the input unnormalized sample data array. It must be filled between data points 0
and n2, and it WILL be altered outside this range by the function, so you may wish
to retain a copy before calling rzrdiv.

34 CHAPTER 3. RAZORDIVIDE - RZRDIV

s must have a minimum size equal to the smallest power of two larger than
(n2+ 1+3*nfwhm). See the discussion below for n.

r is the input reference data array. It will be processed between data points 0 and n2,
and zeroed outside this range.

r must have a minimum size equal to the smallest power of two larger than
(n2+ 1+3*nfwhm). See the discussion below for n.

On output, r will contain the smooth transmission, or ratio array, between data
points 0 and n2. r may be displayed at the end of each iteration, if desired.

n2 is input as the last location of data in the sand r arrays which are to be ratioed.

shape is an input array which holds the peakshape of the narrowest spectral feature in
s which is of interest to the user. The relevant peakshape is located between data
points 0 and nl2 in shape.

nl2 is input and the index of the last data point of the peakshape in shape. We recommend
that n12+I be at least 6*nfwhm, and that the peak be approximately centered in the
(O,nI2) interval.

u is a work array of size n which will be used for computations. u must have a minimum
size equal to the smallest power of two larger than (n2+ 1+3*nfwhm). See the
discussion below for n.

v is a work array of size n which will be used for computations. v must have a minimum
size equal to the smallest power of two larger than (n2+! +3*nfwhm). See the
discussion below for n.

W IS a work array of size n which will be used for computations. w must have a
minimum size equal to the smallest power of two larger than (n2+1+3*nfwhm).
See the discussion below for n.

trans is an array of size n which will be used to house the Fourier transform of the
peakshape. The amount of space used in trans is calculated in rzprep. See the
discussion below for n.

trans is either empty or filled, depending on the parameter newpk. Whenever
newpk = I, it is assumed that the contents of shape have been altered, and trans is
newly loaded by rzrdiv. When newpk > I, it is expected that trans has not been
changed since the last time it was filled. See the discussion below for newpk.

n is input as the amount of space furnished in the yout, w, and trans arrays.

The function rzsizn will calculate n, the minimum amount of space needed. The
required size of n is determined by n2 and by the width of the peak in the shape
array. Obtain the minimum required n with this call:

3.2. RZRDIV 35

n = rzsizn(n2,shape,nI2)

On output, n is the amount of space used for the Fourier transforms in the yout,
w, and trans arrays. If n is negative on output, the amount of space furnished
was inadequate, and no processing has taken place. If n is returned negative, then
abs(n) is the amount of space needed in the above arrays.

The space required for the Fourier transform is always calculated in rzprep, de-
scribed in Chapter 11. When newpk = 1, rzprep calculates the required size of the
Fourier transform as the smallest power of two larger than (n2+ 1+3*nfwhm). You
may wish to calculate n in an alternate fashion. See Chapter 11.

NOTE: When rzrdiv returns after successful processing, it fills both newpk and n
with the transform size. If you with to process additional data with the same peak-
shape, you need not change either newpk or n, provided that (a) your peakshapes
do not change, and (b) your input ydata sizes (n2+1) do not increase.

newpk on input is an integer flag set which should be initially set to 1. It informs
the peakshape processor that a new peakshape is present in shape. The processor
measures certain parameters of the new peakshape, and then fills the trans array
with the Fourier transform of a properly shifted and scaled peakshape. When the
peakshape processor finishes successfully, it will output newpk = n, where n is the
actual space used in trans.

The peakshape processor uses that valuable commodity, CPU time, for a Fourier
transform. On input, the programmer can circumvent the peakshape processor with
newpk> I. Whenever rzrdiv is called with newpk > 1, ensure that:

(a) The user wants to use the previous peakshape for the current processing, and
trans is not changed.

(b) The size of the array needed to transform the new data set is no larger than the
n used previously. If this second criterium is violated, the output value of rzrdiv
will be rzrdiv = -2.

nfwhm is output as the number of data points between the half-maxima of the peakshape
feature in shape. nfwhm is computed internally.

iter is an input index for the iteration loop. Set iter = 0 for the initial call only. The
algorithm distinguishes between iter = 0 and iter> O. rzrdiv will maintain iter.

sigma is output as the standard deviation (root- mean-square) of the noise which has
been removed by the estimation process.

36 CHAPTER 3. RAZORDIVIDE - RZRDIV

3.3 Example using rzrdiv

The figure shown in Section 3.4 was produced using rzrdiv. You can create your own
version using HANDLE.EXE and the data files:

Unnormalized sample spectrum file: SPECS
Reference spectrum file: REFS
Peakshape file: PEAKS

Using HANDLE:

RAZOR LIBRARY for Spectral Analysis -G There is only one best way!
MaximumLikelihood (ML) ,MaximumEntropy (ME), and Bayesian processing.
ESM=EntropySMooth. Smooths Normal (thermal/gaussian) noise. ME

PSM=PoissonSMooth. Smooths Poisson (counting) noise. ML.

NSM=NormalSMooth. Smooths Normal noise. ML.

DIV=RazorDi vide. Calculates transmission spectra. ML.

ASH=RazorASharp. Enhances resolution. ML.

DEC=RazorDeconvolve. Maximum Entropy deconvolution. ME/Bayesian.

LUC=RazorLucy. Classic ML deconvolution. ML.

DIF=RazorDerivative. Derivatives Oth-nth. Bayesian.

PIC=RazorPick. Finds peak posi tions for FIT. ML/Bayesian.

FIT=RazorFit. Fits model peaks to data. ML.

BAS=RazorBase. Finds baseline. ME/Bayesian.

QBA=RazorQuickBase. Finds basel ine.

EDG=RazorEdge. Fits baseline to lower edge of data.

NOI=RazorNoise. Finds noise spectrum. ML.

GEN=Generates synthetic peakshape.

SAV=Save result, QUI=Quit.

Choose an operation (3 uppercase characters) : DIV

RazorDivide gives Maximum Likelihood estimate

of the ratio of two spectra.

You will need an unnormalized sample spectrum,

a reference spectrum, and a peakshape (bandshape) .

Enter name of unnormalized sample spectrum (Try SPECS) : SPECS

Enter name of reference spectrum (Try REFS) : REFS

Enter name of peakshape file (see manual) (Try PEAKS) : PEAKS

Entering RZRDIV with iter=O. wait for setup. ..

At iter 1 the RMS noise is 0.0772

.

.

3.3. EXAMPLE USING RZRDIV 37

At iter 25 the RMS noise is 0.05555

More iterations? Enter the additional number required [0]:

The FWHM of the peakshape is 19

The size of the array space used was 4096

RESULT MAY BE SAVED TO A FILE

The figure below shows the sample, and the reference.

1

>-
~
c
....

:3 .5
....

«

o
o 1000

Arbitrary X
2000

38 CHAPTER 3. RAZORDIVIDE - RZRDIV

The second figure shows the transmission spectrum produced by direct division,
and the one produced by rzrdiv. rzrdiv is slow to converge. We let it run 25
iterations. If you do the same, and then overlay the results on the transmission file,
you will see that it has not yet converged in the strong absorbance regions. In our
experience, it takes 50 or more iterations for convergence. However, rzrdiv provides
superior noise suppression, as you can see looking at the ends of this spectrum.
Sometimes, when the data are very noisy, there is no better way.

2

>-
C:-
o....-
-e1«

o
o 1000

Arbitrary X
2000

3.4. REDUCING NOISE IN TRANSMISSION SPECTRA 39

3.4 Reducing Noise in Transmission Spectra

(This is a summary of a paper given at the 1990 Pittsburgh Conference.)

Absorption spectroscopy begins with two spectra,

Sample + noise

Reference + noise

Their ratio gives a transmission spectrum,

Tj = Sample + noise/Reference + noise,

where the subscript j is used to remind us that, due to the presence of noise, this particular
ratio is just one of the many possible resultant transmission spectra which could have
occurred.

The ratio is usually very noisy, especially at the ends of the spectrum where both the
sample and the reference have low fluxes. The usual solution is to smooth the transmission
spectrum T. However, ordinary smoothing methods are usually not applicable due to the
character of the noise. Unfortunately, the noise is not constant, nor even well-behaved!
Also, the apparent transmission after smoothing may exceed 100%.

If the sample noise and the reference noise come from NOffi1alprobability distributions,
then the transmission noise will have a Cauchy distribution. The Cauchy distribution is
the origin of the large noise spikes often seen in transmission spectra at the ends of the

40 CHAPTER 3. RAZORD/VIDE - RZRDIV

observing band. The problem is illustrated in the unsmoothed spectrum below.

Unsmoothed

4

Savitsky-Golay smoothed

o RazorDivide smoothed

3000 2000 1000
Wavenumbers (em-I)

Faced with such a noisy transmission spectrum, the impulse to smooth is strong. But
should one smooth the sample and reference spectra separately, smooth the transmission
spectrum, or do something else? We recommend something else.

One really wants the best possible estimate of a noiseless transmission spectrum,
i.e., the spectrum which would result from averaging many, many noisy spectra such
as the one at hand. The Maximum Likelihood method provides this estimate. It finds
the MOST LIKELY transmission spectrum T, i.e. the transmission that would result ITom
averaging many Tj.

Maximum Likelihood smoothing derives its power ITomthe chemist's a priori knowl-
edge about the data. Any chemist or spectroscopist would be able to smooth the data
shown above, because his eye tells him the approximate width of true absorption features.
Yet each might choose a different smoothing method, or different parameters. Maximum
Likelihood is the analytical tool for changing 'smooth by eye' into 'optimum smooth', so
that all users obtain the best possible result. In this case, the chemist's intuitive knowledge
of peak widths is replaced by one of these statements: the peakshapes are determined by
the known instrumental resolution, or the peakshapes are determined by known sample
bandshapes.

3.4. REDUCING NOISE IN TRANSMISSION SPECTRA 41

We have solved the appropriate Maximum Likelihood equations for the transmission
problem, incorporating the following a priori knowledge:

. Transmissions are ::::: I (i.e., sample absorbances are 2': 0).

. The shapes of isolated single features in the transmission spectrum are known.
These shapes are determined by either

- Instrumental smearing

- Intrinsic bandshapes in the sample

The Maximum Likelihood prescription for Cauchy noise distributions is this: To find
the best estimate of T, maximize the probability P of obtaining the given transmission
Spectrum T = SIR.J J J'

where Sj is the sample absorption spectrum, and Rj is the reference spectrum. T is the
transmission spectrum which would result from long-term averaging of many Tj.

Nt is the width of the Cauchy noise distribution. Nt will be a function of the noise
Ns in the sample spectrum Sj, the noise N, in the reference spectrum Rj, and Sand R.
Thus, Nt = Nt(N.,N"S,R). Note that S, R, T" T, N., N" and Nt are all functions of
frequency.

When the peakshapes are determined by sample bandshapes bik, then T is constrained
by

The probability of obtaining the particular transmission spectrum Tj then becomes

n 1

;a 1 + if., (Tj(Xi) - exp(-bik *O(Xk»)2'

Maximum Likelihood asks and answers this question:
Of all the possible sets {o}, which one maximizes P?
The Maximum Likelihood solution is then an estimate of the transmission spectrum

T which would result from long-term averaging.
The solution presented by the RazorDivide algorithm is displayed in the previous

figure. The figure shows (top) the original single transmission spectrum Tj, (middle)
Savitsky-Golay smoothing of Tj, and (bottom) our Maximum Likelihood estimate of the

42 CHAPTER 3. RAZORDIVlDE - RZRDIV

"smoothed" spectrum T. The Maximum Likelihood estimate does not have transmissions
> 100%. Further, it accurately! finds no absorption below 800 em-I. (The synthetic
sample has no absorption at wavenumbers ::; 1000 em-I nor 2:3400 em-I).

Maximum Likelihood smoothing outperforms other methods in tough situations, where
the signal/noise ratio is low. Furthermore, if the a priori knowledge included in the solution
is accurate and complete, then we have obtained the best possible estimate of the 'true'
transmission T.

The benefits of using Maximum Likelihood for obtaining smooth transmission spectra
are (I) superior performance in low signal/noise situations, (2) the user does not have
to select an arbitrary smoothing procedure, (3) Maximum Likelihood gives the optimum
answer, the first time, and (4) all users obtain the same result.

Chapter 4

RazorSharp - rzrash/rzrdec/rzrluc

4.1 Resolution Enhancement without Artifacts

RazorSharp is a collection of Maximum Likelihood and Maximum Entropy/Bayesian
methods which enhance resolution, and so can separate overlapping peaks. These methods
can increase resolution by factors of two to five, depending upon the signal/noise ratio
in the data, and depending on the peak shapes. RazorSharp resolution enhancement
teclmiques are proper whenever:

. The spectrum, or chromatogram, in the absence of noise, would have no negative
intensities.

. The peaks have been broadened, either by intrinsic physical processes, or by an
instrument, and the shape of an isolated broadened peak is known.

. Any baseline, drift, or offset has been removed.

. The noise statistics are either Normal or Poisson.

RazorSharp methods are based upon Maximum Likelihood, Maximum Entropy, and
Bayesian principles, and are superior to standard linear "deconvolution" methods in the
following ways:

. Do not produce negative artifacts.

. Do not require a high signal/noise ratio.

. Do not produce strong "sidelobes" which mask weak peaks.

. Eliminate requirements to specify aphysical parameters, such as a filter shape in the
Fourier domain.

43

44 CHAPTER 4. RAZORSHARP - RZRASHlRZRDECiRZRLUC

RazorSharp attempts to answer the question, "What is the most likely enhanced
sample spectrum which could have produced the observed data, given the a priori
knowledge of peak shapes and inherent noise?" The answer will be the same for all
users, because the a priori information represents physical knowledge about the experiment
which can be agreed upon in advance.

4.2. RZRASH - RAZORASHARP 45

4.2 rzrash - Razor ASHarp

rzrash is the proper resolution enhancement algorithm to use when the peaks in the data
set are upright, positive, and unbounded from above, and when the noise is Poisson.

rzrash provides a Maximum Likelihood estimate of the noise-free object spectrum
which has been convolved with a known peakshape function to produce the observed
absorbance, emission, or counting spectrum.

Required user input:

. Data set in which any baseline or offset has been properly removed. Note that
rzrash is designed for use on data with positive values only!

. Select a peakshape which represents the peaks in the data set. It is very, very

important that the chosen peakshape be an accurate representation of the true shapes
of peaks in the data.

Processing notes:

. The solution is constrained to be positive.

rzrash is designed to work only with positive spectra from which any baseline
offset has been previously removed. Remove any baseline or offset! If a baseline
shift is not removed, then artifacts will be generated.

Programming notes:

. The programmer will need to provide four full-size arrays, ydata, yout, w, and
trans, for processing. ydata will be altered outside the range (O,n2).

. Call rzrash with iter = 0 for the first iteration only. The function will then maintain
iter for you. Most data files require 15 to 25 iterations.

46 CHAPTER 4. RAZORSHARP ~ RZRASHiRZRDECAU:RLUC

long rzrash(float ydata[], long n2, float shape[], long n12,
float yout[], float w[], float trans[], long *n, long *newpk,
long *iter, long *nfwhm, double *chisq, double *sigma)

Input arrays which must be filled:
ydata, filled between 0 and n2, length n
shape, filled between 0 and nl2

NOTE: shape will be read only, not altered.
NOTE:. If newpk > 1, shape will not be read.

Additional arrays to be furnished:
yout, length n
w, length n
trans, length n

Input variables: n2, n12, n, newpk
n2 is the index of the last data values in ydata
nl2 is the index of the last data value in shape
n is the size of arrays ydata, yout, wand trans
newpk indicates whether or not shape is a new peakshape
sigma = RMS noise in ydata (optional).

Output arrays:
yout, filled between 0 and n2

Output variables:
n = amount of array space used

NOTE: if n is negative, abs(n) = amount of array space
needed (but not available). Operation not successful.

newpk = n if trans was properly loaded.
nfwhm = full-width-at-half-maximu111of peakshape
chisq = ((ydata - yout-convolved-with-shape)/sigma)2.
sigma = RMS noise in ydata.

Function return values:
rzrash = 0 if iteration was successful

If rzrash < 0, error occurred
Use rzrerr (page 174) to obtain error text

Description of variables

ydata on input is the raw data array. The data of interest is contained in the range (0,
n2). ydata will be altered outside this range.

On output, it will be the smoothed data array.

ydata must have a minimum size equal to the smallest power of two larger than
(n2+1+3*nfwhm). See the discussion below for n.

4.2. RZRASH - RAZORASHARP 47

n2 is the last location of data in the ydata array. n2 is to be furnished as input.

shape is an input array which holds the peakshape of the narrowest spectral feature in
ydata which is of interest to the user. The relevant peakshape is located between
data points 0 and nl2 in the shape array. The minimum size of the shape array is
n12+1. nl2 must always be less than n.

nl2 is input as the index of the last data point of the peakshape in shape. We reconnnend
that n12+1 be at least 6*nfwhm, and that the peak be approximately centered in the
O,n12interval.

yout is an array of size n. On output, yout will be the resolution-enhanced data array.
yout is available for display at the end of each iteration.

yout must have a minimum size equal to the smallest power of two larger than
(n2+ 1+3*nfwhm). See the discussion below for n.

W IS a work array of size n which will be used for computations. w must have a
minimum size equal to the smallest power of two larger than (n2+ 1+3*nfwhm).
See the discussion below for n.

trans is an array of size n which will be used to house the Fourier transform of the
peakshape. The amount of space used in trans is calculated in rzprep.

See the discussion below for n.

trans is either empty or filled, depending on the parameter newpk. Whenever
newpk = I, it is assumed that the contents of shape have been altered, and thus
trans is newly loaded by rzrash. When newpk > I, it is expected that trans has
not been changed since the last time it was filled. See the discussion below for
newpk.

n is input as the amount of space furnished in the yout, w, and trans arrays.

The function rzsizn will calculate n, the minimum amount of space needed. The
required size of n is detennined by n2 and by the width of the peak in the shape
array. Obtain the minimum required n with this call:

n = rzsizn(n2,shape,nI2)

On output, n is the amount of space used for the Fourier transforms in the yout,
w, and trans arrays. If n is negative on output, the amount of space furnished
was inadequate, and no processing has taken place. If n is returned negative, then
abs(n) is the amount of space needed in the above arrays.

The space required for the Fourier transform is always calculated in rzprep, de-
scribed in Chapter II. When newpk = 1, rzprep calculates the required size of the
Fourier transform as the smallest power of two larger than (n2+1+3*nfwhm). You
may wish to calculate n in an alternate fashion. See Chapter 11.

48 CHAPTER 4. RAZORSHARP - RZRASHiRZRDECiRZRLUC

NOTE: When rzrash returns after successful processing, it fills both newpk and n
with the transform size. If you with to process additional data with the same peak-
shape, you need not change either newpk or n, provided that (a) your peakshapes
do not change, and (b) your input ydata sizes (n2+ I) do not increase.

newpk on input is an integer flag set which should be initially set to I. It informs
the peakshape processor that a new peakshape is present in shape. The processor
measures certain parameters of the new peakshape, and then fills the trans array
with the Fourier transform of a properly shifted and scaled peakshape. When the
peakshape processor finishes successfully, it will output newpk = n, where n is the
actual space used in trans.

The peakshape processor uses that valuable commodity, CPU time, for a Fourier
transform. On input, the programmer can circumvent the peakshape processor with
newpk > 1. Whenever rzrash is called with newpk > I, ensure that:

(a) The user wants to use the previous peakshape for the current processing, and
trans is not changed.

(b) The size of the array needed to transform the new data set is no larger than the
n used previously. If this second criterium is violated, the output value of rzrash
will be rzrash = -2.

iter is an input index for the iteration loop. Set iter = 0 for the initial call only. The
function distinguishes between iter = 0 and iter> 0, and will automatically update
the value of iter.

nfwhm is output as the number of data points between the halfmaxima of the peakshape
feature in shape.

chisq is output as the standard deviation (root- mean-square) oj the difference between
the observed data ydata and the result spectrum yout convolved with shape, nor-
malized to the RMS noise sigma. It is a measure of the convergence of the algorithm.
It may be displayed at the end of each iteration.

sigma is either/both an input and an output variable. It is the standard deviation (root-
mean-square) of the noise.

When the RMS noise in the ydata array is known, it should be input in sigma.

When the RMS noise is not known, set sigma = 0.0, as a signal to the function to
auto-calculate sigma.

4.3. EXAMPLE USING RZRASH 49

4.3 Example using rzrash

Benzene is a favorite for testing the resolution of a slit spectrometer. One of the spectra in
the figure below was taken with a 2 nanometer slit setting. At the same time, the operator
scanned one of the narrow lines of his deuterium lamp, providing us with the spectrum
we give you in the file PEAKl.

We passed these files through the HANDLE program contained on your disk, using
RazorASharp (Command ASH). The result is shown.

Data file: SPECl
Peakshape: PEAKl

Using HANDLE:

RAZOR LIBRARY for Spectral Analysis - G There is only one best way!

Maximum Likelihood (ML) , Maximum Entropy (ME) , and Bayesian processing.

ESM~EntropySMooth. Smooths Normal (thermal/gaussian) noise. ME

PSM~PoissonSMooth. Smooths Poisson (counting) noise. ML.

NSM~NormalSMooth. Smooths Normal noise. ML.

DIV~RazorDi vide. Calculates transmission spectra. ML.

ASH~RazorASharp. Enhances resolution. ML.

DEC~RazorDeconvolve.MaximumEntropydeconvolution.ME/Bayesian.

LUC~RazorLucy. Classic ML deconvolution. ML.

DIF~RazorDeri vati ve . Derivatives Oth-nth. Bayesian.

PIC~RazorPick. Finds peak pos itions for FIT. ML/Bayesian.

FIT~RazorFit. Fits model peaks to data. ML.
BAS~RazorBase. Finds baseline. ME/Bayesian.

QBA~RazorQuickBase. Finds baseline.

EDG~RazorEdge. Fits baseline to lower edge of data.

NOI~RazorNoise. Finds noise spectrum. ML.

GEN~Generates synthetic peakshape.

SAV~Save result, QUI~Quit.

Choose an operation (3 uppercase characters) : ASH

Enter name of unnormalized sample spectrum (Try SPECl) : SPEC 1

Enter name of peakshape file (Try SPECl) : PEAKI

Entering RZRASH wi th i ter ~ O. Wai t for setup. . .

At iter 1, RMS noise ~ .000171, Chisq ~ 159.40

.

.
At iter 15, RMS noise ~ .000171, Chisq ~ 2.017

More iterations? Enter the additional number required [0] 0

ASH: Final RMS noise ~ .000171, Chisq ~ 2.017

The FWHM of the peakshape is 20.

.351

.315y
U .ZBl

"[.255
r
S .223

.191

.159

.1211

.19&

.864

.832

.888

50 CHAPTER 4. RAZORSHARP - RZRASH/RZRDECjRZRLUC

RESULT KAY BE SAVED TO A FILE

ASH =~: lter= 15. !ItS ...1...= .3Z3139E-e3. Ctl"'l" .1'''''V''''<81
IIore I_tiona? Inter tile 8ddlt1onal Ireel: [8]

225.8 231.8 235.8 241.8 245.' 258.8 255.8 268.8 265.8 ~.8
X UNItS

4.4. RZRDEC - RAZORDECONVOLVE 51

4.4 rzrdec - RazorDEConvolve

rzrdec is the proper resolution enhancement algorithm to use when the peaks in the data
set are upright, positive, and unbounded from above, and when the noise is Normal.

rzrdec provides a Maximum Entropy estimate of the noise-free object spectrum which
has been convolved with a known peakshape function to produce the observed absorbance,
or emission, spectrum.

Required user input:

. Data set in which any baseline or offset has been properly removed. Note that
rzrdec is designed for use on data with positive values only!

. Select a peakshape which represents the peaks in the data set. It is very, very
important that the chosen peakshape be an accurate representation of the true shapes
of peaks in the data. The correct peakshape is more important for rzrdec than for
any other function of Razor Library, because the underlying algorithm of rzrdec
is more powerful than any other, and thus it is more sensitive to nuances in the
peakshape.

Processing notes:

. The solution is constrained to be positive.

rzrdec is designed to work only with positive spectra from which any baseline
offset has been previously removed. Remove any baseline or offset! If a baseline
shift is not removed, then artifacts will be generated.

Programming notes:

. The programmer will need to provide four full-size processing arrays, yout, w, x,
and trans, as well as the data array ydata. ydata will NOT be altered by rzrdec.

. Call rzrdec with iter = 0 for the first iteration only. The function will then maintain
iter for you. Most data files require 100 to 200 iterations.

. rzrdec contains the most powerful processing algorithm in Razor Library. The
algorithm is so powerful that it eventually reaches the limits of double precision
arithmetic. When this happens, rzrdec has converged within the limits available.
It will send back a return value of -10, indicating that further iterations would give
no improvement. You may look for this return value as a natural stopping point,
and use the output yout with confidence!

52 CHAPTER 4. RAZORSHARP - RZRASHlRZRDECiRZRLUC

long rzrdec(float ydata!], float prior!], long n2, float shape!], long n12,
float yout!], float v!], float w!], float x[], float trans[], long *n, long *newpk,

int
pflag, long *iter, double things[], long *nfwhm, double *chisq, double *sigma)

Input arrays which must be filled: _

ydata, filled between 0 and n2, length n2 + 1
prior, optionally filled between 0 and n2, length 1, or n2 + 1

NOTE: If pflag = 0, prior will not be used.
shape, filled between 0 and nl2

NOTE: shape will be read only, not altered.
NOTE: If newpk > I, shape will not be read.

Additional arrays to be furnished:
yout, length n
v, length n
w, length n
x, length n
trans, length n
things, length = 10

Input variables: n2, n12, n, newpk, pflag, iter, things!10]
n2 is the index of the last data value in ydata
nl2 is the index of the last data value in shape
n is the size of arrays ydata, yout, wand trans
newpk indicates whether or not shape is a new peakshape
pflag indicates whether or not prior contains information
iter must be set to 0 for the first iteration
things!O], etc should be set to 0 for standard operation
sigma = RMS noise in ydata (optional).

Output arrays:
yout, filled between 0 and n2

Output variables:
n = amount of array space used

NOTE: if n is negative, abs(n) = amount of array space
needed (but not available). Operation not successful.

newpk = n if trans was properly loaded.
iter will be updated to show the next iteration number
nfwhm = full-width-at-half-maximum of peakshape
chisq = ((ydata - yout-convolved-with-shape)/sigma?
sigma = RMS noise in ydata.
things[4] = Entropy of resolved configuration in yout

Function return values:
rzrdec = 0 if iterationwas successful

4.4. RZRDEC - RAZORDECONVOLVE 53

= -10 when it reaches the limits of double precision arithmetic
If rzrdec < 0, and != -10, an error occurred
Use rzrerr (page 174) to obtain error text

Description of variables

ydata on input is the raw data array. The data of interest is contained in the range (0,
n2). ydata will NOT be altered outside this range.

prior on input is the your best (biased) estimate of the output array.

When pflag = 0, rzrdec uses a flat prior, and the prior array is ignored.

When pflag = 1, the prior is a smoothed version of the data. In this case, you only
need to provide an array of size n2. rzrdec will fill it and maintain it.

When pflag =2, rzrdec will read the array prior to find your prior estimate of the
deconvolved result.

n2 is the last location of data in the ydata array. n2 is to be furnished as input.

shape is an input array which holds the peakshape of the narrowest spectral feature in
ydata which is of interest to the user. The relevant peakshape is located between
data points 0 and n12 in the shape array. The minimum size of the shape array is
n12+I. nl2 must always be less than n.

nl2 is input as the index of the last data point of the peakshape in shape. We recommend
that nl2+ I be at least 6*nfwhm, and that the peak be approximately centered in the
0,n12 interval.

yout is an array of size n. On output, yout will be the resolution-enhanced data array.
yout is available for display at the end of each iteration.

yout must have a minimum size equal to the smallest power of two larger than
(n2+1+3*nfwhm). See the discussion below for n.

v is a work array of size n which will be used for computations. v must have a minimum
size equal to the smallest power of two larger than (n2+1+3*nfwhm). See the
discussion below for n.

W IS a work array of size n which will be used for computations. w must have a
minimum size equal to the smallest power of two larger than (n2+ 1+3*nfwhm).
See the discussion below for n.

x is a work array of size n which will be used for computations. x must have a minimum
size equal to the smallest power of two larger than (n2+1+3*nfwhm). See the
discussion below for n.

54 CHAPTER 4. RAZORSHARP - RZRASHiRZRDEClRZRLUC

trans is an array of size n which will be used to house the Fourier transform of the
peakshape. The amount of space used in trans is calculated in rzprep. See the
discussion below for n.

trans is either empty or filled, depending on the parameter newpk. Whenever
newpk = I, it is assumed that the contents of shape have been altered, and thus
trans is newly loaded by rzrdec. When newpk > I, it is expected that trans has
not been changed since the last time it was filled. See the discussion below for
newpk.

n is input as the amount of space furnished in the yout, v, w, and trans arrays.

The function rzsizn will calculate n, the minimum amount of space needed. The
required size of n is determined by n2 and by the width of the peak in the shape
array. Obtain the minimum required n with this call:

n = rzsizn(n2,shape,nI2)

On output, n is the amount of space used for the Fourier transforms in the yout,
v, w, and trans arrays. If n is negative on output, the amount of space furnished
was inadequate, and no processing has taken place. If n is returned negative, then
abs(n) is the amount of space needed in the above arrays.

The space required for the Fourier transform is always calculated in rzprep, de-
scribed in Chapter II. When newpk = I, rzprep calculates the required size of the
Fourier transform as the smallest power of two larger than (n2+ 1+3*nfwhm). You
may wish to calculate n in an alternate fashion. See Chapter 11.

NOTE: When rzrdec returns after successful processing, it fills both newpk and n
with the transform size. If you with to process additional data with the same peak-
shape, you need not change either newpk or n, provided that (a) your peakshapes
do not change, and (b) your input ydata sizes (n2+ I) do not increase.

newpk on input is an integer flag set which should be initially set to I. It informs
the peakshape processor that a new peakshape is present in shape. The processor
measures certain parameters of the new peakshape, and then fills the trans array
with the Fourier transform of a properly shifted and scaled peakshape. When the
peakshape processor finishes successfully, it will output newpk = n, where n is the
actual space used in trans.

The peakshape processor uses that valuable commodity, CPU time, for a Fourier
transform. On input, the programmer can circumvent the peakshape processor with
newpk > 1. Whenever rzrdec is called with newpk > 1, ensure that:

(a) The user wants to use the previous peakshape for the current processing, and
trans is not changed.

(b) The size of the array needed to transform the new data set is no larger than the
n used previously. If this second criterium is violated, the output value of rzrdec

4.4. RZRDEC - RAZORDECONVOLVE 55

will be rzrdec = -2.

pflag is an input flag that tells rzrdec your a priori estimate of the true result. When
pflag = 0, rzrdec uses a flat prior, and the prior array is ignored. When pflag =
I, the prior is a smoothed version of the data. The prior array will be used; rzrdec
will fill it and maintain it. When pflag =2, rzrdec will read the array prior to find
your prior estimate of the deconvolved result.

iter is an input index for the iteration loop. Set iter = 0 for the initial call only. The
function distinguishes between iter = 0 and iter> 0, and will automatically update
the value of iter.

things is a work array which holds parameters that must be saved between iterations. On
input, before the first iteration, set things = 0.0, for standard operation.

nfwhm is output as the number of data points between the half-maxima of the peakshape
feature in shape.

chisq is output as the standard deviation (root- mean-square) of the difference between
the observed data ydata and the result spectrum yout convolved with shape, nor-
malized to the RMS noise sigma. It is a measure ofthe convergence of the algorithm.
It may be displayed at the end of each iteration.

sigma is eitherlboth an input and an output variable. It is the standard deviation (root-
mean-square) of the noise.

When the RMS noise in the ydata array is known, it should be input in sigma.

When the RMS noise is not known, set sigma = 0.0, as a signal to the function to
auto-calculate sigma.

56 CHAPTER 4. RAZORSHARP - RZRASHlRZRDECIRZRLUC

4.5 Example using rzrdec

Benzene is a favorite for testing the resolution of a slit spectrometer. One of the spectra in
the figure below was taken with a 2 nanometer slit setting. At the same time, the operator
scanned one of the narrow lines of his deuterium lamp, providing us with the spectrum
we give you in the file PEAKI.

We passed these files through the HANDLE program contained on your disk, using
RazorDeconvolve (Command DEC). The result is shown.

Data file: SPECl
Peakshape: PEAKl

Using HANDLE:

RAZOR LIBRARY for Spectral Analysis - G There is only one best way!
Maximum Likelihood (ML) , Maximum Entropy (ME) , and Bayesian processing.

ESM=EntropySMooth. Smooths Normal (thermal/gaussian) noise. ME

PSM=PoissonSMooth. Smooths Poisson (counting) noise. ML.

NSM=NormalSMooth. Smooths Normal noise. ML.

DIV=RazorDivide. Calculates transmission spectra. ML.

ASH=RazorASharp. Enhances resolution. ML.

DEC=RazorDeconvolve. Maximum Entropy deconvolution. ME/Bay esian.

LUC=RazorLucy. Classic ML deconvolution. ML.

DIF=RazorDerivative. Derivatives Oth-nth. Bayesian.

PIC=RazorPick. Finds peak posi tions for FIT. ML/Bayesian.

FIT=RazorFit. Fits model peaks to data. ML.

BAS=RazorBase. Finds baseline. ME/Bayesian.

QBA=RazorQuickBase. Finds baseline.

EDG=RazorEdge. Fits baseline to lower edge of data.

NOI=RazorNoise. Finds noise spectrum. ML.

GEN=Generates synthetic peakshape.

SAV=Save result, QUI=Quit.

Choose an operation (3 uppercase characters) : DEC

Enter name of unnormalized sample spectrum (Try SPEC1) SPEC1

Enter name of peak shape file (Try SPEC1) : PEAK1

RZRDEC is Bayesian, and uses an a priori spectrum.

Sdt pflag=O for uniform prior. [Default]

Set pflag=l to use smoothed data as prior.

Choose pflag (Use 0 if not sure) : 0

Entering RZRDEC with iter = O. Wait for setup. . .

RZRDEC Iter= 1, RMS= .000171, Chisq = 252681, Mean Entropy= -2.625
RZRDEC Iter= 2, RMS= .000171, Chisq = 13037.2, Mean Entropy= - .0834

.417

.319
y
U .MZ

"I .3M
r
s .5.7

.ZZ!J

.m

.154

.116

.~

.141

.883

4.5. EXAMPLE USING RZRDEC

.

...,. .,.

RZRDEC Iter= 97, RMS= .000171, Chisq = 15.96, Entr.oPy=-.519
RZRDEC has finished!

The FWHM.of the peakshape is 20.

The size .of array space used was 1024

RESULT MAY BE SAVED TO A FILE

225.' 238.' 235.' 2tI.' 245.' 258.' 255.' 268.' 265.' 278.'
X UNItS

57

58 CHAPTER 4. RAZORSHARP - RZRASH/RZRDECiRZRLUC

4.6 rzrluc - RazorLUCy

rzrluc is the proper resolution enhancement algorithm to use when the peaks in the data
set are upright, positive, and unbounded from above, and when the noise is Poisson.

rzrluc provides a Maximum Likelihood estimate of the noise-free object spectrum
which has been convolved with a known peakshape function to produce the observed
absorbance, emission, or counting spectrum.

Required user input:

. Data set in which any baseline or offset has been properly removed. Note that
rzrluc is designed for use on data with positive values only!

. Select a peakshape which represents the peaks in the data set. It is very, very

important that the chosen peakshape be an accurate representation of the true shapes
of peaks in the data.

Processing notes:

. The solution is constrained to be positive.

rzrluc is designed to work only with positive spectra from which any baseline offset
has been previously removed. Remove any baseline or offset! If a baseline shift is
not removed, then artifacts will be generated.

Programming notes:

. The programmer will need to provide four full-size arrays, ydata, yout, w, and
trans, for processing. ydata will be altered outside the range (O,n2).

. Call rzrluc with iter =
° for the first iteration only. The function will then maintain

iter for you. Most data files require 15 to 25 iterations.

4.6. RZRLUC - RAZORLUCY 59

long rzrluc(float ydata[], long n2, float shape[], long n12,
float yout[], float w[], float trans[], long *n, long *newpk,
long *iter, long *nfwhm, double *chisq, double *sigma)

Input arrays which must be filled:
ydata, filled between 0 and n2, length n
shape, filled between 0 and nl2

NOTE: shape will be read only, not altered.
NOTE: If newpk > 1, shape will not be read.

Additional arrays to be furnished:
yout, length n
w, length n
trans, length n

Input variables: n2, n12, n, newpk
n2 is the index of the last data values in ydata
nl2 is the index of the last data value in shape
n is the size of arrays ydata, yout, wand trans
newpk indicates whether or not shape is a new peakshape
sigma = RMS noise in ydata (optional).

Output arrays:
yout, filled between 0 and n2

Output variables:
n = amount of array space used

NOTE: if n is negative, abs(n) = amount of array space
needed (but not available). Operation not successful.

newpk = n if trans was properly loaded.
nfwhm = full-width-at-half-maximum of peakshape
chisq = ((ydata - yout-convolved-with-shape)/sigma)2.
sigma = RMS noise in ydata.

Function return values:
rzrluc = 0 if iteration was successful

If rzrluc < 0, error occurred
Use rzrerr (page 174) to obtain error text

Description of variables

ydata on input is the raw data array. The data of interest is contained in the range (0,
n2). ydata will be altered outside this range.

On output, it will be the smoothed data array.

ydata must have a minimum size equal to the smallest power of two larger than
(n2+1+3*nfwhm). See the discussion below for n.

60 CHAPTER 4. RAZORSHARP - RZRASH/RZRDECiRZRLUC

n2 is the last location of data in the ydata alTay. n2 is to be furnished as input.

shape is an input alTay which holds the peakshape of the narrowest spectral feature in
ydata which is of interest to the user. The relevant peakshape is located between
data points 0 and nl2 in the shape alTay. The minimum size of the shape alTay is
n12+1. nl2 must always be less than n.

nl2 is input as the index of the last data point of the peakshape in shape. We recommend
that n12+I be at least 6*nfwhm, and that the peak be approximately centered in the
0,n12 interval.

yout is an array of size n. On output, yout will be the resolution-enhanced data array.
yout is available for display at the end of each iteration.

yout must have a minimum size equal to the smallest power of two larger than
(n2+ 1+3*nfwhm). See the discussion below for n.

W IS a work array of size n which will be used for computations. w must have a
minimum size equal to the smallest power of two larger than (n2+ 1+3*nfwhm).
See the discussion below for n.

trans is an array of size n which will be used to house the Fourier transfolTll of the
peakshape. The amount of space used in trans is calculated in rzprep. See the
discussion below for n.

trans is either empty or filled, depending on the parameter newpk. Whenever
newpk = I, it is assumed that the contents of shape have been altered, and thus
trans is newly loaded by rzrluc. When newpk > 1, it is expected that trans has
not been changed since the last time it was filled. See the discussion below for
newpk.

n is input as the amount of space furnished in the yout, w, and trans alTays.

The function rzsizn will calculate n, the minimum amount of space needed. The
required size of n is detelTllined by n2 and by the width of the peak in the shape
alTay. Obtain the minimum required n with this call:

n = rzsizn(n2,shape,nI2)

On output, n is the amount of space used for the Fourier transforms in the yout,
w, and trans alTays. If n is negative on output, the amount of space furnished
was inadequate, and no processing has taken place. If n is returned negative, then
abs(n) is the amount of space needed in the above alTays.

The space required for the Fourier transfolTll is always calculated in rzprep, de-
scribed in Chapter 11. When newpk = I, rzprep calculates the required size of the
Fourier transfolTll as the smallest power of two larger than (n2+1+3*nfwhm). You
may wish to calculate n in an alternate fashion. See Chapter II.

4.6. RZRLUC - RAZORLUCY 61

NOTE: When rzrluc returns after successful processing, it fills both newpk and n
with the transform size. If you with to process additional data with the same peak-
shape, you need not change either newpk or n, provided that (a) your peakshapes
do not change, and (b) your input ydata sizes (n2+1) do not increase.

newpk on input is an integer flag set which should be initially set to 1. It informs
the peakshape processor that a new peakshape is present in shape. The processor
measures certain parameters of the new peakshape, and then fills the trans array
with the Fourier transform of a properly shifted and scaled peakshape. When the
peakshape processor finishes successfully, it will output newpk = n, where n is the
actual space used in trans.

The peakshape processor uses that valuable commodity, CPU time, for a Fourier
transfonn. On input, the programmer can circumvent the peakshape processor with
newpk > 1. Whenever rzrluc is called with newpk > 1, ensure that:

(a) The user wants to use the previous peakshape for the current processing, and
trans is not changed.

(b) The size of the array needed to transform the new data set is no larger than the
n used previously. If this second criterium is violated, the output value of rzrluc
will be rzrluc = -2.

iter is an input index for the iteration loop. Set iter = 0 for the initial call only. The
function distinguishes between iter = 0 and iter> 0, and will automatically update
the value of iter.

nfw hm is output as the number of data points between the half-maxima of the peakshape
feature in shape.

chisq is output as the standard deviation (root- mean-square) of the difference between
the observed data ydata and the result spectrum yout convolved with shape, nor-
malized to the RMS noise sigma. It is a measure of the convergence of the algoritlull.
It may be displayed at the end of each iteration.

sigma is eitherlboth an input and an output variable. It is the standard deviation (root-
mean-square) of the noise.

When the RMS noise in the ydata array is known, it should be input in sigma.

When the RMS noise is not known, set sigma = 0.0, as a signal to the function to
auto-calculate sigma.

62 CHAPTER 4. RAZORSHARP - RZRASH/RZRDECiRZRLUC

4.7 Example using rzrluc

Data file: SPEC2

Peakshape: PEAK2

Using HANDLE:

RAZOR LIBRARY for Spectral Analysis - G There is only one best way!
MaximumLikelihood (ML) , Maximum Entropy (ME), and Bayesian processing.

ESM~EntropySMooth. Smooths Normal (thermal/gaussian) noise. ME

PSM~PoissonSMooth. Smooths Poisson (counting) noise. ML.

NSM~NormalSMooth. Smooths Normal noise. ML.

DIV~RazorDivide. Calculates transmission spectra. ML.

ASH~RazorASharp. Enhances resolution. ML.

DEC~RazorDeconvolve. Maximum Entropy deconvolution. ME/Bayesian.

LUC~RazorLucy. Classic ML deconvolution. ML.

DIF~RazorDerivative. Derivatives Oth-nth. Bayesian.

PIC~RazorPick. Finds peak positions for FIT. ML/Bayesian.

FIT~RazorFit. Fits model peaks to data. ML.

BAS~RazorBase. Finds baseline. ME/Bayesian.

QBA~RazorQuickBase. Finds baseline.

EDG~RazorEdge. Fits baseline to lower edge of data.

NOI~RazorNoise. Finds noise spectrum. ML.

GEN~Generates synthetic peakshape.

SAV~Save result, QUI~Quit.

Choose an operation (3 uppercase characters) : LUC

Enter name of unnormalized sample spectrum (Try SPEC2) : SPEC2

Enter name of peakshape file (Try SPEC2) : PEAK2

Entering RZRLUC wi th i ter ~ O. Wait for setup. . .

At iter 1, RMSnoise~3.4088, Chisq~2.636

.

.

At iter 15, RMSnoise~3.4088, Chisq~1.270
More iterations? Enter the additional number required [0] 0
The FWHM of the peakshape is 80.

The size of array space used was 1024

RESULT MAY BE SAVED TO A FILE

4.7. EXAMPLE USING RZRLUC

IIare Itmoatl , Enter tJIe eddltl 1 NqIIIred: [IJ
1Iesult MY lie __ to . rUe

13B.7

126.5
Y
U U4.2

"I 182.1
T
S 89."

77.~

1iS.3S

53.12

".98

211.67

16.45

4.223

1 118.9 288.8 388.7 6 SI8.5 688.4 788.3 2 918.1
X UNITS

63

64 CHAPTER4. RAZORSHARP- RZRASH/RZRDECIRZRLUC

4.8 Statistically Sound Restoration

The functions in RazorSharp are Maximum Likelihood and Maximum Entropy/Bayesian
Restoration methods. Spectrum Square specializes in methods of this type, because they
are statistically sound and immune to the usual diseases found in linear "deconvolution"
techniques. Although Maximum Likelihood and Maximum Entropy restoration is widely
used in geophysics and astrophysics, the principles are not generally known to spectro-
scopists. We will describe them here.

4.9 The Bayesian Principle

Every spectroscopist knows that a spectrometer distorts, even as it reveals, the spectrum
produced by a sample. A feature that the chemist suspects is a group of sharp peaks may
appear in a spectrum as a single broad asymmetric peak, probably contaminated by noise.
This may not surprise the chemist, but also may not help him much. If he can run the
sample again with sufficient resolution then he will do so, but if this is not possible then
he is faced with a problem of interpretation. From previous experience he may know
what a single sharp peak looks like when viewed "through" the spectrometer, and he may
then try to guess what the composition of the observed feature must be in order to appear
as it does. That is, the spectroscopist will try to decide by eye what the most likely input
spectrum must have been, to have produced the observed spectrum. It's a little like trying
to fit a straight line to a data set by eye, but a lot harder.

There should be a better way to solve problems of this kind, and there is. It's called
Bayesian Spectral Restoration. Bayesian restoration responds to the spectroscopist's need
by answering the question,

"What is the most likely sample behavior that could have resulted in the ob-
served spectrum, given a specific set of known characteristics of the observing
system?".

The answer is then given in a statistically reliable and reproducible manner.

4.10 How Bayesian/Maximum Likelihood/Maximum En-
tropy Restoration Works

We have asked the question, what is the most probable sample spectrum (usually called
the object spectrum), consistent with the data at hand, and consistent with a set of known
system constraints?

These constraints consist of everything the experimenter knows about the system,
including the data set he is trying to interpret. "Everything" may include but is not
limited to:

4.10. HOW BAYESIAN/MAXIMUM LIKELIHOOD/MAXIMUM ENTROPY RESTORATION WORKS65

1. The spectrometer peakshape function. (What does it do to a single peak?)

2. The signal-to-noise ratio.

3. Whether the signal has an upper and/or a lower bound, and if it does, what these
bounds are.

4. The noise. (Is the noise additive or multiplicative? Is it Nonnal or Poisson? What
are the spectral characteristics of the noise?)

5. The total energy, always presumed to be conserved.

6. A priori object spectrum probabilities. (For example, in atomic mass spectrometry,
signals can appear only at certain positions.)

The list can go on. Some of the constraints are very well known and have small
variability; these are often taken as "known" to simplifY the computation. An example
is the instrument peakshape function. Other constraints, such as detector noise, are not
known except as to type of statistical behavior and mean square magnitude. In practice,
the more one knows about the system, the better. Since we are adding knowledge that is
not implicit in the data, it is well to add a lot of it, provided it is correct!

We emphasize that appropriate constraints will all be known or ascertainable for a
given system. One does not tinker with them to obtain a result one likes, any more than
one pushes data points around to obtain a least squares fit whose slope and intercept one
likes. We want, after all, the most likely result. If it is not pleasing, well, we did the best
we could with the data we had!

Maximum Likelihood algorithms are constructed around the following paradigm: The
object spectrum is caused by a physical process which is statistically stationary, so that
successive samples are short-time approximations to some mean behavior which has a
definite limit as the sampling period increases without limit.

We see at once that this assumption cannot be correct. Light sources bum out, the
sample evaporates, etc. Nevertheless, we must make the assumption that at least during
the time of the experiment, nothing has changed. In particular, nothing in the above list
of constraints changes during the data acquisition period.

One then constructs a probability function which assigns a probability to every physi-
cally possible outcome of a particular experiment. One finds that for some object choices,
the observed data spectrum is very probable; for other arrangements of the object spectrum,
the observed data spectrum is highly unlikely. We simply choose that object spectrum
which has the highest probability of giving us our observed data set.

There is no magic here, and no way to adjust the outcome. One does not guess, except
in the sense that one guesses that 1000 tosses of a fair coin on flat ground will result in
most of the trials ending with the coin flat on the ground. (Such a prediction is not really
a guess, but the result of a rapid Maximum Likelihood analysis!)

66 CHAPTER 4. RAZORSHARP - RZRASH/RZRDEC/RZRLUC

4.11 Equations used by rzrash and rzrdec and rzrluc

The equations needed for BayesianlMaximum Likelihood/Maximum Entropy spectral res-
toration are not particularly difficult to set up.

Suppose we have measured a data set {Yl, Y2, ".Yn}. We really want to know the
values of the data set {OJ, 02, ". On}, where each Yi is related to Oi by the equation

Yi=(O@S)i+ni.

The set {OJ, 02, ".on} is a more highly resolved spectrum, 129denotes convolution,
s is the peakshape function, and ni are the noise fluctuations. We will use Maximum
Likelihood and Bayesian methods to estimate {OJ, 02, ".On}.

If the noise ni is random, and additive, with a Normal distribution, then the probability
for obtaining a particular value Yi is

1 (Yi - (0129S)i)2
p(Yi I 0) =

)(2)
exp[-

2 2].
1r (ij O"i

If the noise ni is random noise with a Poisson distribution, then the probability for Yi
IS

(0129 S){ie-(00s);

P(Yi I 0) =
I

.
Yi.

Assume that the noise ni is uncorrelated with the noise nj, for all i,j. Then the
likelihood of observing the set {Yl, Y2, ".Yn} is the product of the probabilities for each
of the Yi:

n

P(Yl, "'Yn I 01, "., On) = 11 P(Yi I 0)
i=l

For Normal noise, this becomes

For Poisson noise,

4.11.1 Maximum Likelihood Restoration

When we maximize the probability

P(Yl, .", Yn 101, .", On),

in order to find the best estimate of {aI, 02, ".On}, then we are performing Maximum
Likelihood Spectral Restoration.

4.11. EQUATIONS USED BY RZRASH AND RZRDEC AND RZRLUC 67

4.11.2 Bayesian and Maximum Entropy Restoration

When we maximize the probability

by invoking Bayes Rule, then we are using a Bayesian Spectral Restoration method
(also called the MAP (Maximum A Posteriori) method).

Bayes Rule says that the probability p (01, ..., On I Y1, ..., Yn) is related to the proba-
bility P(Yl' ..., Yn I 01, ..., On) through

In order to solve the equation, we must also provide the a priori probabilities P(Yl, ..., Yn)
for our observed spectrum and P(OI, ..., on) for all parent spectrums. Clearly, the proba-
bility for our single observation is P(Yl, ..., Yn) = 1.

For this application, we will use the multinomial probability law, combined with a
prior spectrum {QI, Q2, ...Qn}, and so the a priori probability for the parent spectrum is

() _ N! Q Ol Q 02 Q Onp 01,
"')

On -
I I I 1 2... n

°1.02 0n.

When we maximize the probability P(OI, ..., On I Yl, ..., Yn), and use the multinomial
probability law for P(OI, ..., on), then we are performing Maximum Entropy Spectral
Restoration.

In summary, the Maximum Likelihood prescription says we must maximize p(y I 0).
The Bayesian prescription says we must maximize p(o Iy). The Maximum Entropy pre-
scription says we must maximize p(o I y), and additionally use a multinomial probability
law as the degeneracy factor for the prior spectrum. The maximizations are to be done
under a set of constraints. An important constraint is our knowledge of the peakshapes.
We assume that the object function {Ol,02, ...On} is composed of many individual peaks.
However, we make no assumption about how many peaks there are, or where they are. We
assume that the object function has been convolved with a peakshape function, thereby
producing the spectrum we observe. The convolving peakshape function is known to
us; its shape is represented by s. We also assume that the object function is positive
everywhere.

4.11.3 Razor Library's two restoration methods

Razor Library contains two separate restoration methods, Maximum Entropy/Bayesian,
and Maximum Likelihood restoration. The two methods, and the equations which they
solve, are given here.

68 CHAPTER 4. RAZORSHARP - RZRASH/RZRDEC/RZRLUC

RazorDeconvolve - rzrdec is a Maximum Entropy/Bayesian method. It maximizes
the probability

(
I

) = {II

n 1
[

(Yi-(00s)i)2
j}{

(01+...+on=N)! Q oIQ 02 Q On
}p 0 Y

I()

exp
2

'I I
1 2... n ,

i=l V 211"C7i 2ai 01.02 0n.

under the constraint that 0 is positive. {QI, Q2, ...Qn} is the prior spectrum. The
Maximum Entropy character becomes evident if we take the logarithm of p,

n (('"))2
y' - o""s.In(p(o I y)) = I) -' 2' - Oilnoi + OilnQi) + constant terms

i=l 2Ui

The term
n

- L OJnoi
i=l

is the same expression as the Shannon entropy for the spectrum {aI, 02, ...on}' Note
that maximizing In(p(o I y)) is the same as maximizing p(o I y), because the
probability p(o I y) is always positive.

Another form of this Maximum Entropy equation emerges when we take the deriva-
tive of In(p(o I y)) with respect to 0i. The derivative equation is

(y. - (00 s).) 0 sd[ln(p(o Iy))J/doi = (-' 2 ' -Inoi + InQi - 1) = O.
(J.,

Rearranging tenns, exponentiating, renonnalizing, and then dropping the subscripts
produces the familiar classic equation of Maximum Entropy deconvolution:

0= Qexp(-
(y - (o~s)) 0s).

(J

rzrdec solves this classic (nonlinear) Maximum Entropy equation.

RazorASharp and RazorLucy - rzrash and rzrluc are both Maximum Likelihood
methods. They maximize the probability (Poisson noise case):

n
(00 s).Y'e-(00s),

p(y I0) = II '

I

= maximum,
i=l Yi.

under the constraint that 0 is positive.

rzrash and rzrluc use different mathematical algorithms for solving this equation.

4.11. EQUATIONS USED BY RZRASH AND RZRDEC AND RZRLUC 69

4.11.4 rzrdec solution

rzrdec is a solution to the Maximum Entropy equation for Normal noise statistics. rzrdec
contains the constraint that the solution is positive, and in addition, allows one to select
a prior {Ql,Q2, ...Qn}' The prior is the user's best guess, or his prejudices, of the
deconvolved solution. (Note that the prior only marginally influences the final solution.)

The equations solved by rzrdec are not new!!! The equations are described by
B. Roy Frieden in "Unified Theory for Estimating Frequency of Occurrence Laws and
Optical Objects", Journal Optical Society of America, 73, 927-938, July 1983. (rzrdec
assumes no degeneracy, and therefore uses the classical limit of the equations in Appendix
C of this reference). The Maximum Entropy equations are also described by J. Skilling in
"Fundamentals of MaxEnt in Data Analysis", Chapter 2 of Maximum Entropy in Action,
ed. Brian Buck and Vincent A. Macaulay, Oxford Science.

The algorithm used by rzrdec to solve this classic Maximum Entropy Restoration
problem is entirely new. The algorithm, which is proprietary to Spectrum Square Asso-
ciates, is many times faster than the classic conjugate gradient methods used previously.

4.11.5 rzrluc solution

rzrluc is a solution to the above Maximum Likelihood Poisson equation. It contains the
additional constraint that the solution is positive. rzrluc is an appropriate function to use
for emission, absorbance, and counting spectra. The rzrluc algorithm is as follows:

The kernal of this solution may be easily obtained from the Maximum Likelihood
equation for Poisson noise using

6(lnp(y I 0))
= A

60
.

This algorithm was first described by W. H. R.jchardson,"Bayesian Iterative Method
of Image Restoration", Journal Optical Society America, 62, 55-59, 1972, and shown to
converge to the Likelihood maximum by L. B. Lucy, "An iterative technique for the recti-
fication of observed distributions", Astron. Journal 79, 745-765, 1974. It has been named
the EM algorithm by L. A. Shepp and Y. Vardi, "Maximum Likelihood Reconstruction
in Positron Emission Tomography", IEEE Transactions on Medical Imaging 1, 113-122,
1982. (Astronomers have called it the Lucy algorithm for many years, and we continue
to do so here.)

The Lucy algorithm makes good progress for about 10-15 iterations, and then gets
bogged down. Although mathematically proven to eventually converge, you may grow
old waiting!

70 CHAPTER 4. RAZORSHARP - RZRASH/RZRDEC/RZRLUC

4.11.6 rzrash solution

rzrash is useful for resolution enhancement of any emission, absorbance, and counting
spectra, provided that the convolving peakshape function s is well known.

The rzrash algorithm is a solution to the Poisson equation

n (0 @ s)'Y'e-(o@s),
p(y I 0) = II 1

I = maximum.
i=l Yi.

This is the same equation used by rzrluc. However, the rzrash and rzrluc algorithms
are different. You will find that rzrash converges to a solution faster than rzrluc does.

Technically, rzrash is an appropriate function to use for resolution enhancement of
data with Poisson noise. However, we have found that it may be used with confidence
on Normal noise data also. How do we know this?

We have used a modification of the rzrash algorithm to solve the Normal equation

n 1 (Yi-(0@S)i)2 .
p(y I0) = II

v()
exp[2] = maximum.

i=1 271" CT; 2CTi

We have compared the Poisson-statistics algorithm rzrash, and the corresponding
Normal-statistics algorithm on every spectrum we could find, and many that we conjured
up ourselves, containing noise of both types. In every case, the differences between
the results were small, smaller than the uncertainties associated with our approximate
solutions.

We believe we would mislead our users if we presented them with a choice of al-
gorithms - suggesting that the differences in the results were meaningful. Instead, we
provide you with you this information about the performance of rzrash.

. In most cases, rzrash is only capable of increasing resolution by a factor of 2 to
3. The best resolution enhancement which can be achieved depends critically upon
the peakshapes. In the worst case, when peaks are Gaussian in shape, rzrash is
incapable of separating peaks whose centers are closer together than 40 % of the
fwhm. In the best case, when the peakshapes have sharp features such as seen in
the triangular shape of characteristic of the transfer function of a slit spectrometer,
resolution enhancement by a factor 25 is easy.

. Peak areas may be in error by as much as 2 % of the largest peak in the data, even
in the absence of noise. (Usually they are better than this. The actual performance
depends upon peakshapes, and amount of overlap.) When you need better peak
areas, we suggest that you use rzrash to help you estimate the number of peaks
present, and to find the center positions, which it does exceptionally well. Then use
RZRFIT to get accurate areas.

rzrash contains our Poisson algorithm. We decided to put this one in for these reasons:
(1) The results we obtain, using the Poisson algorithm and the Normal algorithm on the

4.12. WHAT ABOUT FOURIER DECONVOLUTION? 71

same data, are indistinguishable in most cases. (2) A Poisson error curve is nearly the
same as a Nonnal error curve when the signal is large. (Clearly, this is one reason our
two algorithms have nearly the same perfonnance.) (3) The hardest cases are those with
Poisson statistics and low signal/noise. If anyone is down there pushing the limit, he
may need the Poisson algorithm. (4) Our Poisson algorithm is more stable for highly
asymmetric peakshapes. (5) The Poisson algorithm converges more quickly than the
Nonnal one.

4.12 What about Fourier deconvolution?

Fourier deconvolution and Maximum Likelihood Restoration begin with the same problem.
There is an observed data set {y[, Y2, ...Yn}, where

where {o[, 02, ...on} is a more highly resolved spectrum, @ denotes convolution, 8 de-
scribes the shapes of the peaks, and 11, are the noise fluctuations.

Fourier deconvolution estimates the more highly resolved spectrum in this way: Ignore
the noise, and solve the equation

Yi = (0 @ S)"

The solution is obtained in the Fourier domain, by dividing the Fourier transfonn of the
data {y[, Y2, ...Yn} by the transfonn of the peakshape {8[, 82, ...8n}. The inverse transfonn
of the quotient is the estimate of {o[, 02, ...on}. Problems arise. The noise, which has
been ignored, doesn't go away. It dominates the signal at large Fourier frequencies, and
is now amplified. The inverse transfonn produces ringing, and negative intensities, in
{o[, 02, ...on}. These problems are 'solved' by applying a filter in the Fourier domain
before doing the inverse transfonn. The filter function is arbitrary. The art of Fourier
deconvolution is tinkering with the filter.

Maximum Likelihood Restoration and Fourier deconvolution are two different
methods of solving exactly the same problem. They both begin with the assumption
that the observed spectrum is the sum of many peaks which have a known shape 8. There
is no underlying pedestal or baseline. Note that the equation

doesn't intrinsically require that all peaks have the same shape. The requirement that
all peaks have the same shape, and width, is added so that one can use fast Fourier
transfonns (FFTs) for the convolution operation. Fourier deconvolution wouldn't work
without this assumption. And you wouldn't want to wait long enough for rzrash to
perfonn convolutions without the aid of an FFT.

72 CHAPTER4. RAZORSHARP- RZRASHiRZRDEC/RZRLUC

Maximum Likelihood Restoration and Fourier deconvolution differ in these
ways: Fourier deconvolution ignores the noise, and then applies an arbitrary filter in
the Fourier domain to clean things up. Maximum Likelihood Restoration acknowledges
the noise, looks for the solution which has the highest probability of being correct, and
imposes the additional condition that {aI, 02, "'On} is positive (the source didn't put out
negative intensities).

4.13 A Final Word of Advice

The secret of success in spectral restoration is: don't guess. Guessing involves tinkering
with the process until you like the result, get tired, or no longer believe anything you see.
Everyone who goes this route eventually ends up in the last state, and properly so. Decide
upon your constraints, run the program, and if the results still fall short of your needs
then either you need better data, or a different algorithm better adapted to your particular
constraints, or you have a research-grade problem.

4.14. RZRSTR - RAZORSTRIP 73

4.14 rzrstr - RazorStrip

RazorStrip (rzrstr) is a linear deconvolution method, similar to Fourier deconvolution.
The main differences between rzrstr and Fourier deconvolution are (a) rzrstr is less
sensitive to noise, due to its Maximum Entropy roots, and (b) rzrstr does not have any
arbitrary, user-selected parameters.

rzrstr is obtained by expanding the exponent in the classic equation for Maximum
Entropy deconvolution (p. 68), and then using the first two terms of the expansion.
We don't think that rzrstr is an optimum method of deconvolution 1; rzrdec is better.
However, we provide rzrstr as an excellent alternative for users who might need a linear
method, and for users who are still tempted by Fourier deconvolution (or FSD).

We believe that if you are bound and determined to use a linear deconvolution method,
then rzrstr is the best choice. Best of all, rzrstr has no tinkering parameters!!

Required user input:

. Data set in which any baseline or offset has been properly removed. Remember
that rzrstr and Fourier deconvolutionare based upon the assumption that the data
file contains a set of overlappingpeaks of the same shape, but no baseline!

. Select a peakshape which represents the peaks in the data set. It is very, very
important that the chosen peakshape be an accurate representation of the true shapes
of peaks in the data.

IThus we have hidden rzrstr here in the back of the deconvolution chapter. We hope you will turn to
rzrdec instead.

74 CHAPTER 4. RAZORSHARP - RZRASH/RZRDEC/RZRLUC

long rzrstr(float ydata(], long n2, float shape(], long n12,
float yout[], float trans(], long *n, long *newpk, long *nfwhm, double *sigma)

Input arrays which must be filled:
ydata, filled between 0 and n2
shape, filled between 0 and nl2

NOTE: shape will be read only, not altered.
NOTE: If newpk > I, shape will not be read.

Additional arrays to be furnished:
yout, length n
trans, length n

Input variables: n2, n12, n, newpk
n2 is the index of the last data value in ydata
nl2 is the index of the last data value in shape
n is the size of arrays yout and trans
newpk indicates whether or not shape is a new peakshape
sigma = RMS noise in ydata (optional).

Output arrays:
yout, filled between 0 and n2

Output variables:
n = amount of array space used

NOTE: if n is negative, abs(n) = amount of array space
needed (but not available). Operation not successful.

newpk =n if trans was properly loaded.
nfwhm = full-width-at-half-maximum of peakshape
sigma = RMS noise in ydata.

Function return values:
rzrstr = 0 if iteration was successful

If rzrstr < 0, error occurred
Use rzrerr (page 174) to obtain error text

Description of variables

ydata on input is the raw data array. The data of interest is contained in the range (0,
n2). ydata will NOT be altered.

n2 is the last location of data in the ydata array. n2 is to be furnished as input.

shape is an input array which holds the peakshape of the narrowest spectral feature in
ydata which is of interest to the user. The relevant peakshape is located between
data points 0 and nl2 in the shape array. The minimum size of the shape array is
n12+I. nl2 must always be less than n.

4.14. RZRSTR - RAZORSTRIP 75

nl2 is input as the index of the last data point of the peakshape in shape. We recommend
that nl2+ 1 be at least 6*nfwhm, and that the peak be approximately centered in the
0,n12 interval.

yout is an array of size n. On output, yout will be the resolution-enhanced data array.

yout must have a minimum size equal to the smallest power of two larger than
(n2+1+3*nfwhm). See the discussion below for n.

trans is an array of size n which will be used to house the Fourier transform of the
peakshape. The amount of space used in trans is calculated in rzprep.

See the discussion below for n.

trans is either empty or filled, depending on the parameter newpk. Whenever
newpk = 1, it is assumed that the contents of shape have been altered, and thus
trans is newly loaded by rzrstr. When newpk > 1, it is expected that trans has
not been changed since the last time it was filled. See the discussion below for
newpk.

n is input as the amount of space furnished in the yout and trans arrays.

The function rzsizn will calculate n, the minimum amount of space needed. The
required size of n is determined by n2 and by the width of the peak in the shape
array. Obtain the minimum required n with this call:

n = rzsizn(n2,shape,nI2)

On output, n is the amount of space used for the Fourier transforms in the yout
and trans arrays. If n is negative on output, the amount of space furnished was
inadequate, and no processing has taken place. If n is returned negative, then abs(n)
is the amount of space needed in the above arrays.

The space required for the Fourier transform is always calculated in rzprep, de-
scribed in Chapter 11. When newpk = 1, rzprep calculates the required size of the
Fourier transform as the smallest power of two larger than (n2+1+3*nfwhm). You
may wish to calculate n in an alternate fashion. See Chapter 11.

NOTE: When rzrstr returns after successful processing, it fills both newpk and n
with the transform size. If you with to process additional data with the same peak-
shape, you need not change either newpk or n, provided that (a) your peakshapes
do not change, and (b) your input ydata sizes (n2+1) do not increase.

newpk on input is an integer flag set which should be initially set to 1. It informs
the peakshape processor that a new peakshape is present in shape. The processor
measures certain parameters of the new peakshape, and then fills the trans array
with the Fourier transform of a properly shifted and scaled peakshape. When the
peakshape processor finishes successfully, it will output newpk = n, where n is the
actual space used in trans.

76 CHAPTER 4. RAZORSHARP - RZRASH/RZRDECiRZRLUC

The peakshape processor uses that valuable commodity, CPU time, for a Fourier
transform. On input, the programmer can circumvent the peakshape processor with
newpk > 1. Whenever rzrstr is called with newpk > I, ensure that:

(a) The user wants to use the previous peakshape for the current processing, and
trans is not changed.

(b) The size of the array needed to transform the new data set is no larger than the
n used previously. If this second criterium is violated, the output value of rzrstr
will be rzrstr = -2.

nfwhm is output as the number of data points between the half-maxima of the peakshape
feature in shape.

sigma is either/both an input and an output variable. It is the standard deviation (root-
mean-square) of the noise.

When the RMS noise in the ydata array is known, it should be input in sigma.

When the RMS noise is not known, set sigma = 0.0, as a signal to the function to
auto-calculate sigma.

Chapter 5

RazorDerivative - rzrdif

5.1 A Fundamental Approach to Derivatives

There seem to be many, arbitrary ways to create a derivative from an array of numbers,
ranging from a simple two-point difference to a Savitsky- Golay derivative with m-point
polynomial-smoothing. Razor Library employs a different approach, one which uses only
the fundamental knowledge available to the spectroscopist. The rzrdif derivatives answer
the following question:

If I assume that my data set ydata consists of peaks like the one in shape, what does
the most 2nd likely derivative (or 3rd derivative, etc...) look like?

The differences between this statistical method, and other methods, are:

. The statistical approach doesn't force the user into an arbitrary choice of methods.

. The statistical approach has no arbitrary parameters.

The mathematics which implement statistical derivatives are explained in Section 5.3,
on page 84.

77

78 CHAPTER 5. RAZORDERIVATIVE- RZRDIF

The required user input for rzrdif is:

. Data array.

. Peakshapes - either true or estimated. It is not critical that the user choose an exact
peakshape for rzrdif. When all the peaks in the data are not the same, the user
should select a smooth peakshape characteristic of the narrowest feature of interest
in the data.

Progranuning notes:

. Set nord = 2 to calculate the 2nd derivative, etc.

. The progranuner will need to provide two full-size processing arrays, yout, and
trans, as well as the data array ydata. ydata will not be altered by rzrdif.

. You may SAVE SPACE by allowing the derivative, which is returned in the array
yout, to replace the input ydata. Pass the ydata address again, instead of an
address to a separate array yout, in the fifth argument position. Ensure that the size
of ydata array is 2: n. In this case, ydata will be altered outside the range (0,n2).

5.1. A FUNDAMENTAL APPROACH TO DERIVATIVES 79

long rzrdif(float ydata[], long n2, float shape[], long n12, float yout[],
float trans[], long *n, long *newpk, long *nord, long *nfwhm, double *sigma)

Input arrays which must be filled:
ydata, filled between 0 and n2, length n
shape, filled between nil and nl2

NOTE: shape will be read only, not altered.
NOTE: If newpk > I, shape will not be read.

Additional arrays to be furnished:
yout, length n
trans, length n

Input variables: n1, n2, n, n12, npks, psens, newpk
n2 is the last position of data in ydata
nl2 is the last position of data in shape
n is the size of arrays yout, and trans
newpk indicates whether or not shape is a new peakshape.
nord is the ordinal number of the desired derivative.

Output arrays:
yout, filled with the desired derivative

Output variables:
n = amount of array space used

NOTE: if n is negative, abs(n) = amount of array space
needed (but not available). Operation not successful.

newpk = n if trans was loaded successfully.
nfwhm = full-width-at-half-maximum of peakshape in shape
sigma = RMS noise in the ydata.

Function return values:
rzrdif = 0 if operation was successful

If rzrdif < 0, error occurred
Use rzrerr (page 174) to obtain error text

ydata on input is the raw data array. It should contain the raw data between data points
o and n2. ydata will not be altered outside this range.

n2 is the last location of data in the ydata array. n2 is to be furnished as input.

shape is an input array which holds the peakshape of the narrowest spectral feature in
ydata which is of interest to the user. The relevant peakshape is located between
data points 0 and nl2 in shape.

nl2 is input and the index of the last data point of the peakshape in shape.

80 CHAPTER 5. RAZORDERIVATIVE - RZRDIF

yout is the output derivative. The derivative will be found between data points 0 and
n2, and should be ignored outside this range.

yout must have a minimum size equal to the smallest power of two larger than
(n2+1+3*nfwhm). See the discussion below for n.

trans is an array of size n which will be used to house the Fourier transform of the
peakshape. The amount of space used in trans is calculated in rzprep. See the
discussion below for n.

trans is either empty or filled, depending on the parameter newpk. Whenever
newpk = I, it is assumed that the contents of shape have been altered, and trans
is properly loaded by rzrdif. When newpk > I, it is expected that trans has not
been changed since the last time it was filled. See the discussion below for newpk.

n is input as the amount of space furnished in the yout, and trans arrays.

The function rzsizn will calculate n, the minimum amount of space needed. The
required size of n is determined by n2 and by the width of the peak in the shape
array. Obtain the minimum required n with this call:

n = rzsizn(n2,shape,nI2)

On output, n is the amount of space used for the Fourier transforms in the yout,
and trans arrays. If n is negative on output, the amount of space furnished was
inadequate, and no processing has taken place. If n is returned negative, then abs(n)
is the amount of space needed in the above arrays.

The space required for the Fourier transform is always calculated in rzprep, de-
scribed in Chapter II. When newpk = I ,rzprep calculates the required size of the
Fourier transform as the smallest power of two larger than (n2+ I+3*nfwhm). You
may wish to calculate n in an alternate fashion. See Chapter II.

NOTE: When rzrdif returns after successful processing, it fills both newpk and n
with the transform size. If you with to process additional data with the same peak-
shape, you need not change either newpk or n, provided that (a) your peakshapes
do not change, and (b) your input ydata sizes (n2+!) do not increase.

newpk on input is an integer flag set which should be initially set to I. It informs
the peakshape processor that a new peakshape is present in shape. The processor
measures certain parameters of the new peakshape, and then fills the trans array
with the Fourier transform of a properly shifted and scaled peakshape. When the
peakshape processor finishes successfully, it will output newpk = n, where n is the
actual space used in trans.

The peakshape processor uses that valuable commodity, CPU time, for a Fourier
transform. On input, the programmer can circumvent the peakshape processor with
newpk > 1. Whenever rzrdif is called with newpk > I, ensure that:

5.1. A FUNDAMENTAL APPROACH TO DERiVATIVES 81

(a) The user wants to use the previous peakshape for the current processing, and
trans is not changed.

(b) The size of the aITayneeded to transform the new data set is no larger than the
n used previously. If this second criterium is violated, the output value of rzrdif
will be rzrdif = -2.

nord is input as the ordinal number of the desired derivative. For example, set nord =
2 to obtain the 2nd derivative.

nfwhm is output as the number of data points between the half-maxima of the peakshape
feature in shape.

sigma is output as the standard deviation (root- mean-square) of the noise which was
found in ydata.

82 CHAPTER 5. RAZORDERIVATIVE - RZRDIF

5.2 Example using rzrdif

HANDLE is set up to use rzrpic to pickk peaks from a spectrum, ask you a few ques-
tions, and then pass the chosen peaks into rzrfit. rzrpic uses a form of the Maximum
Likelihood/Bayesian 2nd derivative calculated by rzrdif. You may obtain your own 2nd
derivative to use in peak selection. The example here uses the file SPEC2, which is an
rcp spectrum of iron.

Spectrum file: SPEC2
Peakshape file: PEAK2

Using HANDLE:

RAZOR LIBRARY for Spectral Analysis - G There is only one best way!
Maximum Likelihood (ML) , Maximum Entropy (ME), and Bayesian processing.

ESM=EntropySMooth. Smooths Normal (thermal/gaussian) noise. ME

PSM=PoissonSMooth. Smooths Poisson (counting) noise. ML.

NSM=NormalSMooth. Smooths Normal noise. ML.

DIV=RazorDi vide. Calculates transmission spectra. ML.

ASH=RazorASharp. Enhances resolution. ML.

DEC=RazorDeconvolve. Maximum Entropy deconvolution. ME/Bayesian.

LUC=RazorLucy. Classic ML deconvolution. ML.

DIF=RazorDerivative. Derivatives Oth-nth. Bayesian.

PIC=RazorPick. Finds peak posi tions for FIT. ML/Bayesian.

FIT=RazorFit. Fits model peaks to data. ML.

BAS=RazorBase. Finds basel ine. ME/Bayesian.

QBA=RazorQuickBase. Finds basel ine.

EDG=RazorEdge. Finds baseline.

EDG=RazorEdge. Fits baseline to lower edge of data.

NOI=RazorNoise. Finds noise spectrum. ML.

GEN=Generates synthetic peakshape.

SAV=Save result, QUI=Quit.

Choose an operation (3 uppercase characters) : DIF

Enter name of unnormalized sample spectrum (Try SPEC2) SPEC2
Enter name of peakshape file (Try SPEC2) : PEAK2

Enter derivative order l=lst, 2=2nd, ... : 2

Entering RZRDIF. Wait for processing. ..

DIF = RazorDerivative
The estimated RMS noise is 3.4088
The FWHM of the peakshape is 80
The computed derivative = 2 (lst,2nd,etc)

The size of array space used was 2048

RESULT MAY BE SAVED TO A FILE

5.2. EXAMPLE USING RZRDIF

DIl . Itt-.tl.te: I...tlue-=
7IIesuit ""!I .. _ued to . tile

Z HIS...18e 111uta _ .41822

~.57

87.81
V
U 711.15

"I 69.89
r
S 61.33

52.71

44.21

35.65

"D.89

18.53

9.97

1.487

1 188.9 288.8 388.7 6 588.5 688.4 718.3 2 918.1
X UNITS

83

84 CHAPTER 5. RAZORDERIVATIVE - RZRDIF

5.3 Equations of Bayesian Derivatives

(This is a summary of a paper given at the 1991 Pittsburgh Conference.)

We will show how we find the Bayesian second derivative of a given data set. Other
derivatives are found in a similar manner.

We begin by setting up an equation which describes the probability of obtaining the
data set d(Xl),d(X2), ...d(xn), in terms of the parent spectrum y(x).

From a parent spectrum y(x), we have drawn a data set d(x) containing data points
d(Xl), d(X2),...d(xn), where d(Xi) = Y(Xi) + ni' The d(Xi) are the data values, and ni
are the noise values.

We assume that the parent distribution y (Xi) consists of a set of peaks of some shape

- not necessarily all the same shape - plus a baseline:

y(x) = a(x) @ s(x) + b(x),

where o(x) = an object function = a set of delta-functions, @ means convolution, s(x) =
the peakshapes, and b(x) = the baseline.

For a given parent spectrum, the probability p for the sample d(x) is determined by
the probability distributions for the noise {nl, n2, ...nn}. P is called the Likelihood.

If the noise ni is random, and additive, with a Normal distribution, then the probability
(likelihood) for d(Xi) is

1 (d(Xi) - Y(Xi))2
p(d(x;) I Y(Xi)) =

J(2)
exp[-

2 2].
7f CTj CTi

Assume that the noise ni is uncorrelated with the noise nj, for all i,j. Then the
likelihood of observing the set d = {d1,d2, ...dn} is the product of the probabilities for
each of the d(Xi):

n

p(d I y) = 11P(d(xi) I Y(Xi))
i=l

For Normal noise, this becomes

We wish to find the best possible estimate of the second derivative. Thus we will
maximize the probability

p(y"l d).

We will do this by invoking Bayes Rule. This is the Bayesian method.

5.3. EQUATIONS OF BAYESIAN DERIVATIVES 85

Bayes Rule says that the probability p(y" I d) is related to the probability p(d I y")
through

(" 1 d) =
p(d Iy")p(y"))p Y

p(d)
,

where

In order to solve the equation, we must also provide the a priori probabilities p(d) for
our observed spectrum and p(y") for all parent derivative spectra. Clearly, the probability
for our single observation is p(d) = 1. What is needed is an a priori statement about y".

This seems to be a reasonable statement about y": In the absence of data, we don't
want to find any peaks in y". Consequently, in the absence of data, we want

y" = ax + c,

which means that

y"" =0.

Translating this statement into an equation we can use brings us:

n (ylll'(Xi))2
Po = II exp[2]'

i~l 20'4

The only problem left is to choose 0'4 wisely. To obtain a value for 0'4 , we used the
following equations:

d(Xi) = Y(Xi) + n(Xi),

To get a final solution for the second derivative y", and to maintain consistency with
our assumptions about y", we also used a baseline that was of the form,

b(x) = ax+ c.

The final solution to the Bayesian equations shown above gives a transformation T,
which transforms the data d into its Bayesian second derivative:

86 CHAPTER5. RAZORDERIVATIVE- RZRDIF

yl/(x) = T(d(x)).

The transfonnation Tis implemented in rzrdif, and also used by rzrpic. Tdepends
upon the noise in the data, and also weakly depends upon the peakshape function s(x).
The dependence upon the noise in the data was exactly what we expected. It means that
the second derivative will be optimally smoothed. The fact that our final transfonnation
was only weakly dependent upon s(x) was a lucky break. Because the shape of our final
second derivative y" was not overwhelmed by the shape we assumed for s, we were able to
use the second derivative to estimate peak widths as well as peak heights. Consequently,
we have been able to give you peak width and peak height estimates in rzrpic.

Chapter 6

RazorPick - rzrpic

6.1 Accurate Peak-Picking for Merged Peaks

The human eye and brain are the best peak pickers. Previous computer programs designed
for this task have set up parameters such as slope, threshold, minimum area, skim/drop
decision trees, etc. Even then, the programs turn helpless when given very noisy data.
Why can't the computer be more like ourselves?

We have applied Maximum Likelihood and Bayesian methods to this problem. Maxi-
mum Likelihood is a mathematical formulation of the same statistical and a priori knowl-
edge the brain uses. The human observer discriminates between peaks and noise, and
judges when peaks overlap, by the peak shapes. His decision about whether to accept
small peaks is based upon probability factors.

RazorPick uses a Bayesian 2nd derivative to find candidate peaks. It then uses the
statistics of the noise (Maximum Likelihood) to generate a significance (= signaVnoise ra-
tio) for each candidate peak. Finally, it sorts the peaks in order of decreasing significance,
and returns a list of all peaks which meet the acceptance criteria.

RazorPick is a collection of 4 excellent peak-picking algorithms. RazorPick is su-
perior to most other peak-pickers in the following ways:

. Detects peaks even when merged or overlapping.

. Reports peak significances in signal/noise units, for Normal or Poisson noise.

. Estimates and reports peak heights and peak widths, using information from the
(Bayesian) 2nd derivative.

. Identifies positive peaks when presented with a positive template; identifes negative
peaks when given a negative template.

87

88 CHAPTER 6. RAZORPICK - RZRPIC

6.2 rzrpic

Required user input:

. Select a peakshape which represents the narrowest peaks in the data set. The actual
peakshape is not very critical for this algorithm.

. When the selected peakshape is positive, rzrpic will search for positive peaks; when
the peakshape is negative, negative peaks in the data will be identified.

Processing notes:

. The High-Performance picker (iperf = I) finds overlapping peaks if the peak
centers are not closer together than about one-half of a peak width. This picker is
recommended for data containing peaks of different widths.

. The High-Resolution picker (iperf = 2) finds overlapping peaks if the peak centers
are not closer together than about one-quarter of a peak width. (The actual resolution
will depend on the peak shape.)

. In the 2nd-Order High-Performance picker (iperf = 3), an extra asymmetry cor-
rection is applied. For symmetric peaks, the High-Performance and 2nd-Order
High-Performance modes are exactly the same. For asymmetric peaks, sometimes
the extra correction is helpful, and sometimes not. When helpful, it provides extra
resolution. (NOTE: both the High-Performance and High-Resolution pickers have
1st-order asymmetry corrections built in!)

. The Quiet Picker (iperf = 4) is a Bayesian picker tailored for narrow peaks (widths

< 5 datapoints).

. The Quick-Pick picker (iperf = -I) does not separate overlapping peaks, mainly
because it is not using a Bayesian 2nd derivative.

Programming notes:

. Set istat = I if the noise is Normal. Set istat = 2 if the noise is Poisson.

. Set psens = 3 to find all the peaks with heights> 3 times the RMS noise, i.e. all
peaks with signal/noiseratios> 3. Set psens = -3 to find all the peaks with areas
> 3 times the RMS area-noise.

. The small array locpks returns useful information for setting up an automated peak
picker. For instance, the 5 most significant peaks will be the first 5 peaks in locpks.
Use rzpkst (Page 175) to resort locpks and sigpks by location, height, or width.

. Peak significances, heights, and widths are returned in the sigpks array. The heights
and widths are useful in loading the datmat matrix for rzrfit. Use rzdfil (Page 177)
for assistance in loading datmat.

6.2. RZRPIC

long rzrpic(float ydata!], long n2, float shape!], long n12,
float yout!], float w[], float trans[],Iong *n, long *newpk,
long *istat, long iperf, double *psens, long locpks!], long *npks,
float sigpks[], long nsig, long *nfwhm, double *peak, double *sigma)

Input arrays which must be filled:
ydata, filled between 0 and n2, length n2 + 1

NOTE: ydata will be read only, not altered.
shape, filled between 0 and nl2

NOTE: shape will be read only, not altered.
NOTE: If newpk > I, shape will not be read.

Additional arrays to be furnished:
yout, length n
w, length n
trans, length n
locpks, length npks
sigpks, length nsig

Input variables: n2, n12, n, newpk, istat, iperf, psens, npks, nsig
n2 is the last position of data in ydata
nl2 is the last position of data in shape
n is the size of arrays yout, w, and trans
newpk indicates whe.ther or not shape is a new peakshape.
istat is a flag for Normal vs. Poisson noise.
iperf is a flag for High-Performance/High-Res/2nd-Order/Quiet/Quick-Pick.
psens is the threshold peak sensitivity in SIN units.
npks is the size of the locpks array.
nsig is the size of the sigpks array.

Output arrays:
yout, filled with a linear baseline
w, filled with smoothed data between 0 and n2
locpks, filled with locations of identified peaks
sigpks, filled with peak significances, heights, and widths

Output variables:
n = amount of array space used

NOTE: if n is negative, abs(n) = amount of array space
needed (but not available). Operation not successful.

newpk = n if trans was loaded successfully.
npks = number of peaks detected
nfwhm = full-width-at-half-maximum of peakshape in shape
peak = height of peakshape in shape
sigma = RMS noise in the ydata.

Function return values:

89

90 CHAPTER 6. RAZORPICK - RZRPIC

rzrpic =
° if operation was successful

If rzrpic < 0, error occurred; use rzrerr (page 174) for error text.

Description of variables

ydata on input is the raw data array. It should contain the raw data between data points
o and n2. ydata will NOT be altered outside this range.

n2 is the last location of data in the ydata array. n2 is to be furnished as input.

shape is an input array which holds the peakshape of the narrowest spectral feature in
ydata which is of interest to the user. The relevant peakshape is located between
data points 0 and nl2 in shape. shape may be a subarray within ydata. If the
peakshape is right-side up, positive peaks will be identified by rzrpic. If the
peakshape is a negative peak, then negative peaks will be found.

nl2 is input. It is the index of the last data point of the peakshape in shape.

yout is an output array, filled between 0 and n2. yout will contain the linear baseline
used by the picker.

yout must have minimum size n. See the discussion below for n.

w is a work array with minimum length n.

On output, w contains a smoothed data file. The smoothing has been done by
rzrpic.

trans is an array of size n which will be used to house the Fourier transform of the
peakshape. The amount of space used in trans is calculated in rzprep. See the
discussion below for n.

On input, trans is either empty or filled, depending on the parameter newpk.
Whenever newpk = I, it is assumed that the contents of shape have been altered,
and trans is newly loaded by rzrpic. When newpk > I, it is expected that trans
has not been changed since the last time it was filled. See the discussion below for
newpk.

n is input as the amount of space fUrnished in the yout, w, and trans arrays.

The function rzsizn will calculate n, the minimum amount of space needed. The
required size of n is determined by n2 and by the width of the peak in the shape
array. Obtain the minimum required n with this call:

n = rzsizn(n2,shape,nI2)

On output, n is the amount of space used for the Fourier transforms in the yout,
w, and trans arrays. If n is negative on output, the amount of space furnished

6.2. RZRPIC 91

was inadequate, and no processing has taken place. If n is returned negative, then
abs(n) is the amount of space needed in the above arrays.

The space required for the Fourier transform is always calculated in rzprep, de-
scribed in Chapter 11. When newpk = 1, rzprep calculates the required size of the
Fourier transform as the smallest power of two larger than (n2+ 1+3*nfwhm). You
may wish to calculate n in an alternate fashion. See Chapter 11.

NOTE: When rzrpic returns after successful processing, it fills both newpk and n
with the transform size. If you with to process additional data with the same peak-
shape, you need not change either newpk or n, provided that (a) your peakshapes
do not change, and (b) your input ydata sizes (n2+ 1) do not increase.

newpk on input is an integer flag set which should be initially set to 1. It informs
the peakshape processor that a new peakshape is present in shape. The processor
measures certain parameters of the new peakshape, and then fills the trans array
with the Fourier transform of a properly shifted and scaled peakshape. When the
peakshape processor finishes successfully, it will output newpk = n, where n is the
actual space used in trans.

The peakshape processor uses that valuable commodity, CPU time, for a Fourier
transform. On input, the programmer can circumvent the peakshape processor with
newpk> 1. Whenever rzrpic is called with newpk > 1, ensure that:

(a) The user wants to use the previous peakshape for the current processing, and
trans is not changed.

(b) The size of the array needed to transform the new data set is no larger than the
n used previously. If this second criterium is violated, the output value of rzrpic
will be rzrpic = -2.

istat is an input flag which governs the statistics used by the function. Set istat = 1 if
the noise is NormaL Set istat = 2 if the noise is Poisson.

iperf is an input flag which governs the performance mode of the function. Set iperf =
1 to get the High-Performance Bayesian picker. iperf = 2 gives a High-Resolution
Bayesian picker. iperf = 3 brings up the 2nd-Order High-Performance Bayesian
picker. iperf = 3 is the Quiet Picker. Set iperf = -1 to get a Quick Pick. See the
discussion under 'Processing notes' on page 88.

psens is an input SIN threshold variable that directs the peak picker. The peak picker
assigns each peak a significance in units of the RMS noise. rzrpic returns peaks
whose significances exceed the value psens. When psens=O.O, all possible peaks
are found. When psens = 3.0, all peaks with heights> 3.0 RMS noise (i.e. SIN >
3.0) are returned. When psens = -3.0, all peaks with areas> 3.0 RMS area-noise
are returned. Peaks which are at least 3 to 5 times the RMS noise are meaningful
(psens = 3 to 5).

92 CHAPTER 6. RAZORPICK - RZRPIC

locpks is an output integer array containing the peak locations, i.e., locpks[O] = data
point number of the first peak detected. locpks need be no larger than the maximum
number of peaks expected. locpks and npks may be used as input to rzrfit.

npks is input as the size of array locpks.

npks is output as the number of peaks located by the search. Thus, the array locpks
will be filled with meaningful numbers between locpks[O] and locpks[npks-l].

sigpks is an output array containing the peak significance assigned by rzrpic. The
significance is in units of the RMS noise in the data set. The output arrays locpks
and sigpks are sorted by significance. sigpks[O] 2':sigpks[1], etc.

The length of the sigpks array should be 3*npks = three times the maximum number
of peaks expected. This will provide room to report the peak significances, peak
heights and peak widths.

The contents of the sigpks array will be sigpks[O] = significance assigned to the
peak found at position locpks[O], etc..., sigpks[npks] = height assigned to the peak
found at position locpks[O], etc..., sigpks[npks*2] = width assigned to the peak
found at position locpks[O], etc.

nsig is input as the size of array locpks.

The minimum length of the sigpks array is nsig = npks. This provides enough
room to return peaks significances in sigpks.

To obtain peak heights and peak widths in sigpks, as well as peak significances,
set nsig = 3*npks = three times the maximum number of peaks expected.

nfwhrn is output as the number of data points between the half-maxima of the peakshape
feature in shape. nfwhrn is computed internally.

peak is output as the height of the peakshape in the array shape.

sigma is output as the standard deviation (root-mean-square) of the noise which was
found in ydata.

6.3. EXAMPLE USING RZRPIC 93

6.3 Example using rzrpic

HANDLE is set up to use rzrpic to pick peaks trom a spectrum, ask you a few questions,
and then pass the chosen peaks into rzrfit. We used the file SPEC2, which is an ICP
spectrum of iron. The human eye says that the left peak is double, and the peak picker
easily found it. We suggest that the programmer display the peaks on the screen, and ask
the user to edit the choices.

HANDLE doesn't have a graphical interface, so you will have to use the picture below
to select peaks from its choices. Using HANDLE, you can't select exactly the peaks you
want, only the first un from a list which is presented. We accepted all five. The results
were then passed to rzrfit, described in the next chapter.

Spectrum file: SPEC2
Peakshape file: PEAK2

Using HANDLE:

RAZOR LIBRARY for Spectral Analysis -" There is only one best way!
Maximum Likelihood (ML) , Maximum Entropy (ME) , and Bayesian processing.

ESM=EntropySMooth. Smooths Normal (thermal/gaussian) noise. ME

PSM=PoissonSMooth. Smooths Poisson (counting) noise. ML.

NSM=NormalSMooth. Smooths Normal noise. ML.

DIV=RazorDivide. Calculates transmission spectra. ML.

ASH=RazorASharp. Enhances resolution. ML.

DEC=RazorDeconvolve. Maximum Entropy deconvolution. ME/Bayesian.

LUC=RazorLucy. Classic ML deconvolution. ML.

DIF=RazorDerivative. Derivatives Oth-nth. Bayesian.

PIC=RazorPick. Finds peak positions for FIT. ML/Bayesian.

FIT=RazorFit. Fits model peaks to data. ML.

BAS=RazorBase. Finds baseline. ME/Bayesian.

QBA=RazorQuickBase. Finds baseline.

EDG=RazorEdge. Fits baseline to lower edge of data.

NOI=RazorNoise. Finds noise spectrum. ML.

GEN=Generates synthetic peak shape .

SAV=Save result, QUI=Quit.

Choose an operation (3 uppercase characters) : PIC

Enter name of spectrum: SPEC2

Enter name of peakshape: PEAK2

Enter -1

Enter 1
Enter 2
Enter 3

for Quick-Pick

for High-Performance picker

for High-Resolution picker

for 2nd-Order High-Performance picker

94 CHAPTER 6. RAZORPICK - RZRPIC

Enter
Select

4 for Quiet-Pick (High Res. Good for very narrow peaks.)

picker [2]: 2

Enter peak threshold (# of standard deviations of noise)

Enter 3 if unsure: 3

Enter N for Normal noise; P for Poisson noise [N]: N

Entering RZRPIC. Please wait for processing...

Estimated RMS noise: 3.4088

Peaks detected: 5

Using Peak detection threshold: 3.0

Peak HEIGHT Significances:

24.22 18.41 14.58 9.62 5.04
Number of peaks(as sorted) accepted for FIT: 5

Select:
Print (S)ignificances (L)ocations (H)eights, (W)idths, (E)very thing

(R)esort. (T)uneup heights. (A)ccept. (M)enu.

PIC . _lei<: I'8oJcD8tection _W. .3111111..1
Display aptian 18: H C8-s1gn1t ._lglrU

!IS.57

87.81,
U 78.45
"I ".89
r
S 61.33

SZ.77

44.21

.35.1iS.

7:1.89

18.53

9.97

1.487

1 118.9 288.8 388.7 488.6 see.S 688.4 788.3 2 981.1
X IIlItS

Chapter 7

RazorFit - rzrfit

7.1 Accurate Peak Areas, with Confidence Limits

RazorFit is a peak-fitting algorithm. It fits a model consisting of a sum of peaks of
various shapes, and a baseline, to the given data set. This is the preferred method when
accurate areas are required. RazorFit is a Maximum Likelihood technique for Normal
noise statistics.

RazorFit has abilities not found in other peak fitting functions:

. Lets you fit real data peaks. You may capture a data peak from any file, or from
your current data, and then use the shape of your Captured OataPeak as a template
for fitting peaks in your data. When you fit your real data peaks with shapes that
really match, you obtain more accurate areas. Only RazorFit can do this!

. Processes an arbitrarily large number of peaks in large data arrays, by automatically
arranging the peaks in 'bunches', and processing the bunches sequentially. Bunch
processing is much faster than all-at-once processing, It is a successful tactic for
situations where peak-fitting algorithms often fail: namely, on data files with large
numbers of peaks. Only RazorFit can do this!

. Allows 'linking' peaks together in a master/slave relationship. For example, the
user may specify that slave-peak-2 is always found a constant distance away from
master-peak-l, or that slave-peak-8a is always 1/2 the height of master-peak-7, while
slave-peak-8b is always twice the height and 14 times the width ofmaster-peak-7.
The master/slave relationship may be established for only one parameter, or for any
combination of parameters, of any two peaks. A single master peak may be linked
to any number of slave peaks through position offsets, height ratios, width ratios,
or other parameter ratios. Linking peaks in this manner is especially valuable for
x-ray spectroscopy. Only RazorFit can do this!

95

96 CHAPTER 7. RAZORFIT - RZRFIT

. Understands Poisson (counting) statistics, and will correctly minimize the chisq
statistic for Poisson noise, even if the user has resealed the data. Only RazorFit
can do this!

. Admits a wide variety of peak shapes, including asymmetric shapes, and user-
supplied peakshapes. Note that use of the proper peak types, and proper baselines,
is the key to obtaining accurate areas for all fitting algorithms.

. Allows any number of parameters (i.e., peak positions) to remain fixed, as is ap-
propriate if their values are known from other considerations.

. Provides accurate areas, positions and widths, with corresponding confidence limits,
of each component peak.

7.2 rzrfit

rzrfit fits parameterized model peaks to a spectrum. The model function(s), and number
of peaks, must be specified by the user. Initial parameter estimates must be furnished;
these are refined by iteration using the Levenberg-Marquardt algorithm.

A maximum of six free parameters for each model peak are pennitted by rzrfit. If
you have an analytical expression for a model peak shape that you wish to use for fitting
your data, you may write your own peakshape function. See rzrser02.c for instructions
for the writing of, and examples of, model peakshape functions.

Use RazorPick to give a starting estimate of the number and positions of all peaks,
including hidden components. This automatic peak-picker frees the user or programmer
from the tedious task of selecting starting parameters for the peaks which form the model.

7.2. RZRFIT

I I
long rzrfit(float ydata[], long n2, long m, float datapeak[], long n12, long ml,
float yout[], float vnoise[], float baslin[], float w[], long *n, long *ifast,
long *istat, float datmat[][40], float covar[], float hess[], long iwork[],
float work[], long mmax)

Input arrays which must be filled:
ydata, filled between 0 and n2, length n2+1 7datapeak, optionally filled between 0 and nl2 ________

datapeak length (nx2+1) = n2+1 if filled, else = 1
If running in fast mode (ifast=I), datapeak MUST be filled.
If using Bunch processing (Page 10I), datapeak MUST be filled.
If any peak has type = 0, datapeak MUST be filled.
NOTE: data peak will be read only, not altered.

vnoise, filled with noise variance between 0 and n2 when istat = -1,
If noise is Normal or Poisson, istat = I or 2, vnoise may have length 1.
For Normal noise, istat = 1, vnoise[O] MUST be filled with
either the noise variance, or 0.0. For Poisson noise, istat = 2,
vnoise[O] MUST be filled with either the data scale factor, or 0.0
- see discussions below for istat and vnoise

baslin, optionally filled between 0 and n2,
baslin length = n2+1 if filled, else = 1
If the baseline has type = 200, baslin MUST be filled.

datmat, a matrix, filled as discussed on page 100
Additional arrays to be furnished:

yout, length::: n, if ifast = I or nbunch > O. (See p. 101 for nbunch.)
length = n2, if ifast = 0 and nbunch=O.

w, length::: n, ififast = I or nbunch > O.
length = I, if ifast = 0 and nbunch=O.

covar, length::: [mmax*mmax]
hess, length ::: [mmax*mmax]
iwork, length::: 6*mmax '11'
work, length ::: 9*mmax /),,,Q r

Input variables which must be filled: ,___//

n2, m (=1), n12, ml (-1), n, ifast, istat, mmax
mmax is the maximum number of parameters needed to calculate the model.

mmax = 6*npks is a safe choice for All-at-once processing.
mmax = 6*nbunch is a safe choice for Bunch processing.
Bunch processing is discussed on Page 101.

Output arrays:
yout, filled between 0 and n2
datmat, filled with peak parameters and standard errors

Function return values:

97

98 CHAPTER 7. RAZORFIT - RZRFIT

rzrfit = 0 if there are no errors
If rzrfit < 0, error occurred
Use rzrerr (page 174) to obtain error text

Description of variables

ydata is the input array, which is to be fit between 0 and n2.

n2 is the last location of data to be fit in the ydata array. n2 is furnished as input.

m is the number of rows of data to be fit in the ydata array (matrix). m is furnished as
input. This parameter will allow for 2-dimensional fits in the future. For now, use

. m = 1.

sY:.p;Jt!'" atapeak is an input array which holds the peakshape of the narrowest spectral feature

',rJo" in ydata which is of interest to the user. The relevant peakshape is located between
data points 0 and nl2 in datapeak.

The data peak array is used in the fast mode, when ifast = 1, and also used for
Captured DataPeaks, when type = O. If there are no peaks with type = 0, and if
rzrfit is being used in the standard mode, data peak will not be used, and then it
may be a dummy array of size 1.

ALSO SEE THE DISCUSSION BELOW FOR ifast.

ALSO SEE THE DISCUSSION ON PAGE 102 FOR type.

ALSO SEE THE DISCUSSION ON PAGE 101 FOR bunchtlag.

n12 is input and the index of the last data point of the peakshape in datapeak. We
recommend that nI2+ 1 be at least 6*nfwhm, and that the peak be approximately
centered in the (0,nI2) interval.

n12 is used in the fast mode, when ifast = 1, and also used for Captured DataPeaks,
when type = O.

mI is the number of rows in the data peak array (matrix). ml is furnished as input. This
parameter will allow for more than one datapeak to be used in the future. For now,
use ml = 1.

yout is the output fitted model, the sum of the chosen model peak shapes.

vnoise is an array with length = n2+1 if istat = -1, else length = 1.

When istat = -1, then on input, vnoise is the variance noise spectrum. NEW: To fit
selected regions within a file, set vnoise[i] = noise-variance in the desired regions,
and vnoise[i) = 0.0 elsewhere.

7.2. RZRFIT 99

When istat = I, then on input, vnoise[O] is the noise variance if you wish to specify
a value, else set vnoise[O] = 0.0 to signal rzrfit to calculate the noise variance.

When istat = 2, then on input, vnoise[O] is the data scale factor if you wish to
specify a value, else set vnoise[O] = 0.0 to signal rzrfit to calculate the scale factor.

NOTE: The scale factor is the value by which you would multiply your data to
obtain true counts. For example, suppose your data is meant to represent number
of photons received at your counter. If you count for 10 seconds, and then divide
the number of counts by 10 to express your data as counts/see, you would need to
multiply your data by a scale factor of 10 to transform it back to true counts. Since
Poisson noise statistics require that the data be expressed in units of counts, (not
counts/sec, not averaged counts/scan, etc.), the scale factor is important. If you do
not know the scale factor of your data, set vnoise[O] = 0.0, and rzrfit will do the
scaling for you.

baslin is an array with length = n2+! if the baseline type = 200, else length = 1.

When type = 200, then on input, baslin must be filled with the baseline spectrum.

ALSO SEE THE DISCUSSION BELOW FOR type.

w is a work array of length n. w is used in the fast mode, when ifast = I, and in the
bunch mode, when nbunch > O. When ifast = 0 and nbunch = 0, then w may be
a dummy array of length = 1. (Bunch processing is discussed on Page 101).

n is input as the amount of space furnished in the yout, and w arrays.

The function rzsizn will calculate n, the minimum amount of space needed. The
required size ofn is determined by n2 and by the width of the peak in the datapeak
array. Obtain the minimum required n with this call:

n = rzsizn(n2,datapeak,nI2)

ifast is an input flag which controls the processing mode. When ifast = 0, rzrfit uses the
standard Levenberg-Marquardt processing method. When ifast = I, a (faster) modi-
fied Levenberg-Marquardt mode is used for 60 - 90% of the iteration sequence. The
standard Levenberg-Marquardt is always used for the final (2 or more) iterations.

When ifast = 0, rzrfit will fill the output array yout with the best-fitting model
after each iteration. When ifast = I, yout is only filled during the final cleanup
step, when the covariance matrix and standard errors are also calculated.

When ifast = 0, rzrfit estimates the RMS noise using a running mean on the data.
When ifast = I, rzrfit uses the array wand the peakshape datapeak to get a better
estimate of the RMS noise. Thus it is better to use ifast = 1 if possible, because
both the RMS noise and the chi-squared values will be better. Use ifast = 0 when
your problem is reluctant to converge.

100 CHAPTER 7. RAZORFIT - RZRFIT

istat is an input flag which describes the noise statistics. Set istat = I when the noise
statistics are Normal, and the RMS noise, or the noise variance, is the same value
everywhere in the interval (0,n2). Set istat = 2 when the noise statistics are Poisson.
Set istat = -I if you wish to input your own noise variances in the array vnoise.

datmat is the parameter input and output matrix. See below.

covar is an array which will be used to calculate the covariance matrix for the parameters.
The array length must be ;:0:[mmax*mmax].

covar is output as the covariance matrix of the fit.

hess is a work array, of minimum lengtb [mmax*mmax].

iwork is an integer work array, of minimum length 6*mmax.

work is a float work array, of minimum length 9*mmax.

mmax is input. It is the maximum number of parameters needed to describe the model.
Most peaks, and most baselines, require 3 or 4 parameters each. rzrfit allows
you to define your own peaks and baselines with as many as 6 parameters each.
However, unless you are using your own peakshape functions, you will be safe if
you set mmax = 6*npks for All-at-once processing, and mmax = 6*nbunch for
Bunch-mode processing.

The parameters which must be entered into the data matrix datmat[npks+2)[40], are
defined below.

datmat[npks+2] [40]
An input/output matrix of peak parameters

First row is a control vector.
Last row is a control vector.

Other rows of datmat each contain parameters for one peak.
All quantities are input as float numbers.

Input parameters for first row of datmat:
datmat[O] = (npks, nbunch, bunchflag, 0, 0, 0, 0, 0, 0, 0, 0, xstart, xstep, 0...)

Output parameters for first row of datmat:
datmat[O] = (npks, reserved, bunchflag, iter, chisq, reserved, cnvg, reserved, re-
served, jl=first peak of current bunch, j2=last peak of current bunch, xstart, xstep,
reserved)

7.2. RZRFIT 101

npks is the input number of peaks in the model, expressed as a floating point number.
(If you are using this library with a 16-bit compiler on a PC, you are limited to
npks ::: 30. Yes, segments bite again.)

nbunch is input as the maximum number of peaks to be used in each bunch, for bunch
processing. (If you are using this library with a 16-bit compiler on a PC, you are
limited to nbunch ::: 30.) nbunch should be set to the maximum number of peaks
in any region where the peaks are heavily overlapped. (You will not obtain good
results if you ask rzrfit to break a region of 10 heavily overlapped peaks into 2
bunches of 5 peaks each.) However, when choosing nbunch, remember that smaller
is faster, a lot faster!

If you are processing in the All-at-once mode (the usual mode for all peak- fitting
algorithms devised up to this time), set nbunch=O.

bunchflag is a input initialization flag that tells rzrfit whether you want All-at-once
processing bunchflag=O, or Bunch-mode processing bunchflag = 1. If you initialize
for Bunch-mode processing, monitor this flag during the iteration sequence. rzrfit
will signal that it has finished with all peaks, all bunches, by setting bunch flag =
O.

iter is the iteration number. It MUST be set to 0 the first time rzrfit is called. Thereafter,
rzrtH will maintain iter. The value of iter will be increased each iteration until
final convergence is reached. When rzrfit converges, it will automatically set the
value of iter to -1.0. The value iter = 0.0 is the signal that rzrfit is has converged,
and has perfornled a final cleanup, calculating peak areas, the standard errors of
the parameters, and the covariance matrix. If you find yourself in a situation where
rzrfit has not yet converged, and you wish to force rzrfit to perform the final
clean-up, set iter = -1.0. rzrfit will increment iter to zero when it is fmished.

You should check iter after each iteration, to find out when rzrfit is finished
(iter=O). If you have set the bunchflag for Bunch-mode processing, wait for
bunchflag=O && iter=O.

cnvg is output, the convergence number at the end of each iteration. When cnvg=5,
rzrfit has converged to an answer, and it will set iter=-l internally for the final
clean-up pass.

chisq is output, the reduced chi-squared value at the end of the current iteration.

j 1 is maintained by rzrfit. It indicates the first peak of the current bunch.

j2 is maintained by rzrfit. It indicates the last peak of the current bunch.

xstart, xstep are input as the x-value corresponding to the first data point in ydata, and
the x-interval between data points in ydata. xstart and xstep are not normally

102 CHAPTER 7. RAZORFIT - RZRFIT

used by rzrfit. However, there may be circumstances where they may be useful to
the programmer in the rzrserve function rzupdt, and so space has been reserved
in datmat for them. You do not need to load xstart, xstep in datmat unless you
also change rzupdt to use these parameters.

Input parameters for second (third, ete) row of datmat:
datmaf[l] = (3 '7 7 ~ rl
type, c, fixe, h, fixh, w, fixw, a, fixa, p, fixp, q, fixq, 0, 0, 0, 0, 0, master/slave, 0,
O,lowlimc,highlimc,lowIimh,highIimh, lowIimw,highIimw,lowIima,highIima,lowIimq,highIimq,
0, ...)

Output parameters for seconi (third, etc) row o~datma~ II /3
datmat[l] = (type, ~, errc, 1\., errh, ~ errw, a, erra, p, errp, q, errq, area, errarea,
reserved,)

type is a number which identifies the peak type:
O. Captured DataPeak, input in the datapeak array
1. gauss
2. lorentz
3. weighted sum of gauss and lorentz
4. product of gauss and lorentz
5. asymmetric gauss
6. asymmetric lorentz
7. Pearson VII
8. Log Normal
9.-10. Create your own peakshape. Follow the syntax shown in the function rzpkl
of rzrser02.for. Fill either function rzpk9 or rzpklO, and assign type number 9 or
10 to the new peak. Recompile rzrser02.for after revision.
200. baseline stored in array baslin.
20 l. constant (offset) baseline
202. linear baseline
203. quadratic baseline
204. exponential baseline
205.-209. Roll your own baseline. See rzrser02.for.

c is an estimated peak center position, measured in data point numbers.

h is the estimated peak height.

w is the estimated peak width (or the third parameter - see Chapter 8).

a is the estimated fourth parameter (asymmetry, mixing, width, etc. - see Chapter 8).

7.2. RZRFIT 103

P is estimated fifth parameter, if any.

q is estimated sixth parameter, if any.

fix identifies whether the parameter is to be varied during the current iteration of the fit.

fix < 0.0 for a parameter which is currently variable.
fix = 0.0 when a parameter is currently fixed (nonvariable).
fix > 0.0 and < 9.0 when a parameter is currently variable, and is also constrained
to be positive. (See function rzlims in rzrser02.for.)

fix = 9.0 when a parameter is currently variable, but is also constrained to lie
between lowlim and highlim as entered into the same row of datmat. Note that the
lowlim and highlim values in datmat are only used when fix = 9.

fix > 10.0 and < 100.0 when a parameter is currently variable, but is also con-
strained to lie within fix% of the starting value given in datmat.

fix = 100.0 is a signal that the corresponding parameter partakes in the master/slave
relationship. Do not use fIX = 100.0 unless the current peak is a slave, and the
master/slave relationship has been established in the 19th column of the current
row! When flxc = 100.0, then the corresponding parameter c is interpreted as the
constant-offset of this slave peak from its master. When fixh = 100.0, then the
corresponding parameter h is interpreted as the constant-ratio of slave peak-height
to master peak-height. When fixw = 100.0, then the corresponding parameter w is
interpreted as the constant-ratio of slave peak-width to master peak-width. When
fixa = 100.0, then the corresponding parameter a is interpreted as the constant-ratio
of slave peak-asymmetry to master peak-asymmetry. When fixp = 100.0, then the
corresponding parameter p is interpreted as the constant-ratio of slave parameter-p
to master parameter-po

We also recommend setting fix = 0.0 at all unused parameter locations within
datmat. (For example, when type = I, for a gaussian peak, only the parameters
c, h, and ware used. However, setting fixa = 0.0, and fixp = 0.0 could save you
some grief later on, if you decide to alter the function limits in rzrserve.

area, err area are unused on input.

master/slave An odd integer indicates a master; odd+ I indicates corresponding slave.
Thus the first master peak will contain a 1 in the master/slave column; all its slaves
will contain a 2 in the master/slave column. The second master will contain a 3 in
the master/slave colunm, and all its slaves will be numbered 4, etc..

Put a 0 (zero) in the master/slave column when peaks do not partake in a mas-
ter/slave relationship. Always put a zero in the master/slave column if you are
using bunch-mode processing! Bunch processing is not compatible with mas-
ter/slave processing.

104 CHAPTER 7. RAZORFIT - RZRFIT

Note that rzrfit will resort the rows when any master/slave relationships are estab-
lished. This is necessary because the processing algorithm requires that slaves be
in rows following the row of the master. YOU do not need to follow this rule in
setting up datmat, however.

The example on page 105 shows how to use HANDLE to set up the master/slave
relationship. Look at the HANFIL function in handle2.for for programmer instruc-
tions on creating master/slave relationships.

lowlimc, highlimc are upper and lower limits placed on the values for the parameter c.
Note: lowlimc, highlimc are only used if fixe is set to 9. For all other values of
fixe, lowlimc and highlimc will be ignored.

lowlimh, highlimh, lowlimw, ... are upper and lower limits placed on the parameters h,
w, etc.

We have provided a function in handle.c named rzrfil. It is intended to assist the
programmer in filling the datmat matrix. It is well-documented in handle.c.

At the end of each iteration, datmat contains the updated values of each parameter
value, where appropriate.

Upon return from the final iteration, after convergence is achieved, each fix value is
replaced by the standard error of the corresponding parameter. The peak area, or the
area under the baseline, and its standard error, fill the last two spaces.

NOTE: If the parameter was fixed (fix = 0), then the value returned in the error position
is zero, as a reminder that the parameter was not varied. When a returned standard error
is -1, this indicates that the diagonal element of the covariance matrix was negative, and
the square root could not be taken. A negative diagonal element is an indication that the
fit has not really converged, i.e., the solution is not sitting in a minimum in parameter
space.

7.3. FIRST EXAMPLE USING RZRFIT 105

7.3 First Example using rzrfit

First, we used the rzrpic peak picker on our spectrum, exactly as shown in Chapter 6.
Then we called upon rzrfit, proceeding as shown below.

We chose to fit a model consisting of five Gaussian peaks, plus a linear baseline. Note
that once we selected our model, all the initial parameters were estimated automatically
within handle by rzrfil. FurthenTIore, with these good initial estimates, rzrfit converged
in 4 iterations.

Data file: SPEC2
Model chosen: 5 Gaussian peaks, plus a linear baseline. All the initial parameters

were estimated by handle and HANFIL, freeing the user from this onerous task. We
will link two of the peaks in a master/slave relationship, to show you how to set this
up. (Our master/slave link, and the choices for the parameters, is purely arbitrary).

Notice that RZRFIT resorts the rows in DATMAT. This is necessary, because
RZRFIT wants slaves to be placed in rows immediately following the row of their
master.

Using handle:

RAZOR LIBRARY for Spectral Analysis - G There is only one best way!

MaximumLikelihood (ML) , Maximum Entropy (ME), and Bayesian processing.

.

.

.
Choose an operation: fit

Handle loads FIT from PIC data, so you must

run PIC or BAS IMMEDIATELY BEFORE THIS FIT.

If you did not, type R to Restart.

Did you run PIC or BAS? [Y] Y

Bunch-processing is faster than processing the peaks All-at -once.

Process the peaks in small bunches? Y/N [N] n

Identify the type of your peaks

Type number Shape
o DataPeak [default]
1 Gaussian
2 Lorentzian
3 Sum (Gaussian+Lorentzian)
4 Product (Gaussian*Lorentzian)
5 Asymmetric Gaussian
6 Asymmetric Lorentzian

106 CHAPTER 7. RAZORFIT - RZRFIT

7 Pearson 7
8 Log Normal
100 1st & 2nd Datapeaks

Enter type number: 1

will there be a baseline?: [Y] y

Available baseline types are

o = Offset

L = Linear
Q = Quadratic (not recommended)
E = Exponential

F = File Baseline

Select Baseline Type [L] : L

Here is the control vector, DATMAT (0) :

npks nbunch bnchflg iter chisq chitest cnvg

6.00 0.00 0.00 0.00 0.00 0.00 0.00
DATMAT (i), the input data matrix, starting i=l:
Row Type Cent Fix Hght Fix Wdth Fix Aparm Fix
2 1 450.00 -3.00 82.58 1.00 77.44 3.00 0.00
3 1 829.00 -3.00 62.74 1.00 99.39 3.00 0.00
4 1 653.00 -3.00 49.69 1.00 71.33 3.00 0.00
5 1 177.00 -3.00 32.81 1.00 89.83 3.00 0.00
6 1 283.00 -3.00 17.19 1.00 58.75 3.00 0.00
7 202 1.41 -1.00 0.00 -1.00 0.00 0.00 0.00

Master/Slave
0.00 0
0.00 0
0.00 0
0.00 0
0.00 0
0.00 0

Do you wish to link peaks? [N] : y
A group of Linked peaks must refer to a Master peak.
Enter Master peak ROW: (N for none) : 2

List Slave peaks by ROW: (N for none) : 4
Slave in ROW: 4. For each parameter,
either enter the slaving value, or enter 'N' if Not-slaved.

Position: Enter fixed offset of slave peak: 200

Ampli tude: Enter slave/master amp ratio: .65

Width: Enter slave/master width ratio: 1

Asymmetry: Enter slave/master asym ratio: n

List Slave peaks by ROW: (N for none) : n

Here is the control vector, DATMAT (0) :

npks nbunch bnchflg iter chisq chitest cnvg
6.00 0.00 0.00 0.00 0.00 0.00 0.00

DATMAT (i) , the input data matrix, starting i=l:

7.3. FIRST EXAMPLE USING RZRFIT 107

Row Type Cent Fix
2 1 450.00 -3.00
3 1 829.00 -3.00
4 1 200.00100.00
5 1 177.00 -3.00
6 1 283.00 -3.00
7202 1.41 -1.00

Hght Fix Wdth Fix Aparm Fix Master/Slave

82.58 1.00 77.44 3.00 0.00 0.00 1

62.74 1.00 99.39 3.00 0.00 0.00 0
0.65100.00 1.00100.00 0.00 0.00 2

32.81 1.00 89.83 3.00 0.00 0.00 0

17.19 1.00 58.75 3.00 0.00 0.000
0.00 -1.00 0.00 0.00 0.00 0.00 0

Do you wish to link peaks? [N] : n

The default (and most usual) type is Normal noise.
Enter N for Normal noise; P for Poisson noise [N] : n
Enter Normal noise variance. Enter 0 if unknown: 0
Select For S, Fast or Standard mode: [F] f
Entering RZRFIT with iter=O. wait for setup.. .
Processing peaks 1 to 6 of 6. Noise variance=ll. 6199
Reduced chisq=23. 57 at iter 1

.
Reduced chisq=6 . 54 at iter 4

.
Reduced chisq=3. 063 at iter 14
Reduced chisq=3 .063 at iter 0

OUTPUT DATA MATRIX

Pk Type Cent Err Hght Err Wdth Err Aparm Err Area Err

1 1 187.07 3.1 32.33 1.1 82.27 6.2 0.00 0.0 2831.31233.9

2 1 269.08 5.1 16.56 1.5 67.68 9.0 0.00 0.0 1193.27192.6

3 1 449.39 0.4 79.51 0.7 92.82 1.1 0.00 0.0 7856.15119.3
4 1 649.39 0.0 51.68 0.0 92.82 0.0 0.00 0.0 5106.50 0.0

5 1 822.74 0.6 65.09 1.0 83.59 1.6 0.00 0.0 5792.17143.3

6202 14.59 0.6 0.00 0.0 0.00 0.0 0.00 0.015320.28767.4

Press iEnter" to see datmat in user coordinates. ..

OUTPUT DATA MATRIX in user coordinates

Pk Type Cent Err Hght Err Wdth Err Aparm Err Area Err
11188.073.132.331.182.276.2 0.000.02831.31233.9

.
Reduced chisq (whole file) =3.06288

Variance = O.1162E02

Processed with istat=l (l=Normal noise statistics, 2=Poisson)

RESULT MAY BE SAVED TO A FILE

108 CHAPTER 7. RAZORFIT - RZRFIT

Press ENTER to return to menu.

!IS.15

71
f
U 78.18

"169.42:
r
S 68.'H

52."

43.39

:M.?1

ZIEio.83

17.35

8.671

....
1 188.' 288.8 381.7 6 SII.S 688.4 718.3 BII.Z "'.1X IIIltS

7.4. SECOND EXAMPLE USING RZRPIC AND RZRFIT 109

7.4 Second Example using rzrpic and rzrfit

rzrfit lets you fit real data shapes to your data. We will illustrate this using radiochro-
matography flow-cell peaks.

FLOWCAL is a real data peak, which we have smoothed. It was obtained during a
radiochromatography run. The detector was counting scintillations in a flow cell.

FLOWDATA is simulated data. We added together four peaks just like FLOWCAL.
Three of the peaks have maximum counts of 10; one has a maximum count of20. We also
added a small background count. Then we put the appropriate counting noise (Poisson)
on the simulated data. FLOWDATA is the result.

We will run rzrpic on the data, and accept the biggest 8 peaks, pretending that we
do not know how many peaks are really there. The results will show the 4 peaks which
are really there, and their heights will be correct within 2 standard deviations. The 4
nuisance peaks which we will accept will show up as much smaller; two of them will be
consistent with peak heights = O.

Data me: FLOWDATA
Captured DataPeak: FLOWCAL

Using HANDLE:

RAZOR LIBRARY for Spectral Analysis - G There is only one best way!

Maximum Likelihood (ML) , Maximum Entropy (ME), and Bayesian processing.

.

.

.
Choose an operation: pic

Enter name of spectrum (Try SPEC2) : flowdata

Enter name of peakshape (Try PEAK2) : flowcal

Enter -1 for Quick-Pick

Enter 1 for High-Performance picker

Enter 2 for High-Resolution picker

Enter 3 for 2nd-Order High-Performance picker

Enter 4 for Quiet pick (High Res. Good for very narrow peaks)

Select picker [2] : 2

Enter peak threshold (number of standard deviations of noise)

Enter 3 if unsure: -3

Enter N for Normal noise; P for Poisson noise [N] : p

Entering RZRPIC. Please wait for processing. . .

Peaks found by RZRPIC.

110 CHAPTER 7. RAZORFIT - RZRFIT

Estimated RMS noise: 2.89173

Number Peaks detected: 7
Using Peak Detection Threshold: -3

Peak AREA Significances:
19.8715.3111.885.414.43 3.94 3.61

Number peaks (as sorted) accepted for FIT: 7

Select:
Print (S) ignificances, (L)ocations, (H) eights, (W) idths, (E)very thing .

(R) esort. (T)uneup heights. (A) ccept. (M) enu.

m

Press ENTER to return to menu.

3!J.4Z

35.83
y
U 3Z.2S

"I 28.67
r
S 25.88

Z1.se

17.!IZ

11.33

18.75

7.267

3.5113

.-

1.1153 3.543 S.Z33 6.!1Z3 8.613 18.38 11." 13.611 15.37 17.86
X IIIltS

7.4. SECOND EXAMPLE USING RZRPIC AND RZRFIT 111

RAZOR LIBRARY for Spectral Analysis - G There is only one best way!
MaximumLikelihood (ML) ,Maximum Entropy (ME), and Bayesian processing.

Choose an operation: fit

Handle loads FIT from PIC data, so you must

run PIC or BAS IMMEDIATELY BEFORE THIS FIT.

If you did not, type R to Restart.

Did you run PIC or BAS? [y] Y
Bunch-processing is faster than processing the peaks All-at -once.

Process the peaks in small bunches? Y/N [N] n

Identify the type of your peaks

Type number Shape
a DataPeak [default]
1 Gaussian
2 Lorentzian
3 Sum(Gaussian+Lorentzian)
4 Product (Gaussian*Lorentzian)
5 Asymmetric Gaussian
6 Asymmetric Lorentzian
7 Pearson 7
8 Log Normal
100 1st & 2nd Datapeaks

Enter type number: a
Preserve or Vary the DataPeak width? P/V [P] : p

Preserve or Vary the DataPeak asymmetry? P/V [P] P

will there be a baseline?: [Y] y

Available baseline types are

0= Offset
L = Linear

Q = Quadratic (not recommended)

E = Exponential
F = File Baseline

Select Baseline Type [L] : 0

Here is the control vector, DATMAT (0) :

npks nbunch bnchflg iter chisq chitest cnvg
8.00 0.00 0.00 0.00 0.00 0.00 0.00

DATMAT(i) , the input data matrix, starting i=l:

112 CHAPTER 7. RAZORFIT - RZRFIT

Row Type Cent Fix Hght Fix Wdth Fix Aparm Fix
2 a 777.00 -3.00 9.44 1.00 71.95 0.00 0.00

3 a 116.00 -3.00 8.05 1.00 65.87 0.00 0.00
4 a 236.00 -3.00 10.66 1.00 67.59 0.00 0.00
5 a 953.00 -3.00 1.08 1.00 69.00 0.00 0.00
6 a 506.00 -3.00 0.91 1.00 64.69 0.00 0.00
7 a 420.00 -3.00 1.58 1.00 44.65 0.00 0.00
8 a 300.00 -3.00 2.77 1.00 58.63 0.00 0.00
9 201 0.00 -1.00 0.00 0.00 0.00 0.00 0.00
Do you wish to link peaks? [N]: n
The defaul t (and most usual) type is Normal noise.

Enter N for Normal noise; P for Poisson noise [N] : p

Enter Poisson scaling factor. Enter a if unknown: a
Select F or S, Fast or Standard mode: [F] f

Entering RZRFIT wi th iter~O. Wait for setup. . .
Processing peaks 1 to 8 of 8. Noise variance~O. 602189

Reduced chisq~3 .481 at iter 1

Reduced chisq~1. 674 at iter 2

.

Reduced chisq~O. 549 at iter 15

Reduced chisq~0.546 at iter 16

Reduced chisq~O. 546 at iter 17

Reduced chisq~O. 546 at iter a

Master/Slave
o.00 a
0.00 a
0.00 a
0.00 a
0.00 a
o.00 a
0.00 a
0.00 a

OUTPUT DATA MATRIX

Pk Type Cent Err Hght Err Wdth Err Aparm Err Area Err
1 a 775.27 0.7 8.46 0.2 148.00 0.0 0.08 0.0 1291.24 32.1
2 a 116.95 0.8 9.09 0.2 148.00 0.0 0.08 0.0 1386.86 36.6
3 a 236.56 0.6 20.88 0.6 148.00 0.0 0.08 0.0 3188.05 84.7
4 0-1014.00 0.0 0.00 0.0 148.00 0.0 0.08 0.0 0.01 0.0

5 0-1014.00 0.0 0.00 0.0 148.00 0.0 0.08 0.0 0.25 0.0
6 0-1014.00 0.0 0.00 0.0 148.00 0.0 0.08 0.0 0.21 0.0
7 a 294.98 1.8 8.10 0.5 148.00 0.0 0.08 0.0 1237.12 76.1
8201 0.55 0.1 0.00 0.0 0.00 0.0 0.00 0.0 556.57 54.1
Press iEnter" to see datmat in user coordinates. . .

OUTPUT DATA MATRIX in user coordinates

Pk Type Cent Err Hght Err Wdth Err Aparm Err
1 a 14.77 0.0 8.46 0.2 0.00 0.0 0.08 0.0
2 a 3.80 0.0 9.08 0.2 0.00 0.0 0.08 0.0
3 a 5.80 0.0 20.88 0.6 0.00 0.0 0.08 0.0

Area Err
0.00
0.00
0.00

0.0
0.0
0.0

7.4. SECOND EXAMPLE USING RZRPIC AND RZRFIT 113

4 0 -15.05 0.0 0.00 0.0 0.00 0.0

5 0 -15.05 0.0 0.00 0.0 0.00 0.0
6 0 -15.05 0.0 0.00 0.0 0.00 0.0
7 0 6.77 0.0 8.10 0.5 0.00 0.0
8201 0.55 0.1 0.00 0.0 0.00 0.0
Reduced chisq (whole file) =0.546
Processed wi th istat=2 (l=Normal noise statistics,

RESULT MAY BE SAVED TO A FILE
.

0.08 0.0
0.08 0.0

o .08 0.0

0.08 0.0

0.00 0.0

0.00 0.0

o .00 0.0
0.00 0.0

0.00 0.0

0.00 0.0

2=poisson)

Press ENTER to return to menu.

FIT = JIumoFlt:_ chlsq=.S36618E088at Iter 15
Shoooingfitted ~ and baseline. DIt'ERto display JIII8Ic.........-..

Jz.-
3!1.4Z

35.63
Y
U 3Z.2S

"I 211.67
T
S 2S.ee

Z1.se

17.92

14.33

18.75

7.167

3.!i113

....
1.1153 3.50 5.Z33 6.923 8.613 18.38 11." 23.68 15.37 17.86

X IIIITS

114 CHAPTER 7. RAZORFIT- RZRFIT

7.5 Third Example using rzrbas and rzrfit

rzrfit will process peaks in small 'bunches', allowing you to process more than 30 peaks
at a time (the DOS limit), and giving you the results a lot faster! In addition, rzrfit knows
how to use data with Poisson noise. We illustrate these features using x-ray diffraction
data.

XRAYSCAN contains x-ray diffraction peaks, measured for diffraction angles between
10 and 90 degrees. The noise in the data is somewhere between Nonnal and Poisson. (It
would be purely Poisson were it not for instrumental effects.) We will assume the noise
is Poisson, to illustrate some things you need to think about when dealing with Poisson
nOise.

XRAYPEAK is a synthetic Gaussian peak, approximately the same width as the peaks
in XRAYSCAN.

Think about these things when attempting peak-fitting on data with Poisson noise.

. When the noise is Poisson, the RMS noise is larger on the peaks, and smaller in the
baseline regions. rzrfit knows that Poisson noise is proportional to the square-root
of the signal, and computes a proper value of Chisq using that knowledge.

NOTE: We said proportional to, not equal to the square-root. Thus you may rescale
your Poisson data without penalty. The data in XRAYSCAN was renonnalized from
counts to counts/sec. rzrfit perfonns peak-fitting correctly on this normalized data.

. If you remove a baseline, or a background, from data that has Poisson noise, the
resultant background-corrected data no longer has Poisson noise.

NOTE: When you remove a baseline, the noise is no longer proportional to the
square-root of the signal. Thus you may freely multiply your Poisson data by a
constant factor, but do not subtract a background.

rzrfit allows you to define the baseline or background you want, and enter it into
the baslin array. When you do this, it will fit any peaks on top of your baseline, or
background. The Poisson-nature of the noise will be correctly handled.

We will run rzrbas on the data, in order to find peaks and get a baseline scan to use
for background correction. We will then save the baseline into a file named XRAYBASE.

The baseline file XRAYBASE will be used to get the correct answer for Poisson noise
statistics.

Incidently, if you want to have a baseline when you use rzrfit in the 'Bunch' mode,
you MUST have a baseline file. Handle has been programmed so that 'file' is your only
choice for a baseline during Bunch-processing.

We will use the 'Quiet-Pick' peak picker, because the peaks in XRAYSCAN are
approximately 2 datapoints wide - too narrow for good results with any of the other
pickers except 'Quick-Pick'. However, 'Quick-Pick' is unable to resolve the xray peak
components.

7.5. THIRD EXAMPLE USING RZRBAS AND RZRFIT 115

We will also resort the peaks by height, to illustrate the use of rzpkst (See page 175),
and then accept only the 75 largest peaks for FIT.

Data file: XRAYSCAN
Peakshape file: XRAYPEAK

Using HANDLE:

RAZOR LIBRARY for Spectral Analysis - G There is only one best way!
Maximum Likelihood (ML) , Maximum Entropy (ME), and Bayesianprocessing.

Choose an operation: BAS

Enter name of spectrum (Try SPEC8) : XRAYSCAN

Enter name of peakshape (Try PEAK8) : XRAYPEAK

RZRBAS also picks peaks! Choose picker.

Enter -1 for Quick-Pick

Enter 1 for High- Performance picker

Enter 2 for High-Resolution picker

Enter 3 for 2nd-Order High-Performance picker

Enter 4 for Quiet pick (High Res. Good for very narrow peaks)

Select picker by Number [2] : 4

Enter peak threshold (number of standard deviations of noise) : 3

Enter N for Normal noise; P for Poisson noise [N] : P

Entering RZRBAS wi th bsens = 1. Wait for setup. . .
Estimated RMS noise: 19.86
Using Peak detection threshold: 3.0

Peaks detected: 94

Peak Start I stop regions:

0/148 1481 251 2511 497 4971 818 8181 981 981/1600
Current baseline sens, BSENS = 1

Enter new value for BSENS (Enter 0 to quit) :

BASELINE MAY BE SAVED TO A FILE AFTER EXAMINING PEAKS.

Hit any key to examine peak parameters.

Peaks found by RZRBAS.

Estimated RMS noise: 19.86

Number Peaks detected: 94

Using Peak Detection Threshold: 3

116 CHAPTER 7. RAZORFIT - RZRFIT

Peak HEIGHT Significances:

. Number peaks (as sorted) accepted for FIT: 94

Select:
Print (S) ignificances, (L) ocations, (H) eights, (W) idths, (E) very thing .

(R) esort. (T) uneup heights. (A) ccept. (M) enu.

R
Resort by (S) ignificances, (L)ocations, (H) eights, (W) idths? [L]

H

Peaks found by RZRBAS.

Estimated RMS noise: 19.86

Number Peaks detected: 94

Using Peak Detection Threshold: 3

Peak Heights:

Number peaks (as sorted) accepted for FIT: 90

Select:
Print (S) ignificances, (L) ocations, (H) eights, (W) idths, (E) very thing .

(R) esort. (T) uneup heights. (A) ccept. (M) enu.

A

Peaks detected: 94
How many do you accept for FIT?

75

Peaks found by RZRBAS .

Select:
Print (S)ignificances, (L)ocations, (H)eights, (W)idths, (E)very thing.
(R) esort. (T)uneup heights. (A) ccept. (M)enu.

M

Press ENTER to return to menu.

RAZOR LIBRARY for Spectral Analysis - G There is only one best way!
Maximum Likelihood (ML) , Maximum Entropy (ME) , and Bayesian processing.

.

.

Choose an operation: SAV

Under what name?

XRAYBASE

131111

J2S3S
.
U 1.1289

"11M43
T
. If1'n

7$1

6305

58S9

3813

2561

13Z1
I".70

7.5. THIRD EXAMPLE USING RZRBAS AND RZRFIT 117

RZRBAS has given us a set of peaks, and a baseline, for use in RZRFIT. The results
are shown below:

JI2IIIWIS, ,. Hit to_ J8n8.
"'11_ MY.. ..WIllaf't:8wo__'n'.

.J I, I J.1 I. .

1'." 18." ai.. 34.88 tZ.88 58." 58.88 66.88 74.80 HZ."
X lIUTS

RZRMS, 17peaks.Hit 8IIt.erto _ h&k......
a.eU. MY.. alter __Inl..

981.'

"'.2.
U819.1

"J 138.6
T
S 65'l.8

517.1

3

415.5

334.1

253.'

113.1

02.30

58." &J.ze &e.4G 61.68 6Z.ae 64.88 6S.Z8 66.18 67.68 6B.oe
K If(1!S

118 CHAPTER 7. RAZORFIT - RZRFIT

We proceed directly from RZRBAS into RZRFIT. Handle uses the function RZDFIL
(See page 177) to fill the datmat array with the peak locations, heights, and widths that
are always provided by RZRBAS and RZRPIC.

When running RZRFIT, you need to decide whether to run in Fast or Standard mode
(Fast can be significantly faster; Standard is a standard Levenburg- Marquardt available
anywhere). You also will specify whether to use All- at-once or Bunch-mode processing.
With 2: 30 peaks, under DOS, only Bunch-mode is possible. And, it's a lot faster.

RAZOR LIBRARY for Spectral Analysis -I.. There is only one best way!

Maximum Likelihood (ML) , Maximum Entropy (ME) , and Bayesian processing.

.
Choose an operation: FIT

Handle loads FIT from PIC data, so you must

run PIC or BAS IMMEDIATELY BEFORE THIS FIT.

If you did not, type R to Restart.

Did you run PIC or BAS? [Y] Y

Bunch-processing is faster than processing the peaks All-at -once.

Process the peaks in small bunches? Y/N [N] Y
Enter maximum number of peaks in a bunch [Suggest 4 or 5] : 5

Identify the type of your peaks

Type number Shape
a DataPeak [default]
1 Gaussian
2 Lorentzian
3 Sum (Gaussian+Lorentzian)
4 Product (Gaussian*Lorentzian)
5 Asymmetric Gaussian
6 Asymmetric Lorentzian
7 Pearson 7
8 Log Normal
100 1st & 2nd Datapeaks

Enter type number: 1

will there be a baseline? [Y] : Y

Enter name of baseline file, else i Enterl.. to use PIC/BAS basIn:

XRAYBASE

Here is the control vector, DATMAT (0) :

npks nbunch bnchflg iter chisq chitest cnvg
76.00 5.00 1.00 0.00 0.00 0.00 0.00

DATMAT (i), the input data matrix, starting i=l:

Area Err
0.00 0.0

0.00 0.0

0.00 0.0
0.00 0.0

7.5. THIRD EXAMPLE USING RZRBAS AND RZRFIT 119

RowType Cent Fix Hght Fix Wdth Fix Aparm Fix
2 1167.00 -4.0032.16 1.00 2.62 3.00 0.00
3 1175.00 -4.00747.51 1.00 3.56 3.00 0.00

Master/Slave
0.00 0
0.00 0

75 1 1548.00 -4.00 30.78 1.00 3.80 3.00 0.00 0.00 0

76 1 1588.00 -4.00 25.17 1.00 5.08 3.00 0.00 0.00 0
77 200 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0

Do you wish to link peaks? [N] : N

The defaul t (and most usual) type is Normal noise.

Enter N for Normal noise; P for Poisson noise [N] : P

Select F or S, Fast or Standard mode: [F] F

Entering RZRFIT with iter=O. Wait for setup. . .

Processing peaks 1 to 4. Noise variance=9 .10942

Reduced chisq=1058. 82 at iter 1

.
Processing peaks 1 to 4 of 76

.
Processing peaks 5 to 7 of 76.

.
Processing peaks 8 to 8 of 76.

.

.

Processing peaks 74 to 75 of 76.

.

OUTPUT DATA MATRIX in user coordinates

Pk Type Cent Err Hght Err Wdth Err Aparm Err
1 1 19.01 0.0 15.93 29.6 0.00 0.0 0.00 0.0

2 1 18.77 0.0 746.58125.0 0.00 0.0 0.00 0.0

75 1 89.44 0.0 19.44 7.5 0.00

76200 0.00 0.0 0.00 0.0 0.00

Reduced chisq (whole file) =15.896

Processed with istat=2 (1=Norma1 noise statistics,

RESULT MAY BE SAVED TO A FILE

0.0
0.0

0.00
0.00

.

0.0
0.0

2=poisson)

If you run a portion of XRAYSCAN using the Razor Library DEMO, your final screen

120 CHAPTER 7. RAZORFIT - RZRFIT

will look like the picture below.

R2R8ASt 98 Hit entw to _ P88k.....
"'U.. -U .. .__ at... _Iftllll

23181

12S35
.
U 1J289

"J
S 8m

?S01

6306

S059

3813

13Z1

74.79

18.1e 18.. 26.88 34.88 12.88 58." SII." 66.88 71.88 BZ.M
X unlS

FI1' = It:
'

1 chl8ll(c.795i57I.
Shawl,..tJtted pedca u.. DnD to a.y ...~to......

973.'
1IM.8.

U796.4

"I ?8?9.
S 619.1

5311.'

112.'
353.'
26S.S

171.'

48

.011

58.. 5'9.219 60.49 61.6& 62.88 &1..88 65.28 66." 67.68 &e.ee
x LJ(ltS

7.6. THE RAZORFIT ALGORITHM 121

7.6 The RazorFit algorithm

In the final sections of this chapter, we will (1) present the assumptions that all peak-
fitting methods make about your data, and carefully discuss the assumptions about your
noise, or data errors, that you implicitly make when using a program like RazorFit, (2)
derive the RazorFit algorithm from the Maximum Likelihood principle, and (3) discuss
mathematical details.

7.7 The RazorFit model

When you use RazorFit, or similar peak-fitting programs, you are assuming your data can
be fit by a model. The model usually can be described with an analytical expression,
although it need not be. The important characteristic of the model is that whereas it has
M parameters whose values are not known, M is a number smaller than the number of
data points.

RazorFit uses this model for your data:

J
model(x) = IJpeakj(x)) + baseline(x),

j=l

where J is the number of peaks being fit, and each peakj (x) is synthesized using one of
the analytical expressions given in Chapter 8. The function baseline(x) is also given in
that chapter. The number of parameters M is the sum of the parameters required for each
peak, plus any baseline parameters.

RazorFit is the appropriate peak-fitting algorithm to use when your data errors are
random, and additive, (Normal noise), and also when your data errors are the result of
counting statistics (Poisson noise). Mathematically, RazorFit is appropriate when

data(x) = model(x) + error(x),

when error(x) has an equal chance of being a positive or a negative value, and when
error(xi) is uncorrelated with error(xj) for all i,j.

Visually, the assumptions about error(x) are represented in the figure below. The
figure is a histogram of the errors measured at a single position x k,

for a large number of measurements, on one sample, at position Xk.

122 CHAPTER 7. RAZORFIT - RZRFIT

Fig 7.7.1 Histogram of errors measured at Xk.

The important characteristics of the data errors which are represented by the histogram
are:

. The errors are nearly equally distributed between positive and negative values.

. Small errors are more probable than large ones. The histogram is peaked at zero.

. The RMS error need not be the same for all x. A histogram of errors measured at
any data point Xj would have the same general shape, but not necessarily the same
width, as the one above.

If a histogram of your data errors, measured at any point in your data set, would look
similar to the one shown above, then RazorFit is an appropriate peak-fitting algorithm.

RazorFit provides solutions for data with the following types of noise statistics:

. Normal (gaussian-distributed) noise errors, with constant variance.

. Normal (gaussian-distributed) noise errors, with variance that depends on position
within the data file.

. Poisson (counting statistics) noise errors, with variance proportional to the square-
root of the signal.

7.8 RazorFit and Maximum Likelihood

Suppose you know that your data set, in the absence of noise or sampling errors, could
be described by a model, model(x). This model is known when its M parameters are
known. You have measured N data values

7.8. RAZORFIT AND MAXIMUM LIKELIHOOD 123

The measured data set has noise, or measurement errors. Usually, the measured data
will look something like the model. This is because small values for error(xi) are usually
more likely than large errors. In any case, we would all agree that some of the possible
data sets are more probable than others.

If we knew the values of the M parameters which describe the model, and if we
knew the probability distribution function for the errors, we could immediately write the
probability for obtaining our measured data set. We would know if it were a probable or
an improbable occurrence. Clearly, we don't know the values of these M parameters, or
we wouldn't be using RazorFit. So we proceed as follows:

We assume that the probability distributions P(error(xi)) for errors are known. We
then write a general probability of obtaining any given data set. For example, suppose
that the probability distributions for the errors were Normal distributions, such as

P(error(x;)) =

The O'i, or the RMS error measured at the x-value Xi, is allowed to be different at each
position Xi. However, in assuming that we know the probability distributions, we are
stating that we know all the values O'i.

When the errors at positions Xi and Xj are uncorrelated, then the probability, of ob-
taining the data set {data(xj), ...data(xn)} is

N 1 (error(xi))2
P(data(x1)' ..., data(xn)) = TI

y'()
exp[- 2],

i=l 27r O'i 20'i

TI
N 1

[
(data(xi) - model(xi))2]

= /)
exp 2 .

i=l V (27r O'i 2<Ti

The Maximum Likelihood philosophy is that the given data set is very ordinary, and
thus representative of all data sets. Of all possible data sets, this one isn't unusual.
Maximum Likelihood says that we should find values for the model parameters which
maximize the probability P(data).

Maximize the probability as follows: First make the statement that since probabilities
are always 2: 0, maximizing InP is the same as maximizing P.

InP(data(xd, ...) = maximum

124 CHAPTER 7. RAZORFIT - RZRFIT

The first sum in the above equation has a constant value, and so can be ignored in the
maximization. Therefore, the equation to be solved is

~ (data(xi) - model(xi))2 _ ..
2 - mInImum.

i=l 2O-i

We have just derived one of the important results of Maximum Likelihood. When
the errors come from Normal distributions, and when the error associated with one
data point is uncorrelated with the error at any other data point, then the Maximum
Likelihood prescription is the same as the least-squares prescription.

RazorFit finds the best parameters for the model you specify, using the least-square cri-
terion derived from the Maximum Likelihood principle for data with NOmJally distributed
errors.

Unless you take the trouble to input a noise variance vector, RazorFit makes the
simplifying assumption that (Tiis the same for all data points. RazorFit calculates a mean
value (T2,the variance of the noise, according to

N
(T2 = RMS2 = L(data(xi) - smoothdata(xi))2 IN.

i=l

where smoothdata(xi) is the result of the Maximum Likelihood smoothing procedure,
ESmooth, perfomJed within RazorFit. (RazorFit uses the width of your narrowest peak
as the smoothing width.) Thus RazorFit uses (Ti2= (T2for all i.

7.9 Downhill to a minimum

RazorFit uses the Levenberg-Marquardt method I to find the minimum value of Chisquare.
Within RazorFit, Chisquare is calculated as

d Ch '

_ I:~I((data(xi) - model(xi))/RMS)2
Reduce - lsquare -

(N _ M)

N is the number of data points, and M is the number of model parameters which are al-
lowed to vary. RMS is the noise obtained from your noise variance vector, or is calculated
by RazorFit according to whether you specify nOmJal or Poisson noise.

This statistic, the Reduced chisquare, is the more familiar chisquare, divided by the
number of degrees of freedom, N - M. When the measurement errors come from NOmJal

distribution, and when the model is correct, the reduced chisquare statistic will come from
a distribution which has a mean value of 1, and a width of J2/(N - M).

1An excellent reference on modeling data, and on the Levenberg-Marquardt method nf fitting nonlinear
models, is the book Numerical Recipes, The Art of Scientific Computing, by W. H. Press, B. P. Flannery,
S.A. Teukolsky, and W. T. Vetterling, Cambridge University Press, 1988.

7.9. DOWNHILL TO A MINIMUM 125

Chisquare can be thought of as a surface in M-dimensional space, where M is the
number of variables which are being determined. When you begin the program, and
whenever you fix or unfix any of the parameters of your model, RazorFit adjusts the
dimensions of the space it is working in. (Some peakfitting programs don't readjust the
dimensions of the space when you fix parameters.) Fit knows its current position in that
space, trom the current values of the M parameters which are allowed to vary, and so
can calculate the height of the reduced chisquare surface at that point. All RazorFit does
is this: sit at the position given by the initial parameter settings, look around, find the
downhill direction, and ooze down into the nearest minimum.

While RazorFit finds a minimum, this minimum is not necessarily the global minimum.
If you have chosen the correct model, and if your measurement errors are random, with
zero mean, then you should expect that the global minimum of the Reduced Chisquare
surface will have a value

Reduced_Chisquare = 1 :f:

When RazorFit finds a minimum, it calculates the Reduced Chisquare at that position. If
the value is close to I, it reports Solution has converged. If the Chisquare associated
with the found minimum is ~ 2, it states Solution has found minimum. We can think
of several reasons the Chisquare value associated with the minimum may be too large:

. The model may not be appropriate.

. Your starting parameters may have led RazorFit into the wrong minimum.

. Your measurement errors may not be random, with zero mean.

. Your measurement errors may come from some distribution other than a Nomlal or
a Poisson distribution.

. Possibly your measurement errors are a lot larger in one region of your data set than
in other regions.

If RazorFit tells you it has found a minimum, but Reduced Chisquare is » 1, we
suggest you check this list, and decide why the reduced chisquare value was so large.
If either of the first two reasons is the fault, you need to make changes in the starting
conditions. If the fault lies with the properties of your errors, remember this: RazorFit is
a very good least-square fitting procedure. At the desired minimum, a reduced chisquare
value of I is expected only if the measurement errors are Normally- distributed. For
other noise distributions, the least-square fit will give you good parameter values, but the
confidence limits will not be correct.

126 CHAPTER 7. RAZORFIT - RZRFIT

7.10 Confidence Limits

RazorFit reports the final values of the M parameters you are fitting, and also gives you
confidence limits for the parameter values. How are these confidence limits computed,
and under what conditions should you regard them as the truth?

The confidence limits reported by RazorFit are calculated by taking the square root
of the diagonal elements of the covariance matrix. The covariance matrix is the inverse
of the Hessian matrix, which has components

H
. _ ~ ~ Bmodel(xi) BmodeI(xi)

essmnkl - ~ 2
B B

.
i=l O"i aj ak

The aj, ak are the model parameters which are being estimated.
The confidence limits reported by RazorFit are the actual standard errors ofthe parame-

ter estimation if your measurement errors are Normally- distributed, and if a linearization
of the model equations are a pretty good estimate of the true model in a small region
around the minimum. For other error distributions, the reported confidence limits are not
the true standard errors, but may be reported as 'square root of the diagonal elements of
the formal covariance matrix'.

7.11 Limitations of RazorFit

We hope our discussion in this chapter has helped you to think about the assumptions
you are making when you decide to fit a model to your data. You need to assess the ap-
propriateness of the model, and carefully choose your initial values. If your measurement
errors are random, independent, with zero mean, and if the RMS error is constant across
your data set, you will get good values for your model parameters.

RazorFit makes no compromises. At times your RMS noise fluctuations are indepen-
dent of position, i.e. that the mean noise is the same on the left end of the screen as on
the right. In other cases, this assumption is not correct. If you have such a case, you
should generate a noise vector, containing the variances appropriate to each data point,
and use this vector to fill VNOISE. (See Chapter 10.1).

The modeling algorithm used by RazorFit, the Levenberg-Marquardt algorithm, is
used by nearly every nonlinear peakfitting program. The limitations of the RazorFit
(Levenberg-Marquardt) algorithm are shared by most peakfitting programs you will ever
encounter. The algorithm is tailored for data sets with random, NOID1ally-distributed noise
or measurement errors. Most measurement noise comes from a statistical distribution
which is not NOID1al.However, even when your measurement errors are not Normally-
distributed, if they look somewhat like Figure 7.7.1, the RazorFit algorithm is still a good
one to use.

Chapter 8

Peakshape Catalog

A catalog of peakshapes follows. For each peak type, the analytical expression used to
synthesize the peakshape is given, in terms of the peak parameters which are optimized
by rzrfit. The formulas used to calculate the total areas are also given. Total peak areas
are calculated for the entire interval (-00,+00).

127

128 CHAPTER 8. PEAKSHAPE CATALOG

8.1 Captured DataPeak

Type 0 - Captured DataPeaks are real data peakshapes which have been captured out
of your data, or IToma calibration run, or maybe ITomsome other data file. Choose
a peak whose general shape matches the shapes of peaks in the data you wish to
fit. Put the Captured DataPeak in the data peak array of rzrfit.

rzrfit will then create a DataPeak Family, with peaks that are wider, narrower,
taller, shorter, etc. In other words, rzrfit will vary the center position C, height H,
width W, and asymmetry parameter A, while maintaining the same general shape
as your Captured DataPeak.

You are in control ofthe asymmetry of your Family ofDataPeaks. You may let rzrfit
change the asymmetry parameter for a best fit, or require that all your DataPeaks
keep the initial asymmetry.

Whenever you select DataPeak as the shape for one of your peaks, rzrfit will look
to the Family of DataPeaks to give you a best-fit in exactly the same way it would
use the Gaussian family if you had selected the Gaussian standard analytic shape.

rzrfit uses the industry-standard Levenberg-Marquardt method for fitting Data-
Peaks, exactly as it uses that method for fitting Gaussians, Lorentzians, etc. The
only difference is: Now you can use real data shapes. You are uot limited to
analytic peak shapes!

The DataPeak parameters C, H, W, and A are optimized by rzrfit.

Fig 8.1 Capture a real data peak from a GC run.
Use Captured DataPeak to deconvolve peak overlaps.

rzrfit reports peak centers (elution times), heights, widths, areas, ::i::standard errors.

8.2. GAUSSIAN 129

8.2 Gaussian

Type 1 - Gaussian peakshapes are synthesized ITomthe equation

peak(x) = Hexp[
(x - CJ2

(W /1.665)2],

where C is the center position of the peak, H is the peak height, and W is the full-
width at half-maximum (fwhm). The three parameters C, H, and W are optimized
by rzrfit. Total areas are y1i'W H /1.665.

I.~ .

'
.

.

.

.

~.

~ .-~

E...
Fig 8.2 Gaussian and Lorentzian (with higher wings).

8.3 Lorentzian

Type 2 - Lorentzian peakshapes are synthesized ITomthe equation

1
peak(x) = H

1 + 4(x _ CJ2 /W2'

where C is the center position of the peak, H is the peak height, and W is the full-
width at half-maximum (fwhm). The three parameters C, H, and W are optimized
by rzrfit. Total areas are 7rWH/2.

8.4 Sum Gaussian + Lorentzian

Type 3 - Sum Gaussian+Lorentzian peakshapes are synthesized from the equation

130 CHAPTER 8. PEAKSHAPE CATALOG

(x- (;)2 1
peak (x) = H(l- A)(exp[

(W/1.665)2D + HA(l
+4(x _ q2/W2)'

where C is the center position of the peak, H is the peak height, and W is the
full-width at half-maximum (fwhm), and A is the Lorentz fraction (A = I for 100%
Lorentzian). The four parameters C, H, W, and A are optimized by rzrfit. Total
areas are W H(.fi(l- A)/1.665 + 7rA/2).

Fig 8.3 Sum(G+L) (with higher wings) and Product(CrlL).

8.5 Product Gaussian*Lorentzian

Type 4 - Product Gaussian*Lorentzian peakshapes are synthesized from the equation

where C is the center position of the peak, H is the peak height, W is the Gaussian
width (fwhm) and A is the Lorentzian width (fwhm). The four parameters C, H,
W, and A are optimized by rzrfit. Total peak areas are calculated by summing the
peaks to the edges E_,+ of the data set, and approximating each of the unseen wing
areas with the formula HA2exp[-1.665E:,+/W2]/4.

8.6 Asymmetric Gaussian

Type 5 - Asymmetric Gaussian peakshapes are synthesized from the equation

8.7. ASYMMETRIC LORENTZIAN 131

(x - C)2
peak(x) = Hexp[-

(W(A)/)2'
x < C,

2 1 - 1.665 -

(x C)2
Peak (x) = Hex p[- x > C(2W(1 + A)/1.665)2' -

,

where C is the center position of the peak, H is the peak height, W is the full-width
at half-maximum (fwhm), and A is the asymmetry. The four parameters C, H, W,
and A are optimized by rzrfit. Total areas are given by y7i'(W + A)H/1.665.

8.7 Asymmetric Lorentzian

Type 6 - Asymmetric Lorentzian peakshapes are synthesized trom the equation

1
peak(x) = HI

+ 4(x
_ C)2/(W(I- A))2'X::; C,

1
Peak (x) = H x > C1+4(x-C)2/(W(I+A))2' - ,

where C is the center position of the peak, H is the peak height, W is the full-width
at half-maximum (fwhm), and A is the asymmetry. The four parameters C, H, W,
and A are optimized by rzrfit. Total areas are given by 7rH(W + A)/2.

8.8 Symmetric and Asymmetric Pearson7

Type 7 - Pearson7 (Pearson VII) peakshapes are often used as approximations to the
Voigt shape. The Pearson7 shape can look like a Gaussian, a Lorentzian, or anything
in between. In addition it can be used to fit supra-Lorentzian shapes (very wide
wings) and supra-Gaussian shapes (very narrow wings).

Razor Library gives you both a synu11etricand an asymmetric Pearson7. Symmetric
Pearson7 shapes are synthesized from the equation

1
peak(x) = H (1 + 4(x - C)2(21/A - 1)/W2)A'

where C is the center position of the peak, H is the peak height, and W is the
full-width at half-maximum (fwhm). A is a parameter which governs the shape. A

132 CHAPTER 8. PEAKSHAPE CATALOG

can take any value between 0.5 and 00. When A=l, the Pearson7 peak is a pure
Lorentzianshape. When A --->00, the Pearson7 becomes Gaussian. In practice, the
Pearson7 shape is close to Gaussian for A ;:::10.

Asymmetric Pearson7 shapes are synthesized from the equations

1
peak(x) = H

(1 + 4(x _ C)2(21/(A(1+P) _1)/W2)A(HP)' x:': C,

1
peak(x) = H

(1 + 4(x _ C)2(21/(A(1-P) _ 1)/W2)A(1-P)' x;::: C,

where C is the center position of the peak, H is the peak height, and W is the
full-width at half-maximum (fwhm). A(l + P) governs the shape. A can take any
value between 0.5 and 00. P can take any value between -2000 and 2000.

The parameters C, H, W, A, and (optionally) P, are optimized by FIT.

If a symmetric Pearson7 is desired, set the parameter P = 0, and set fixp = O.
(See page 103).

8.9 Log Normal

Type 8 - Log Normal peakshapes1 are synthesized from the equation

(In (l + E (x - C))) 2

peak (x) = Hexp[-
D

1ox;::: C -l/E,

peak(x) = 0, x :': C - l/E,

where C is the center position of the peak, and H is the peak height. E and D
are functions of W, the full-width at half-maximum, and A, the asymmetry factor.
D = (InA)2/ln2. E = (A2 -l)/AW. The four parameters C, H, W, and A are
optimized by FIT. Total areas are HvD1feD/4/E.

ID. E. Metzler, C. M. Harris, R. 1. Johnson, D. B. Siano, 1. A. Thomson, (1973), Biochemistry 12,
5377.

8.9. LOG NORMAL 133

Fig 8.4 Log Normal and AsymLrnz (with higher wings).

134 CHAPTER 8. PEAKSHAPE CATALOG

8.10 Baseline types

Type 200 - User baseline, from rzrbas or rzrqba, or a background scan, saved in a
file. User baselines are entered into rzrfit through the array baslin.

Type 201 - Offset baselines are described by the equation

baseline(x) = Bo.

Type 202 - Linear baselines are described by the equation

baseline(x) = Bo + B1x.

Type 203 - Quadratic baselines are described by the equation

Type 204 - Exponential baselines are described by the equation

The constants Bo, B1, and B2 are optimized by rzrfit.

NOTE: We do not advise using either quadratic or exponential baselines, unless
you are sure of your peak types, and also absolutely sure that this is the appropriate
baseline to use. Both quadratic and exponential baselines lead to terrible conver-
gence problems when combined with anything other than a few isolated Gaussian
peaks.

Chapter 9

Baselines -

rzrbas/rzrq ba/rzredg/rzrcut

9.1 Baseline Fitting and Removal

Baseline fitting often feels like the black hole of spectral analysis. If the baseline is
wrong, peak areas will be wrong - and the errors can be large indeed! This may the
hardest problem in the book.

We have no magic bullet. We have tried to apply Maximum Likelihood and Bayesian
principles to the problem, but so far we have failed to create a Maximum-anything baseline
removal method.

RazorBase is the closest we have come to providing a principled baseline function. It
is pretty good! And it is pretty slow. We were thinking of the impatient spectroscopists
in the world (only ourselves?) when we went on to create RazorQuickBase. Perhaps we
should have looked at our own notice board instead, where we keep the message "If you
can't find time to do it right, when will you find time to do it over?"

While we continue to seek the holy grail of baseline functions, please try out our
current efforts and let us know the lay of the land.

9.1.1 RazorBase

Our best effort is embodied in rzrbas, which works as follows:

. Identify the peaks in the data, using the high-performance Maximum Likelihood/Bayesian
peak-pickerrzrpic.

. Use the results of rzrcsm to give Maximum Entropy- smoothed segments in the
off-peak regions.

. Connect the smooth baseline segments with a straight line under the peaks.

135

136 CHAPTER 9. BASELINES - RZRBAS/RZRQBA/RZREDG/RZRCUT

. Check that none of the straight line connections intercept the data at a level higher
than the measured RMS noise. Use multiple straight line segments if necessary.

rzrbas is presented in Section 9.2, page 139.

9.1.2 RazorQuickBase and RazorEdge

RazorQuickBase (rzrqba) uses a 'quickpick' algorithm to estimate the positions of peaks
in the data, and then proceeds in the same manner as rzrbas. It is not as reliable at finding
small peaks, but it brings results an order of magnitude faster. rzrqba is presented in
Section 9.4, page 147.

RazorEdge (rzredg) attempts to match the baseline to the lower edge of the data. It
is very fast, and often works on data which do not yield well to other baseline functions.
rzredg is presented in Section 9.6, page 152.

9.2. RZRBAS 137

9.2 rzrbas

rzrbas estimates the baseline for a spectrum by identifying the peaks. The function rzrpic
is used in its high- performance mode for peak identification. Thus rzrbas requires all
the same input as rzrpic, and more.
Required user input:

. Data set containing peaks.

. Select a peakshape which represents the peaks in the data set. The peakshape choice
is not very critical for this algorithm.

. When the selected peakshape is positive, rzrbas will search for positive peaks;
when the peakshape is negative, negative peaks in the data will be identified.

Processing notes:

. rzrbas finds peaks which have the declared peakshape in the data, using the same
algorithm used by rzrpic. rzrbas will search for negative peaks if the peakshape
presented in shape is a negative peak.

. rzrbas assigns significances to the peaks in signal/noise units. Both height/noise
and area/noise significances are available. The heights and areas are calculated
from the heights and widths estimated using the shape of the 2nd derivative curve.
Significances, heights, and widths are returned in the sigpks array.

Programming notes:

. Set istat = 1 if the noise is Normal. Set istat = 2 if the noise is Poisson.

. Set psens = 3 to find all the peaks with heights> 3 times the RMS noise, i.e. all
peaks with signal/noise ratios> 3. Set psens = -3 to find all the peaks with areas
> 3 times the RMS area-noise.

. bsens controls the sensitivity of the peak vs. baseline allocation. It is not an
arbitrary parameter, but is based upon the expected RMS fluctuations at different
spatial frequencies in Normal noise. In theory, it should have worked as reliably
and effectively as psens.

In practice, we have had to adjust bsens for different types of data. In retrospect,
we should have known it would happen. Real baselines do not have anything
approaching a Normal distribution of spatial frequencies!

Start with bsens = 1, and adjust it until the value is right for your type of data.
Larger values of bsens move the baseline/peak junctions in toward the peak centers,
allocating more points to the baseline segments.

138 CHAPTER 9. BASELINES - RZRBAS/RZRQBA/RZREDG/RZRCUT

rzrbas will perfonn the adjustment for a new value of bsens very quickly. It does
not need to go back through the peak-picker for this adjustment. Try out rzrbas
in the demonstration program HandleG to see this in action.

. The smalI arrays locpks and sigpks return useful infonnation. See the discussion
for rzrpic.

. The smalI array ibase returns useful infonnation about peak start/stop regions.
ibase[O] contains the start index of the first peak; ibase[nibase/2] contains the
stop index of the first peak. And so on for up to nibase/2 (start,stop) pairs. ibase
is filIed with the value -1 (an illegal index value) where it is not being used for
(start, stop) pairs.

9.2. RZRBAS

long rzrbas(float ydata[], long n2, float shape[], long n12, float yout[],
float w[], float v[], float trans[],Iong *n, long *newpk, long *newbas,
long *istat, double *psens, double *bsens, long locpks[], long *npks,
float sigpks[], long nsig, long ibase[], long nibase, long *nfwhm,
double *peak, double *sigma)

Input arrays which must be filled:
ydata, filled between 0 and n2, length n2 + 1
shape, filled between 0 and nl2

NOTE: shape will be read only, not altered.
NOTE: If newpk > I, shape will not be read.

Additional arrays to be furnished:
yout, length n
w, length n
v, length n
trans, length n
locpks, length npks
sigpks, length nsig
ibas, length nibas

Input variables: n2, n12, n, newpk, newbas, istat, npks, nsig, psens, bsens, nibas
n2 is the last position of data in ydata
nl2 is the last position of data in shape
n is the size of arrays ydata, yout, w, v, and trans
newpk indicates whether or not shape is a new peakshape.
newbas is an initialization flag for rzrbas.
istat is a flag for Normal vs. Poisson noise.
npks is the size of the locpks array.
nsig is the size of the sigpks array.
psens is the threshold peak sensitivity in SIN units.
bsens is the threshold baseline sensitivity in SIN units.'
nibase is the size of the ibas array.

Output arrays:
yout, filled with baseline
w, filled with smoothed data between 0 and n2
locpks, filled between 0 and npks-I
sigpks, filled between 0 and 3*npks-1
ibas, filled between 0 and nibas-l

Output variables:
n = amount of array space used

NOTE: if n is negative, abs(n) = amount of array space
needed (but not available). Operation not successful.

newpk = n if trans was loaded successfully.

139

140 CHAPTER 9. BASELINES - RZRBAS/RZRQBA/RZREDG/RZRCUT

npks = number of peaks detected
nfwhm = full-width-at-half-maximum of peakshape in shape
peak = height of peakshape in shape
sigma = RMS noise in the ydata.

Function return values:
rzrb as = 0 if operation was successful

If rzrbas < 0, error occurred
Use rzrerr (page 174) to obtain error text

Description of variables

ydata on input is the raw data array. It should contain the raw data between data points
o and n2. ydata will NOT be altered outside this range.

n2 is the last location of data in the ydata array. n2 is to be furnished as input.

shape is an input array which holds the peakshape of the narrowest spectral feature in
ydata which is of interest to the user. The relevant peakshape is located between
data points 0 and nl2 in shape. If the peakshape is right-side up, positive peaks
will be identified by rzrbas. If the peakshape is a negative peak, then negative
peaks will be found.

nl2 is input and the index of the last data point of the peakshape in shape.

yout is the output baseline. The baseline will be found between data points 0 and n2,
and should be ignored outside this range.

yout must have a minimum size equal to the smallest power of two larger than
(n2+1+3*nfwhm). See the discussion below for n.

w is a work array of length at least n.

On output, w contains a smoothed data file. The smoothing has been done by
rzrbas.

v is a work array of length at least n.

trans is an array of size n which will be used to house the Fourier transform of the
peakshape. The amount of space used in trans is calculated in rzprep. See the
discussion below for n.

trans is either empty or filled, depending on the parameter newpk. Whenever
newpk = I, it is assumed that the contents of shape have been altered, and trans
is properly loaded by rzrbas. When newpk > I, it is expected that trans has not
been changed since the last time it was filled. See the discussion below for newpk.

9.2. RZRBAS 141

n is input as the amount of space furnished in the yout, w, v, and trans arrays.

The function rzsizn will calculate n, the minimum amount of space needed. The
required size of n is determined by n2 and by the width of the peak in the shape
array. Obtain the minimum required n with this call:

n = rzsizn(n2,shape,nI2)

On output, n is the amount of space used for the Fourier transforms in the yout,
w, v, and trans arrays. If n is negative on output, the amount of space furnished
was inadequate, and no processing has taken place. If n is returned negative, then
abs(n) is the amount of space needed in the above arrays.

The space required for the Fourier transfornl is always calculated in rzprep, de-
scribed in Chapter 11. When newpk = 1, rzprep calculates the required size of the
Fourier transform as the smallest power of two larger than (n2+ 1+3*nfwhm). You
may wish to calculate n in an alternate fashion. See Chapter 11.

NOTE: When rzrbas returns after successful processing, it fills both newpk and n
with the transform size. If you with to process additional data with the same peak-
shape, you need not change either newpk or n, provided that (a) your peakshapes
do not change, and (b) your input ydata sizes (n2+ 1) do not increase.

newpk on input is an integer flag set which should be initially set to 1. It informs
the peakshape processor that a new peakshape is present in shape. The processor
measures certain parameters of the new peakshape, and then fills the trans array
with the Fourier transform of a properly shifted and scaled peakshape. When the
peakshape processor finishes successfully, it will output newpk = n, where n is the
actual space used in trans.

The peakshape processor uses that valuable commodity, CPU time, for a Fourier
transform. On input, the programmer can circumvent the peakshape processor with
newpk> 1. Whenever rzrbas is called with newpk > 1, ensure that:

(a) The user wants to use the previous peakshape for the current processing, and
trans is not changed.

(b) The size of the array needed to transform the new data set is no larger than the
n used previously. If this second criterium is violated, the output value of rzrbas
will be rzrbas = -2.

istat is an input flag which governs the statistics used by the function. Set istat = 1 if
the noise is Normal. Set istat = 2 if the noise is Poisson.

psens is an input SIN threshold variable that directs the peak picker. The peak picker
assigns each peak a significance in units of the RMS noise. rzrbas returns peaks
whose significances exceed the value psens. When psens=O.O, all possible peaks
are found. When psens = 3.0, all peaks with heights> 3.0 RMS noise (i.e. SIN >
3.0) are returned. When psens = -3.0, all peaks with areas> 3.0 RMS area-noise

142 CHAPTER 9. BASELINES - RZRBAS/RZRQBAlRZREDG/RZRCUT

are returned. Peaks which are at least 3 to 5 times the RMS noise are meaningful
(psens = 3 to 5).

bsens controls the sensitivity of the peak vs. baseline allocation. Start with bsens = I,
and adjust it until the value is right for your type of data. Larger values of bsens
move the baseline/peak junctions in toward the peak centers, allocating more points
to the baseline segments.

rzrbas will perform the adjustment for a new value of bsens very quickly. It does
not need to go back through the peak- picker for this adjustment. Try out rzrbas
in the demonstration program HandleG to see this in action.

newbas is an input initialization flag and also a picker-selection flag. newbas works
inside rzrbas in exactly the same way as iperf works for rzrpic. Set newbas = 1 to
get the High-Performance Bayesian pickker, newbas = 2 to get the High Resolution
picker, newbas= 3 to get the 2nd-Order Asym picker, and Newbas = 4 for the
Quiet Picker. Set newbas = -I for the Quick Pick.

locpks is an output integer array containing the peak locations, i.e., locpks(O) = data
point number of the fIrst peak detected. locpks need be no larger than the maximum
number of peaks expected. locpks and npks may be used as input to rzrfIl.

npks is input as the size of array locpks.

npks is output as the number of peaks located by the search. Thus, the array locpks
will be fIlled with meaningful numbers between locpks(O) and locpks(npks-I).

sigpks is an output array containing the peak significance assigned by rzrbas. The
signifIcance is in units of the RMS noise in the data set. The output arrays locpks
and sigpks are sorted by signifIcance. sigpks(O) 2: sigpks(l), etc.

The length of the sigpks array should be 3*npks = three times the maximum number
of peaks expected. This will provide room to report the peak signifIcances, peak
heights and peak widths.

The contents of the sigpks array will be sigpks(O) = signifIcance assigned to the
peak found at data point number locpks(O), sigpks(*npks) = height assigned to the
peak found at data point number locpks(O), sigpks(*npks*2) = width assigned to
the peak found at data point number locpks(O),.

nsig is input as the size of array locpks.

The minimum length of the sigpks array is nsig = npks. This provides enough
room to return peaks signifIcances in sigpks.

To obtain peak heights and peak widths in sigpks, as well as peak signifIcances,
set nsig = 3*npks = three times the maximum number of peaks expected.

9.2. RZRBAS 143

ibase is filled on output with peak start/stop regions. ibase[O] contains the start index
of the first peak; ibase[nibase/2] contains the stop index of the first peak. And so
on for up to nibase/2 (start,stop) pairs. ibase is filled with the value -I (an illegal
index value) where it is not being used for (start,stop) pairs.

nibase is input as the size of the array ibase. nibase must be twice as big as the number
of peak regions expected. Ifibase is too small to contain a list of all the (start,stop)
peak regions in the data, the final baseline presented in yout will be in error.

nfwhm is output as the number of data points between the half-maxima of the peakshape
feature in shape. nfwhm is computed internally.

peak is output as the height of the peakshape in the array shape.

sigma is output as the standard deviation (root- mean-square) of the noise which was
found in ydata.

144 CHAPTER 9. BASELINES - RZRBAS/RZRQBA/RZREDG/RZRCUT

9.3 Example using rzrbas

SPEC8 is a Raman spectrum of ethyl acetate. The noise statistics are Poisson.

Spectrum file: SPEC8
Peakshape file: PEAK8

Using HANDLE:

RAZOR LIBRARY for Spectral Analysis - L There is only one best way!
Maximum Likelihood (ML) , Maximum Entropy (ME) , and Bayesian processing.

ESM=EntropySMooth. Smooths Normal (thermal/gaussian) noise. ME

PSM=PoissonSMooth. Smooths Poisson (counting) noise. ML.

NSM=NormalSMooth. Smooths Normal noise. ML.

DIV=RazorDi vide. Calculates transmission spectra. ML.

ASH=RazorASharp. Enhances resolution. ML.

DEC=RazorDeconvolve. Maximum Entropy deconvolution. ME/Bay esian.

LUC=RazorLucy. Classic ML deconvolution. ML.

DIF=RazorDerivative. Derivatives Oth-nth. Bayesian.

PIC=RazorPick. Finds peak positions for FIT. ML/Bayesian.

FIT=RazorFit. Fits model peaks to data. ML.
BAS=RazorBase. Finds baseline. ME/Bayesian.

QBA=RazorQuickBase. Finds baseline.

EDG=RazorEdge. Fits baseline to lower edge of data.

NOI=RazorNoise. Finds noise spectrum. ML.

GEN=Generates synthetic peakshape.

SAV=Save result, QUI=Quit.

Choose an operation (3 uppercase characters) : BAS

Enter name of spectrum (Try SPECS) : SPECS

Enter name of peakshape (Try PEAKS) : PEAKS

RZRBAS also picks peaks! Choose picker.

Enter -1 for Quick-Pick

Enter 1 for High-Performance picker

Enter 2 for High-Resolution picker

Enter 3 for 2nd-Order High-Performance picker

Enter 4 for Quiet-Pick (High Res. Good for very narrow peaks.)

Select picker by Number [2] : 2

Enter peak threshold (# of standard deviations of noise) :

(i.e., Enter 3 for peaks with HEIGHTS 1.3 RMS noise)

(Enter -2 for peaks with AREAS L 2 RMS Area-noise)

Enter 3 if unsure: 3

nIS

728
y
U Ii631

"I i85t
r
S S477

4!181

432t

P£I

3178

Z!i94

2817

14441

9.3. EXAMPLE USING RZRBAS 145

Enter N for Normal noise; P for Poisson noise [N]: N

Entering RZRBAS with bsens=1.0 Wait for setup...
Estimated RMS noise: 77.96
Using Peak detection threshold: 3.0
Number Peaks detected; 21

Peak Start/Stop regions:

0/ 115 115/ 324

Current baseline sens, BSENS=1.0

Enter new value for BSENS (Enter 0 to quit): 0

BASELINE MAY BE SAVED TO A FILE AFTER EXAMINING PEAKS.

Hit any key to examine peak parameters.

Peaks found by RZRBAS

Estimated RMS noise: 77.96

Number Peaks detected: 21

Using Peak detection threshold: 3.00000

Peak HIEGHT Significances:

85 .82 58.24

Select;

Print (S)ignificances, (L)ocations, (H)eights ,

(R)esort. (T)uneup heights. (A)ccept. (M)enu.

(W),idths (E)verything.

M

125.. 151.4 189.8 ZZZ.Z 254.6 287.. 319.4 3S1.8 3B4.Z 416.6
X~I1S

146 CHAPTER 9. BASELINES - RZRBASiRZRQBAiRZREDGiRZRCUT

9.4 rzrqba

rzrqba estimates the baseline for a spectrum by identifying the peaks, smoothing the off-
peak segments, and joining the smoothed segments with straight lines under the peaks.
The difference between rzrqba and rzrbas is that rzrqba does not use a Maximum
LikelihoodlBayesian 2nd derivative in its peak picker, and does not use Maximum Entropy
to smooth the off-peak baseline segments.
Required user input:

. Data set containing peaks.

. Select a peakshape which represents the peaks in the data set. The peakshape choice
is not very critical for this algorithm.

. When the selected peakshape is positive, rzrqba will assume positive peaks; when
the peakshape is negative, it will assume negative peaks.

Programming notes:

. bsens controls the sensitivity of the peak vs. baseline allocation. It is not an
arbitrary parameter, but is based upon the expected RMS fluctuations at different
spatial frequencies in Normal noise. In theory, it should have worked as reliably
and effectively as psens.

In practice, we have had to adjust bsens for different types of data. In retrospect,
we should have known it would happen. Real baselines do not have anything
approaching a Normal distribution of spatial frequencies!

Start with bsens = 1, and adjust it until the value is right for your type of data.
Larger values of bsens move the baseline/peak junctions in toward the peak centers,
allocating more points to the baseline segments.

rzrqba will perform the adjustment for a new value of bsens very quickly. It does
not need to go back through the peak- picker for this adjustment. Try out rzrqba
in the demonstration program HandleG to see this in action.

. The array ibase returns useful information about peak start/stop regions. ibase[O]
contains the start index of the first peak; ibase[nibasel2] contains the stop index
of the first peak. And so on for up to nibase/2 (start, stop) pairs. ibase is filled
with the value -I (an illegal index value) where it is not being used for (start, stop)
pairs.

9.4. RZRQBA 147

long rzrqba(float ydata[], long n2, float shape[], long n12,
float yout[], float w[], float v[], long *newbas,
double *bsens, long ibase[], long nibase, long *nfwhm, donble *peak, double

*sigma)

Input arrays which must be filled:
ydata, filled between 0 and n2, length n2 + 1

NOTE: ydata will be read only, not altered.
shape, filled between 0 and nl2

NOTE: shape will be read only, not altered.
Additional arrays to be furnished:

yout, length n
w, length n
v, length n
ibas, length nibas

Input variables: n2, n12, newbas, bsens, nib as
n2 is the last position of data in ydata
n2+ 1 is the size of arrays ydata, yout, w, and v
nl2 is the last position of data in shape
newbas is an initialization flag for rzrqba.
bsens is the threshold baseline sensitivity in SIN units.
nibase is the size of the ibas array.

Output arrays:
yout, filled with baseline
ibas, filled between 0 and nibas-I

Output variables:
nfwhm = full-width-at-half-maximum of peakshape in shape
peak = height of peakshape in shape
sigma = RMS noise in the ydata.

Function return values:
rzrqba = 0 if operation was successful

If rzrqba < 0, error occurred
Use rzrerr (page 174) to obtain error text

Description of variables

ydata on input is the raw data array. It should contain the raw data between data points
o and n2. ydata will NOT be altered outside this range.

n2 is the last location of data in the ydata array. n2 is to be furnished as input.

shape is an input array which holds the peakshape of the narrowest spectral feature in
ydata which is of interest to the user. The relevant peakshape is located between

148 CHAPTER 9. BASELINES - RZRBASIRZRQBAlRZREDGIRZRCUT

data points 0 and 012 in shape. If the peakshape is right-side up, positive peaks will
be assumed by rzrqba. If the peakshape is a negative peak, then negative peaks
will be assumed.

.

012 is input and the index of the last data point of the peakshape in shape.

yout is the output baseline. The baseline will be found between data points 0 and n2.
yout must have a size equal to (02+ I).

w is a work array of length = n2+ 1.

v is a work array of length = n2+ 1.

newbas is an input initializationflag. It should be set = I for the initial call. rzrqba
will maintain newbas after that.

bsens controls the sensitivity of the peak vs. baseline allocation. Start with bseos = I,
and adjust it until the value is right for your type of data. Larger values of bsens
move the baseline/peak junctions in toward the peak centers, allocating more points
to the baseline segments.

rzrqba will perform the adjustment for a new value of bsens very quickly. It does
not need to go back through the peak- picker for this adjustment. Try out rzrqba
in the demonstration program HandleG to see this in action.

ibase is filled on output with peak start/stop regions. ibase[O] contains the start index
of the first peak; ibase[nibase/2] contains the stop index of the first peak. And so
on for up to nibase/2 (start,stop) pairs. ibase is filled with the value -I (an illegal
index value) where it is not being used for (start,stop) pairs.

nibase is input as the size of the array ibase. nibase must be twice as big as the number
of peak regions expected. Ifibase is too small to contain a list of all the (start, stop)
peak regions in the data, the final baseline presented in yout will be in error.

nfwhm is output as the number of data points between the half-maxima of the peakshape
feature in shape. nfwhm is computed internally.

peak is output as the height of the peakshape in the array shape.

sigma is output as the standard deviation (root- mean-square) of the noise which was
found in ydata.

9.5. EXAMPLE USING RZRQBA 149

9.5 Example using rzrqba

SPECS is a Raman spectrum of ethyl acetate. The noise statistics are Poisson.

Spectrum file: SPECS

Peakshape file: PEAKS

Using HANDLE:

RAZOR LIBRARY for Spectral Analysis - G There isonly one best way!
Maximum Likelihood (ML) , Maximum Entropy (ME), andBayesianprocessing.

ESM;EntropySMooth. Smooths Normal (thermal/gaussian) noise. ME

PSM;PoissonSMooth. Smooths Poisson (counting) noise. ML.

NSM;NormalSMooth. Smooths Normal noise. ML.

DIV;RazorDi vide. Calculates transmission spectra. ML.

ASH;RazorASharp. Enhances resolution. ML.

DEC;RazorDeconvolve. Maximum Entropy deconvolution. ME/Bay esian.

LUC;RazorLucy. Classic ML deconvolution. ML.

DIF;RazorDeri vative . Derivatives Oth-nth. Bayesian.

PIC;RazorPick. Finds peak posi tions for FIT. ML/Bayesian.

FIT;RazorFit. Fits model peaks to data. ML.

BAS;RazorBase. Finds baseline. ME/Bayesian.

QBA;RazorQuickBase. Finds baseline.

EDG;RazorEdge. Fits baseline to lower edge of data.

NOI;RazorNoise. Finds noise spectrum. ML.

GEN;Generates synthetic peakshape.

SAV;Save result, QUI;Quit.

Choose an operation (3 uppercase characters) : QBA

Enter name of spectrum: SPEC8

Enter name of peakshape: PEAK8

Enter RZRQBA with bsens ; 1. Wait for setup. .

The FWHM of the peakshape is 9

The RMS noise in the data is 122.992

Peak Start/ stop regions:

5/112 112/281 282/286 286/305 308/309
Current baseline sens, BSENS ; 1

Enter new value for BSENS (Enter 0 to quit) :

Press ENTER to return to menu.

150 CHAPTER 9. BASELINES - RZRBAS/RZRQBAiRZREDG/RZRCUT

"nII5
Interh. Ki!IIQIIR"Ith JISDtS-1. It r... pc I,...

728B
y
U 6631

"I 685t
r
S 5t7i'

4!111

432t

'8KI

3178

2!i!K

2817

1448

125.' 157." 189.8 222.2 251.6 287.' 31!1." 351.8 3M2 416.6
X UftIt'S

9.6. RZREDG 151

9.6 rzredg

rzredg tries to find a baseline that cuts undemeath all the data, but does not push up into
the peaks.
Required user input:

. Data set containing peaks.

. Select a peakshape which is at least as wide as the widest peaks in the data set.
The peakshape choice is not very critical for this algorithm.

Programming notes:

. nbsens controls the sensitivity of the baseline allocation.

In practice, we have found it conveneint to be able to adjust nbsens for different
types of data. Start with nbsens = 5, and adjust it until the value is right for your
type of data. Larger values of nbsens move the baseline upward and into the peaks.

152 CHAPTER 9. BASELINES - RZRBASIRZRQBAiRZREDGIRZRCUT

long rzredg(float y[], long n2, float shape[], long n12, float x[],
float w[], float z[], long bnsens, long *nfwhm

Input arrays which must be filled:
ydata, filled between 1 and n2, length n2

NOTE: ydata will be read only, not altered.
shape, filled between 1 and nl2

NOTE: shape will be read only, not altered.
Additional arrays to be furnished:

yout, length n2
w, length n2
v, length n2

Input variables: n2, n12, nbsens
n2 is the last position of data in ydata
n2 is the size of arrays ydata, yout, w, and v
nl2 is the last position of data in shape
nbsens is the baseline sensitivity

Output arrays:
yout, filled with baseline

Output variables:
nfwhm = full-width-at-half-maxirnum of peakshape in shape

Function return values:
rzredg = 0 if operation was successful

If rzredg < 0, error occurred
Use rzrerr (page 174) to obtain error text

Description of variables

ydata on input is the raw data array. It should contain the raw data between data points
1 and n2. ydata will NOT be altered outside this range.

n2 is the last location of data in the ydata array. n2 is to be furnished as input.

shape is an input array which holds the peakshape of the narrowest spectral feature in
ydata which is of interest to the user. The relevant peakshape is located between
data points 1 and nl2 in shape.

nl2 is input and the index of the last data point of the peakshape in shape.

yout is the output baseline. The baseline will be found between data points 1 and n2.
yout must have a size equal to (n2).

w is a work array of length = n2.

9.6. RZREDG 153

v is a work array of length = n2.

nbsens controls the sensitivity of the baseline allocation. Start with nbsens = 5, and
adjust it until the value is right for your type of data. Larger values of nbsens move
the baseline up and into the peak centers.

nfwhm is output as the number of data points between the half-maxima of the peakshape
feature in shape. nfwhm is computed internally.

154 CHAPTER 9. BASELINES ,- RZRBASIRZRQBAlRZREDGIRZRCUT

9.7 rzrcut

rzrcut produces a cubic spline fit to spectral point pairs selected by the user; it is one of
the better ways to fit a smooth curve underneath spectra, since it is quite free from the
inappropriate oscillations which characterize polynomial baseline algorithms.

Required user input:

. A list of x,y data pairs through which the spline curve will pass.

Programming notes:

. The input arrays a and b, which contain the user's x,y pairs, must be sorted in
ascending order of x-values.

9.7. RZRCUT 155

long rzrcut(float yout[], long n2,
float a[], float b[], float c[], float d[], long npts,
double derl, double derr)

Required input arrays:
a = an array of chosen abcissa points, length npts
b = the corresponding ordinate array, length npts

Additional arrays to be furnished:
yout, length ~ n2+ I
c, length npts
d, length npts

Input variables: n2, npts, derl, derr
n2 is the last position of data in yout.
npts is the length of the a, b, c, d arrays.
derl, derr = derivatives of input data, at the left and

right endpoints, = derivatives at 0 and n2.
NOTE: If derl, derr ~ .99E30, then the 'natural' spline,
with the 2nd deriv=O at both boundaries is used.
(If you are unsure abollt what to do, use derl, derr= 1.0E30).

Output arrays:
yout, filled between 0 and n2

Function return values:
rzrcut = 0, if operation was successful

If rzrcut < 0, error occurred
Use rzrerr (page 174) to obtain error text

Description of variables

yout is an output array, containing the spline fit data, between 0 and n2.

n2 is an input value, indicating the last location to be filled in the yout array.

a, b are input data arrays of size npts, containing the selected abcissa and ordinate point
pair values through which the fit must pass.

c, d are work arrays of the same size as a and b.

npts is input, the size of the arrays a, b, c, and d.

derl, derr are input values. They are the derivatives of the spline fit at the left and right
boundaries (a(O),a(npts-l)). If derl, derr ~ l.E30 then the 'natural' derivative at
these points is assumed.

156 CHAPTER 9. BASELINES - RZRBAS/RZRQBAlRZREDG/RZRCUT

Chapter 10

RazorN oise - rzrnoi

Noise Estimation

RazorNoise estimates the noise vector of a data file, using a Maximum Likelihood
smoothing method. The output can be useful in finding a noise variance vector (vnoise)
for an input to RazorFit. If the noise is larger at the ends of a file, or if it is bigger at the
positions of the peaks, one should use that knowledge in the type of model fitting done by
RazorFit. In order to get vnoise from the RazorNoise output, one should (a) average the
values over nun adjacent data points, where nnn is large enough to obtain a meaningful
average (nnn = 10*nfwhm is a good place to start), and then (b) square the result.

10.1 rzrnoi

The required user input for rzrnoi is:

. Data array.

. Peakshapes - either true or estimated. It is not critical that the user choose an exact
peakshape for rzrnoi. When all the peaks in the data are not the same, the user
should select a smooth peakshape characteristic of the narrowest feature of interest
in the data.

Programmer notes:

. rzrnoi requires 3 full-sized arrays, ydata, yout, and trans.

. ydata will not be altered by rzprep outside the data region 0 - n2.

157

158 CHAPTER 10. RAZORNOISE - RZRNOI

long rzrnoi(float ydata!], long n2, float shape!], long n12,
float yout!], float trans!], long *n, long *newpk,
long *nfwhm, double *sigma)

Input arrays which must be filled:
ydata, filled between 0 and n2, length n2+ 1
shape, filled between nO and nl2

NOTE: shape will be read only, not altered.
NOTE: If newpk > I, shape will not be read.

Additional arrays to be furnished:
yout, length n
trans, length n

Input variables: n2, n12, n, newpk
n2 is the index of the last data value in ydata
nl2 is the index of the last data value in shape
n is the size of arrays ydata, yont and trans
newpk indicates whether or not shape is a new peakshape

Output arrays:
yont, filled between 0 and n2

Output variables:
n = amount of array space used

NOTE: if n is returned negative, abs(n) = amount of array space
needed (but not available). Operation not successful.

newpk = n if trans was successfully loaded
nfwhm = full-width-at-half-maximum of peakshape
sigma = RMS noise in ydata

Function return values:
rzrnoi = 0 if successful

If rzrnoi < 0, error occurred
Use rzrerr (page 174) to obtain error text

Description of variables

ydata on input is the raw data array. It should contain the raw data between data points
o and n2. ydata will not be altered outside this range.

ydata must have a minimum size equal to the smallest power of two larger than
(n2+1+3*nfwhm). See the discussion below for n.

n2 is the last location of data in the ydata array. n2 is to be furnished as input.

shape is an input array which holds the peakshape of the narrowest spectral feature in
ydata which is of interest to the user. The relevant peakshape is located between

10.1. RZRN OI 159

data points 0 and n12 in shape. The minimum size of shape is n12+1. nl2 must
always be less than n.

nl2 is input and the index of the last data point of the peakshape in shape. We recommend
that n12+1 be at least 6*nfwhm, and that the peak be approximately centered in the
0,n12 interval.

yout is the output smoothed data array. It will be smoothed between data points 0 and
n2, and should be ignored outside this range.

yout must have a minimum size equal to the smallest power of two larger than
(n2+l+3*nfwhm). See the discussion below for n.

trans is an array of size n which will be used to house the Fourier transform of the
peakshape. The amount of space used in trans is calculated in rzprep. See the
discussion below for n.

trans is either empty or filled, depending on the parameter newpk. Whenever
newpk = I, it is assumed that the contents of shape have been altered, and trans
is properly loaded by rzrnoi. When newpk > 1, it is expected that trans has not
been changed since the last time it was filled. See the discussion below for newpk.

n is input as the amount of space furnished in the yout, and trans arrays.

The function rzsizn will calculate n, the minimum amount of space needed. The
required size of n is determined by n2 and by the width of the peak in the shape
array. Obtain the minimum required n with this call:

n = rzsizn(n2,shape,nI2)

On output, n is the amount of space used for the Fourier transforms in the yout,
and trans arrays. If n is negative on output, the amount of space furnished was
inadequate, and no processing has taken place. If n is returned negative, then abs(n)
is the amount of space needed in the above arrays.

The space required for the Fourier transform is always calculated in rzprep, de-
scribed in Chapter 11. When newpk = 1, rzprep calculates the required size of the
Fourier transform as the smallest power of two larger than (n2+l+3*nfwhm). You
may wish to calculate n in an alternate fashion. See Chapter 11.

NOTE: When rzrnoi returns after successful processing, it fills both newpk and n
with the transfonn size. If you with to process additional data with the same peak-
shape, you need not change either newpk or n, provided that (a) your peakshapes
do not change, and (b) your input ydata sizes (n2+1) do not increase.

newpk on input is an integer flag set which should be initially set to 1. It informs
the peakshape processor that a new peakshape is present in shape. The processor
measures certain parameters of the new peakshape, and then fills the trans array

160 CHAPTER 10. RAZORNOISE - RZRNOI

with the Fourier transform of a properly shifted and scaled peakshape. When the
peakshape processor finishes successfully, it will output newpk = n, where n is the
actual space used in trans.

The peakshape processor uses that valuable commodity, CPU time, for a Fourier
transform. On input, the programmer can circumvent the peakshape processor with
newpk > 1. Whenever rzrnoi is called with newpk > I, ensure that:

(a) The user wants to use the previous peakshape for the current processing, and
trans is not changed.

(b) The size of the array needed to transform the new data set is no larger than the
n used previously. If this second criterium is violated, the output value of rzrnoi
will be rzrnoi = -2.

nfwhm is output as the number of data points between the half-maxima of the peakshape
feature in shape.

sigma is output as the standard deviation (root- mean-square) of the noise which has
been removed by the smoothing process.

10.2. EXAMPLE USING RZRNOI 161

10.2 Example using rzrnoi

SPEC? is an EELS spectrum of magnesium oxide. The noise appears to be Poisson,
judging from the noise vector produced by rzrnoi.

Data file: SPEC?

Peakshape fIle: PEAK7

Using HANDLE:

RAZOR LIBRARY for Spectral Analysis -G There is only one best way!

Maximum Likelihood (ML) , Maximum Entropy (ME) , and Bayesian processing.

ESM=EntropySMooth. Smooths Normal (thermal/gaussian) noise. ME

PSM=PoissonSMooth. Smooths Poisson (counting) noise. ML.

NSM=NormalSMooth. Smooths Normal noise. ML.

DIV=RazorDi vide. Calculates transmission spectra. ML.

ASH=RazorASharp. Enhances resolution. ML.

DEC=RazorDeconvolve.MaximumEntropydeconvolution. ME/Bayesian.

LUC=RazorLucy. Classic ML deconvolution. ML.

DIF=RazorDeri vati ve . Derivatives Oth-nth. Bayesian.

PIC=RazorPick. Finds peak positions for FIT. ML/Bayesian.

FIT=RazorFit. Fits model peaks to data. ML.

BAS=RazorBase. Finds baseline. ME/Bayesian.

QBA=RazorQuickBase. Finds basel ine.

EDG=RazorEdge. Fits baseline to lower edge of data.

NOI=RazorNoise. Finds noise spectrum. ML.

GEN=Generates synthetic peakshape.

SAV=Save result, QUI=Quit.

Choose an operation (3 uppercase characters) NO I

Enter name of spectrum: SPEC?

Enter name of peakshape: PEAK?

Entering RZRNOI. Please wai t for porcessing. ..

The noise array has been computed and may be saved.

Mean values of the noise variance and standard deviations are:

Variance=9220.1 Standard Deviation= 96.02

162

2II1IIZ

2&U1
y
U 2tM1

"I Z16?8
r
S 1!J388

26!IIZ!I

14559

mE

!III1B

'H47

f1U1

Z786

CHAPTER 10. RAZORNOISE - RZRNOI

1._ 75.!i18 158.8 Z2t.5 299.8 373.5 448.8 SZZ.5 !B7.8 671.5
X ~Irs

11I1 . .. &1., /IDa.. ...1_ 1.""" _ia1;lan :
UoIrI_ .911167i'E0&4, ata DeviaU .9!iM76E<8Z

J2Z47

2Z1?8
y

U U893

"I 121116
r
S 1193B

111161

117M

11_

1._ 75.!i18 158.8 Z2t.5 299.8 373.5 448.8 SZZ.5 !B7.8 671.5
X ~Irs

Chapter 11

Service Functions

We have provided source code for many functions, including those which we think you
may wish to modify. The most important ones deal with time and headaches. You will
save a lot of time if you equip yourself with the fastest Fourier transform you can find.
You will avoid headaches if you use (a) rzsizn (Page 172) to get the correct array sizes,
(b) rzrxpk (Page 179) to remove a baseline from, and optionally smooth, your datapeak
or peak shape, and (c) rzrerr (Page 174) to find out what went wrong.

Many additional little service functions are given in source code in rzrserve, so that
you may use them if the need arises. All of the functions in rzrserve are used by
the principal functions of Razor, so do not modify the calls or functions, except for
changes as discussed below.

11.1 Fourier transforms - for speed

Most of the Razor principal functions require a Fast Fourier Transform (FFT). The function
rzrft provides this service for the Razor Library.

All of the principal functions except rzrqba, rzredg and rzrcut call rzrft(float
*a,long n,long iflag) where a is the real n-point array to be transformed, and iflag =
+1 for a forward transform and -I for an inverse transform. The transform is for real
data, and is packed; that is, the last real point is assumed to be found in the imaginary
space of the first word. Normalization of the FFT must be carried out during the inverse,
not forward, transformation.

You may substitute rzrft with any other FFT function that meets the above criteria
for syntax and normalization. We recommend that you obtain the fastest FFT you can
find. We give an example of an alternate rzrft below. It is the one you will want if you
are using the Microway FFT programmed by Doug Rife.

163

164 CHAPTER 11. SERVICE FUNCTIONS

11.2 Transform padding - rzprep

FFTs require that one pay attention to details such as padding out data arrrays until they
occcupy a designated size. The Razor Library assumes power-of-two transforms. rzprep
is the function used for calculating the size of the array which will be used, and for filling
it. We have had many discussions among ourselves about which filling method to use. At
various times in the past 30 years, we have used straight-line fills, cosine fills, and flip-
fills. At present, we agree (pretty well anyway) that a spline-fill is a fair compromise.
The spline-fill uses a minimum amount of space, while avoiding infinite derivatives.

We recognize that some users may wish to use different padding and fill. One alternate
is the flip-fill method, which we have already coded for you. Flip- fill uses array sizes
which are the next power-of-2 greater than twice the data array. The data set is sliced in
half, folded outward past the two end points, and then duplicated. The two ends of the
folded-out data set are joined together with a flat line. If you wish to use flip-fill, just
follow the directions below for replacing the spline fill with flip-fill.

/* ***~

* rzprep(y,nfwhm,nl,n2,n,frac,newpk)

*
*
rzprep is used by rzresm, rzrpsm, rzrpic, rzrash, rzrdiv, & rzrnoi.

*
It prepares the data in array y for the fft.

*
* summary of input :

* nfwhm is width of peakshape

* nl = starting position of data in array y

* n2 = last point of data in array y

*
n = maximum available array sizes (for y, trans, etc.)

*
frac = not used for input

*
newpk=l if this is a new problem (reload trans array from shape)

*
newpk=size of trans if this is a continuing problem (trans is loaded)

*
* first rzprep calculates a size n for the fft (size based on data nl, n2)

* suggested ways to calulate n

* n=n2-nl+l+nfwhm*3 (minimum!)

* n= (n2-nl+l) *2 (maximum!)

*
* then rzprep rounds n up to the next power-of-2

*
* Case A. when newpower-of-2 larger than array sizes (=input value of n) ,

* sets n = - power-of-2 calculated for fft

* no action taken on y

*
return (-1)

11.2. TRANSFORM PADDING - RZPREP

*
* Case B. whennewpower-of-2 is i= array sizes:

*
* if input newpk=l,

*
prepares y for fft in an array of size n

* using either a flip-fill or a cos-fill method

*
flip-fill uses more space, but is more robust for

*
very noisy data sets

* cos -fill uses less space, and is implemented here

*
*

(if you wish to use flip-fill, comment out the cos-fill code

* (in the subroutine, and un-comment flip- fill code.)

*
* output n = power-of-2 used for fft

* return(O)

*
* if input newpk" 1 ,

*
this is a sign that trans is already loaded.

*
rzprep assumes that current value of newpk is size of trans,

*
and rzprep will attempt to load y

*
for a transform wi th that same size.

*
however, if new data needs bigger transform size,

* no action taken on y

* return (-2)

*
if old transform size is satisfactory,

*
y is prepared for fft

*
return(O)

*
* if input newpk=O,
* This value for newpk is no longer used to indicate that the

* shape and trans arrays are unchanged.

* Instead of entering newpk=O, leave newpk alone to

* indicate trans should not be reloaded from shape.

* Else, set newpk=l for reloading.

*
*

Summary of output:

*
n=size used for fft

*
(n is negative if arrays not big enough)

* frac=fraction of prepared array y which contains noise

*
newpk=unchanged by rzprep if y is successfully prepared

*
* rzprep = 0 when y is successfully prepared for fft

165

166 CHAPTER 11. SERVICE FUNCTIONS

* = -1 when array sizes (input n) not big enough for desired fft.

*
(You need to do 1 thing: provide bigger arrays.

* Look at -n returned. Allocate arrays this big,

* then change -n to n.)

* = -2 when desired fft will be bigger than current size of trans.

* (You need to do 2 things:

* 1. Set newpk=l, to reload trans from shape.

* 2. Look at -n returned. Allocate arrays this size,

* then change -n to n.)

* = -3 when incoming newpk=O. This flag is no longer used.

*
* NOTE: When rzprep iGO, the value is passed directly back to the

*
programmer as the return value of the routines

*
rzresm, rzrpsm, rzrpic, rzrash, rzrdi v, & rzrnoi.

*
**

/* rzprep uses Razor Library functions

rzpowr
*/
#pragma comment (exestr," (c) Copyright 1991-96 SpectrumSquareAssociates, Inr '
long rzprep (float y [], long nfwhm, long n1, long n2, long *n,

double *frac, long *newpk)

long i, nhold;

long m;
double arg;

long nwidth;

double slout, slin;

float z [3] ;

float a [3] ;

float b [3] ;

float u [3] ;

*frac = 1.0;

nhold = *n;

/* BEGIN code for cos-fill and for spline-fill PART 1/2

* This is the code for a cos-fill. If you use this fill method,

* replace part 1 of the flip- fill code in this function

* wi th the code shown here:

*/
*n = n2 -n1 +1 +nfwhm*3;

/* END code for cos-fill and spline-fill PART 1/2

11.2. TRANSFORM PADDING - RZPREP 167

*1

1* BEGIN code for flip-fill PART 1/2

*
This is the code for a flip-fill. If you use this fill method,

*
replace part 1 of the cos-fill code in this function

* wi th the code shown here:

*1
1*

*n = (n2 - n1 + 1) *2;

*1
1* END code for flip-fill PART 1/2

*1

if(*n i=n2)

*n = n2 + 1; 1 *do this because not allowed to move data wi thin y * 1

m = 1;
rzpowr (n, &m) ;

if (*n i= 0) 1* trouble from rzpowr *1
return (-1) ;

if (*n G nhold) - 1* arrays aren't big enough for the job *1

*n=-*ni
return(-1);

"
if (*newpk G 1) - 1* trans is loaded. Need to keep same size. *1

if (*n G *newpk)

*n = -*lli

return(-2);

"

*n = *newpk;

"

1* BEGIN code for cas-fill PART 2/2

* This is the code for a cas-fill. If you use this fill method,

* replace part 2 of the flip-fill code in this function

* wi th the code shown here:

*1
1*

arg = 3.141591 (*n-n2+n1-1) ;

for (i = n2+1; i i *n; i++)-

y[i] = y[n2] + (y[n1]-y[n2])*(1.0 - cos (arg* (i-n2))) 12;

168 CHAPTER 11. SERVICE FUNCTIONS

"

for (i = 0; ijn1; i++)-
y[i] =y[n2] + (y[n1]-y[n2])*(1.0-cos(arg*(i+*n-n2)))/2;

"
*frac = (double) (n2 - n1 + 1) 1 (double) *n;

*1
1* END code for cos-fill PART 2/2
*1

1* BEGIN code for spline-fill PART 2/2

* This is the code for a spline-fill. If you use this fill method,

*
replace part 2 of the cos-fill or flip-fill code in this function

* wi th the code shown here:

*1
*frac = (double) (n2-n1+1) 1 (double) *n;

nwidth = MAX ((nfwhm/2), 3) ;

z [0] = n2;

z [2] = n1 + *n;

z[l] = (z[O] +z[2])/2.0F;

slout = 0.0;

slin = 0.0;

a[O] = O.OF;

a [1] = O. OF;

for (i=O; ii nwidth; i++)-

a[O] += y[n2 -i];

slout += y [n2 - i - nwidth] ;

a [1] += Y [n1 + i] ;

slin += y [n1 + i + nwidth] ;

"
slout = a[O] - slout;

slin = slin - a [1] ;

slout 1= (double) nwidth*nwidth;

slin 1= (double)nwidth*nwidth;

a[O] 1= (float)nwidth;

a [2] = a [1] 1 (float) nwidth;

a[l] = (a[O] +a[2])/2.0F;

rzspbs(z,a, 3, slout, slin, b, u);

for (i = n2 + 1 ; i i *n; i++)-

rzspbt(z, a, b, 3, (double)i, &arg);

y[i] = (float)arg;

"
for (i = *n ; i i = *n + n1 - 1; i++)-

11.2. TRANSFORM PADDING - RZPREP 169

rzspbt(z, a, b, 3, (double}i, &arg);

y [i - *n] = (float) arg;

"
/* END code for spline-fill PART 2/2
*/

/* BEGIN code for flip-fill PART 2/2

* This is the code for a flip-fill. If you use this fill method,

* replace part 2 of the cos-fill code in this function

* wi th the code shown here:

*/
/*

*frac = (double) (n2-nl+l) *2/ (double) *n;

ncent = (n2 + nl) /2;

for (i = 0; i i nl; i++)-

y [i] = y [ncent] ;

"
for(i=n2+1;i *n;i++)-

y [i] = y [ncent] ;

"
for (i = 1; i i= ((n2 - nl + 1) /2) ; i++)-

if((nl-i) <.=0)-
y[nl - i] = y[nl + i]

"
else-

y [*n + nl - i] = y [nl + i] ;

"
if ((n2 + i)

y[n2+i]
i = (*n - 1) }-

=
y [n2 - i] ;

"
else-

y [i - *n + n2] = y [n2 - i] ;

"

"
*/
/* END code for flip-fill PART 2/2

*/
return(O) ;

"
/**~
/* ***~

170 CHAPTER 11. SERVICE FUNCTIONS

11.3 rzparm

If your peakshapes are symmetric, you should use this function as given in rzrserve.c,
without further ado. However, when one has asymmetric peakshapes, the question of how
to identify the center becomes important. Is the center at the highest point, or at the center
of mass? rzparm in rzrserve.c uses a center-of- mass criterium for setting the center
(fiducial point) of the peakshapes.

.

An alternate way to calculate the fiducial point is shown in the form of rzparm given
below. If you plan to use this alternate fOlm, be sure that your peakshapes are smooth. A
highest-point criterium is easily undermined by noise.

/**~

void rzparm (float shape [] ,long *nc, long *nh, double *pkhi te, long *nfwhm,

long *minwid, long nIl, long n12, long newpk)

* rzparm(shape,nc,nh,height,nfwhm,minwid,nll,nI2,newpk) *
* *
* when newpk G 1,no action by rzparm, *

* assume parrns have already been calculated *

* *

* when newpk = 1: *
* a NEW peakshape is presented in array shape, *

* shape is filled between data points nIl and nl2

* *
*

*
rzparm calculates center-of -mass of peak = nc

* highest point in peak = nh *

* full-width-at-half -max = nfwhm

* 2* (minimum half-width) = minwid

* (minwid = nfwhm for symmetric shapes)

* height of peak = pkhite *

*

*
*

*

* *

* fiducial point nc = center of mass of peak *
* user may wish to calculate nc in al ternate fashion *
**

/* rzparm uses Razor Library functions
rzamin
rzacon
rzanor
*/
#pragrna comment (exestr, "

(c) Copyright 1991- 92 Spectrum Square Associates, Ir

void rzparm (float shape [],long *nc, long *nh, double *pkhite, long *nfwhm,

11.3. RZPARM

long *minwid, longnl1, long n12, long newpk)

long i, 11, 12, negpos;
float half, halfarea, height, ebase, adjust, yvalue;
double shmin, shmax, shsum;

double done;

if (newpk ,,1) return;

done ~ 1. 0 ;
rzamin(shape, &shmin, nl1,n12);
rzamax(shape, &shmax, nl1,n12);
negpos ~ 1;

half ~ shape [nll] + shape [n12] - (float) (shmin*2) ;

half ~ (float) fabs ((double) half);

half area ~ (float) (shmax*2) - shape [nl1] - shape [n12]

halfarea ~ (float) fabs ((double)halfarea);

if (half" half area)-
negpos ~ -1;

rzmcon (shape, -done, nl1, n12) ;
shmin ~ - shmax;

"
rzasum(shape, &shsum, nl1,n12);

ebase ~ shape [nl1]

ebase +~ shape [n12

ebase /~ 6.0F;

half ~ ebase* (n12 - nl1

if (shsum
"

half)-

adjust ~ 1.0F;

+ shape [nl1 + 1] + shape [nl1 + 2];
- 2] + shape [n12 - 1] + shape [n12]

+ 1) ;

"
else-

adjust~O.OF;

"
shsum ~ shsum - half*adjust;

halfarea ~ (float) (shsum/2) ;

half ~ O. OF;

height ~ O. OF;

for(i ~nl1; i i~n12; i++)-

yvalue ~ shape [i] - ebase*adjust;

171

172 CHAPTER 11. SERVICE FUNCTIONS

if (yvalue .0; height)-
height; yvalue;

*nh ; i;

"
half +; yvalue;

if (half i halfarea

*nc
;; i + 1 i

"

/* SOMETIMES NC IS TOO BIG - WHEN THERE IS LOTS OF NOISE, AND

* WHEN THE BASELINE IS CURVED * /
if (*nc ;; n12 + 1)

*nc = *nhi
i ; nIl;

11 ; i;

yvalue ; height/2. OF + ebase*adjust;

while (shape[i] i; yvalue && i i n12) -
11; i;
i += 1;

"

i ;
*nh + 1;

12 ; i;

while (shape [i] .0yvalue) -
12; i;

i +;; 1;

"

*minwid; MIN((*nc - 11), (12 - *nc))*2;
*nfwhm; MAX ((12 -11), 1);

*pkhi te ; height * negpos;

if (negpos ;; -1)

rzmcon(shape, -done, nIl, n12);
return;

"
/**~

11.4 rzsizn tells array sizes.

/**..
/*

11.4. RZSIZN TELLS ARRAY SIZES. 173

long rzsizn (long n2, float shape [] ,long n12) ;

long rzsizn(long, float [] ,long);

* The function rzsizn tells size needed for arrays.

*
(input) n2 = last index of data, (i.e., ydata has size n2+1)

*
(input) shape = shape array containing peakshape

* which is needed to calculate nfwhm

*
(input) n12 = index of last data point in shape

*
(output) rzsizn = minimum size needed for arrays

*/
/**~
#pragma comment (exestr," (c) Copyright 1991-92 Spectrum Square Associates,

.

long rzsizn(n2, shape, n12)

long n2 ;

float shape []

long n12 ;

double height;

long n, nh, nfwhm, minwid, newpk;

newpk = 1;

rzparm(shape,&n,&nh,&height,&nfwhm,&minwid,O,n12,newpk) ;

/* BEGIN code for cas-fill and for spline-fill

* This is the code for a cos-fill. If you use this fill method, replace

* the flip-fill code in this function with the code shown here:

*/
n = n2 +1 +nfwhm*3;

/* BEGIN code for flip-fill

* This is the code for a flip-fill. If you use this fill method, replace

* the cos-fill code in this function with the code shown here:

*/
/*
n = (n2 + 1)

*
2 ;

*/
/* END code for flip-fill

*/

/* Addition 1/21/96 - guard against cases where n12 U. n2! */
if ((n12 + 1) G n)

n=n12+1;
nh = 1;
rzpowr(&n,&nh) ;

return (n) ;

174 CHAPTER 11. SERVICE FUNCTIONS

" /* end of function */

/***

11.5 Error messages from rzrerr.

Use the function rzrerr to print out the error text for any function which returns a value
< O. Translate the error text into another language if needed.

/* ***~

* rzrser23.c

* **7
/**j

#include istring.hc'.

#include "razor.h"

/* ***;

#pragma comment (exestr," (c) Copyright 1991-96 Spectrum Square Associates, Inc.'

void rzrerr (ierror, errtxt)

long ierror;

char *errtxt;

char *errlist [20] -
"RAZOR LIBRARY 3.0 (C) 1991-96 Spectrum Square Associates Inc.",

"Array sizes are not big enough for Fourier transforms." ,

"Requested transform size c'. previous size. Set newpk=l." ,
"Newpk must contain size of trans array." ,

"Baseline function error. (kmaxj 1)",

"Peak shape too narrow. Use finer data/peak shape sampling." ,

"# variables exceeds # datapolongs." ,

"# variables exceeds matrix dimensions." ,
"Error in peak type input." ,

"Peak type not yet implemented.",

"Unable to achieve better chisq.",

"Unstable. Try different shapes. Did you miss a peak?" ,

"Degenerate. Did you place two peaks too close together?" ,

"Covariance matrix has negative diagonals. Suggest more iters.",

"Peak shape too wide for this function." ,

"Too many negative data po longs. Need positive data." ,

"Unable to establish RMS noise value. Peakshape too narrow?" ,

"Solution did not converge." ,

11.6. RZPKST - SORTS PEAKS FROM RZRPIC/RZRBAS 175

"Only File-basedbaseline (background) permitted in bunch mode." ,

"Function error. Contact Spectrum Square Associates, Ithaca NY, USA"" ;

if(ierror j= 0)

ierror = - ierror i

if (ierror G 19)

ierror = 19;

strcpy(errtxt, errlist [ierror]

return;

"
/**~

/**~

* END module rzrser23 *
***~
/**~

/* end modules */
/* ***~
/* ***;

* end of rzrserve. c

***;

11.6 rzpkst - Sorts peaks from rzrpic/rzrbas

/***

/* BEGIN module rzrser25. c

***~

/* ***~

/**~

/*
voidrzpkst (longn, long locpks [],longnloc, float sigpks [], longnsig,

long iway, long itest)

* sorts arrays locpks (0, . . .n-1] , sigpks [0, . . n-l] , sigpks [nloc, . .nloc+n-l]

* IF IWAY=l, SORTS UP

* IF IWAY=-l, SORTS DOWN

* IF ITEST=l, SORTS ON LOCPKS

* IF ITEST=2, SORTS ON SIGPKS

* IF ITEST=3, SORTS ON SIGPKS (NLOC, .)

* IF ITEST=4, SORTS ON SIGPKS (NLOC*2, .)

*/
/* ***7

176 CHAPTER 11. SERVICE FUNCTIONS

void rzpkst (long n, long loepks [] ,long nloe, float sigpks [] ,long nsig,

long iway, long itest)

long i, j, nsort;

float a, atest, b, e, d, oetest;

nsort = n;

if (nsort i,nsig)

nsort = nsig;

if (nsort i,nloe)

nsort = nloe;

fort j = 1; j i nsort; j++)-

a = loepks [j];

b = sigpks [j] ;

if (nloe + j i nsig)

e = sigpks [nloe + j] ;

if (nloe*2 + j i nsig)

d = sigpks [nloe*2 + j] ;

for (i = j - 1; i i,= 0; in)-

atest = a;

oetest = loepks [i] ;

if (itest == 2)-

atest = b;

oetest = sigpks [i] ;

"

if (itest == 3 && nsig i,=nloe*2)-

atest = e;

oetest = sigpks [nloe + i] ;

"

if (itest == 4 && nsig i,= nloe*3)-

atest = d;

oetest = sigpks [nloe*2 + i] ;

"
if (iway i, 0 && oetest

i= atest
goto L_10;

if (iway i 0 && oetest i,= atest

goto L_10;

loepks [i + 1] = loepks [i] ;

sigpks [i + 1] = sigpks [i] ;
if (nloe + i + 1 i,= nsig)

goto L_11;

sigpks [nloe + i + 1] = sigpks [nloe + i] ;

11.7, RZDFIL - LOADS PEAKS FROM RZRPICIRZRBAS INTO DATMAT 177

if (nloc*2 + i + 1 G= nsig

goto L_ll;

sigpks [nloc*2 + i + 1] = sigpks [nloc*2 + i]

L 11:

"
i = -1 i

L 10:
locpks [i + 1] = (long) (a);

sigpks[i+l] =b;
if (nloc + i + 1 G= nsig)

gotoL_12;
sigpks [nloc + i + 1] = c;

if (nloc*2 + i + 1 G= nsig

goto L 12;

sigpks [nloc*2 + i + 1] = d;

L 12:

"
return;

" / *
end of function

* /

/***

11.7 rzdfil - Loads peaks from rzrpic/rzrbas into datmat

/*******~~**
/*'" BEGIN module rzrser25 ,c .

* * * * * * * * * * *
'~ *

.-:k
* * * * * * * * * * * * * * * * * * * *

*?,
J"

/*************~~***************************~*~***********************~
'.

/* * *** *** **** * **~* ***** *** *** *** ** * * ****.******* * * * ** **** * *** * ** * * * *?

/*
void rzpkst (long n, Ion

long iway, long itest)

ocpks [],longI}.loc, float sigpks [],longnsig,

* sorts arrays locpks [0,] ,.!iigpks[0,
'

,n-l] , sigpks [nloc,
'

.nloc+n-l]

* IF IWAY=l, SORTS UP

* IF IWAY=-l, SORTS DOWN

* IF ITEST=l, SORTS ON LOC:PKS

* IF ITEST=2, SORTS ON S!GPKS

* IF ITEST=3, SORTS ONSIGPKS (NLOC,
'

, ,)

* IF ITEST=4, SORTS ON SIGPKS (NLOC*2,
'

, ,)

178 CHAPTER 11. SERVICE FUNCTIONS

*/
/**~
void\zpkst (long n, long loepks [],long nloe, float s' pks [] ,long nsig,

long i(,.,.p.y,long itest) .

_

1
. \

ong l,] i\nsort ;

float a, a\est, b, e, d, oetest;

nsort = n; ,

if (nsort l nSig

nsort = nsig;

if (nsort l nloe

nsort = nloe;

for (j
= 1; j i nsort; j ++)-

a = loepks [j] ;

b = sigpks [j] ;

if (nloe + j i nsig)

e = sigpks [nloe + j] ;

if (nloe*2 + j i nsig)

d = sigpks [nloe*2 + j] ;

for (i = j - 1; i G= 0; i --)-

atest = a;

oetest = loepks [i]

if(itest == 2)-
atest = b;

oetest = sigpks [i] ;

/
/

/
/
/
/

/
/
,

,/

I

"
if(itest == 3 &&nsig l= nloe/2)-

atest = e; .

i
oetest = sigpks [nloe + i] ;

/
" I
if (itest == 4 && nsig l= ,�loe*3)-
atest = d;

oetest = sigpks [nloe*2/+ i] ;

"
if (iway G 0 && oetes\, i = atest
goto L_10; .

if (iway i 0 && oetest l= atest

goto L_10;
loepks [i + 1] = loepks [i] ;

sigpks [i + 1] = sigpks [i] ;

if (nloe + i + 1 l= nsig)

/

..

"
.

"

Rzrser24.c
f(ZDfIL 6/10102

1*
**
~ rzrser24.c
* ***
*1
1* copyri~ht (c) 1991-2002 Spectrum Square Associates, Inc., Ithaca NY

All rl ghts reserved.
14850

*1
/* **
*1
#include <math.h>

#include "razor.h"
j* **
*1
~* ** :

..
Rzdfil fills the data matrix datmat[] needed for RazorFit.

using the output of the peak-picker, plus info about
the desired peak type, and desired baseline type.
NOTE: rzdfil always uses the first naccept peaks in locpks,

and sets all peaks to same type.

*

*..

*
* Input: datmat[] [40] , dimensioned to datmat[naccept+2] [40] if basetype=O,

else dimensioned to datmat[naccept+3] [40]
locpks from rzrpic or rzrbas
npick = number of peaks found by rzrpic or rzrbas
si~pks from rzrpic or rzrbas
nSlg = size of sigpks, as per rzrpic, rzrbas
naccept = number of peaks accepted(first naccept peaks of

nbunch = max number of peaks to be processed in each bunch.
if nbunck = 0, ALL peaks will be processed simultaneously

peaktype = type from peak catalog
ffixc, ffixh, ffixw, ffixa = fix\vary fla~s for center, height,

wldth, 4th (asymmetry)

= ° for fixed, 1 for variable
basetype = baseline type (° = no baseline)

= chosen from baseline catalog.
ffixbO, ffixb1, ffixb2, = fix/vary for baseline parms

= ° for fixed, 1 for

ymin = minimum value in data (used to set up baseline parms)
xstart, xstep = starting x-value, x-longerval, (user-coordinates)

..

*
*..
*locpks..)
*
*
*..

*
p,arm
..
..

*
*
vari abl e.
~.

"
* of first data point in data which will be processed
"

* ***
*1
1* void rzdfil(float datmat[] [40] ,long locpks[],long npick,float
sigpks[] ,long nsig,
long naccept,long nbunch,long peaktype,
long ffixc,long ffixh,long ffixw,long ffixa,
long basetype,long ffixbO,long ffixb1,long ffixb2,double ymin,
double xstart,double xstep) "I
EXPORT32 void FAR EXPORT rzdfil(float datmat[] [40] ,long FAR *locpks,
long npick,float FAR "sigpks,long nsig,
long naccept,long nbunch,long peaktype,
long ffixc,long ffixh,long ffixw,long ffixa,
long basetype,long ffixbO,long ffixb1,long ffixb2,double ymin,
double xstart,double xstep)
{

long npks, i;
1*

about filling datmat

DATMAT will have naccept+2 rows. Each row of DATMAT has 40 positions.
In DATMAT, naccept is the number of peaks, including the baseline, if

1

* * The
*
*
..

"
.

..

..

..

*
*
..

*
*
*
*

Rzrser24.c 6/10102

any.

FIRST ROW of DATMAT looks like this:
datmat[O] [O]=npks
datmat[O] [l]=nbunch
datmat[O] [2]=bunch flag
datmat[O] [3]=iter
datmat[O] [4]=reduced chisq
datmat[O] [5]=chitest
datmat[O] [6]=cnvg
datmat[O] [7]=cnvgtest
datmat[O] [8]=USED TO FORCE A USER-DEFINED SCALING, IF NOT ZERO
datmat[O] [9]=J1, first peak of current bunch
datmat[O] [10]=J2, last peak of current bunch
datmat[O] [ll]=reserved for rzupdt (xstart)
datmat[O] [12]=reserved for rzupdt (xstep)

* The first row of DATMAT transmits and receives program control data.
.. If you wish to process the peaks all-at-once,
.. only the first position datmat[O][O] must be filled on input.

* If you wish to process the peaks in bunches,
* fi 11 datmat [0] [0], datmat [0] [1], datmat [0] [2] .

* set everything else to O.O!
* except that you are allowed to usurp datmat[O][11] and
datmat[O] [12]

* for your own use. One possible use is in rzupdt. Rzupdt
* set limits in data-point coordinates. But you can use.. xstart and xstep to set limits in user-coordinate.

*1
1* Filling the DATMAT control vector *1
npks = naccept;
if(basetype > 0)

npks += 1;
datmat[O][O] = (float)npks; 1* Number 'peaks', including baseline *1
datmat[O] [1] = (float)nbunch;
if(nbunch > 0){

datmat[O] [2] 1.0F;
}

else{
datmat[0][2] = O.OF;

}
datmat[0][3] = O.OF; 1* Iter: YOU MUST set iter=O for start!!!! *1

datmat[0][4] = O.OF; 1* And set everything else to zero too. *1
datmat[O] [5] O.OF;
datmat[O] [6] O.OF;
datmat[0][7] = O.OF;
datmat[O] [8] O.OF;
datmat[O] [9] O.OF;
datmat[O] [10] O.OF;
datmat[O] [11] (float)xstart; 1* Fill and use as desired. *1
datmat[0][12] = (float)xstep; 1* Fill and use as desired. *1
datmat[O] [13] O.OF;
datmat[0][14] = O.OF;
datmat[O] [15] O.OF;
datmat[O] [16] = O.OF;
datmat[O] [17] O.OF;
datmat[O] [18] O.OF;
datmat[O] [19] O.OF;

1*
OUTPUT: DATMAT uses the first row to keep track of what it is doing

from one iteration to the next. In this way, we can return
control to you so that you may display output each
iteration if you wish. Most likely, you will only be
longerested in the values of ITER and CHISQ.

*
*..

*
*

2

*
*
..

*
..

*
* *
*
..

*
..

* .. TYPE

* * C
*
*

.. H
* * W
*
*
* * A
*
..

* P
*
~arameter,

*
* *
*
*
*
..

"

*
*
*
..

*
*
*
*
*

*
"

..

* *
.. ..

* "

* *
..

*
*
*1

1*

..

..

*1

Rzrser24.c 6/10102

* * SUBSEQUENT ROWS of DATMAT:

* Each subsequent row of DATMAT delivers and returns data about ONE peak.

* In this example program, for simplicity we assume all peaks will be of
.. the same type. This is certainly not necessary or even usually
desirable.

*
on input, you will fill 11 of the 40 positions:

type, c, fixc, h, fixh, w, fixw, a, fixa, p, fixp, [], []

on output, you will be longerested in all 40 entries:
type, c, errc, hi errh, W, errw, 3, erra, P, errp, area, errarea

Modify the loading procedure to suit your needs.

*

HERE IS HOW INPUT IS CARRIED OUT

The user selects the type of each peak from the list below.
C = estimated center position.
In this example, the center comes from RZRPIC (in LOCPKS).
H = estimated height.
W = estimated width.
The initial height and width of each peak is set
using information from RZRPIC, stored in SIGPKS.
A = fourth parameter (often an asymmetry).
Fourth parameters are initialized after the TYPES are known.
P = fifth parameter.
If you have written a peak function which has a fifth

then you must set initial values for P.

fixc, fixh, fixw, fixa, fixp
fix = 0 for parameters which are fixed (not variable).
often, you will want to constrain certain peakshape parameters
to be positive. In this example, we will constrain all
shape parameters to be positive.

The rules are as follows:

fix 0 =>
fix > 0 =>
fix < 0 =>
fix +1 =>
fix = -1 =>
abs(fix)=2

(see function rzupdt in rzserve.c for the
code that enforces them).

Initial value of parameter never changes
Parameter> O.
parameter may have either sign
0.0 <= parameter <= infinity
-inf <= parameter <= inf

Asymmetry parameter DATMAT(8,I) is bounded in rzupdt
by fixed limits (0,1) or (-1,+1)
Width or position parameter (DATMAT(6,I) or* abs(fix)=3

DATMAT(2,I)

* is bounded in rzupdt

of course, your spectrum may not be the sum of only positive definite
shapes; if not, then be sure to set FIX=<O for those hei9hts which
may be negative (an example is a derivative spectrum). wldths (and
mixin9 coefficients for, e.g., Gauss-Lorentz sum peaks), must be
positlve; for these, set FIX=>O.
If a shape parameter should NOT be altered by the program, set FIX=O.

of course, you may set up your own rules by modifying rzrupdt.

LOADING DATMAT(*,2.. .NACCEPT)
NOW load in the parameters from RZRPIC to furnish
default estimates of position, width, mixture fraction of peak:

3

Rzrser24.c 6/10102

1* must sort locpks and sigpks to load peaks in order of increasing
position (in locpks), If wish to process in bunch-mode

*1
if(nbunch > a)

rzpkst(naccept, locpks, npick, sigpks, nsig, 1L, 1L);

fore i = 1; i <= naccept; i++){
datmat[i][O] = (float)peaktype;
datmat[i][l] = (float)locpks[i - 1];
RZRPIC *1
datmat[i] [2] = (float)(-3.0*ffixc);
*1

if(datmat[O] [2] > O.)
datmat[i][2] = (float)(-4.0*ffixc);

datmat[i][3] = sigpks[npick + i - 1]; 1* heights *1
datmat[i][4] = (float)(1.0*ffixh); 1* for positive

II testing
Ildatmat[1][4] = (float)(9.0*ffixh);
Ildatmat[i][23] = datmat[i][3]/2.0;
Ildatmat[i][24] = datmat[i] [3]*2.0;
II end testing

if(datmat[i] [3] < O.OF)
*1

1* peak types *1
1* positions, from

1* for bounded positions

heights *1

1* for positive heights *1

1* for negative heights

datmat[i] [4] = (float)(-1.0*ffixh);

1* TESTING - FOR 20 CODE *1
if(locpks[i-1] < O.OF){

datmat[i] [19] = -1.0F;
datmat[i][l] = -(float)locpks[i-1];
datmat[i][4] = O.OF;
}

else{
datmat[i] [19] = 1.0F;
}

1* END TESTING - FOR 20 CODE *1

datmat[i] [5] sigpks[npick*2 + i - 1]; 1* widths *1
datmat[i][6] = (float)(3.0*ffixw); 1* for bounded widths
> a *1
datmat[i][7] = O.OF;
datmat[i][8] = O.OF;
datmat[i][9] = O.OF;
datmat[i][10] = O.OF;

datmat[i][ll] = O.OF;
datmat[i][12] = O.OF;
datmat[i] [13] = O.OF;
datmat[i][14] = O.OF;
datmat[i][15] = O.OF;
datmat[i][16] = O.OF;
datmat[i] [17] = O.OF;
datmat[i][18] = O.OF;
datmat[i][19] = O.OF;
if(peaktype == a)

datmat[i][8] = (float)(-2.0*ffixa);
if(peaktype == 3){
datmat[i] [7] = .5F;
*1

datmat[i] [8] = (float)(2.0*ffixa);

if(peaktype == 4){
datmat[i][5] *= 2.0F;

datmat[i][7] = datmat[i] [5];
datmat[i][8] = (float)(3.0*ffixa);

1* mixing parm for GauSS/Lrnz

}

}
if(peaktype == 5 I I peaktype == 6){

datmat[i][7] = O.OF;
datmat[i] [8] = (float)(-2.0*ffixa);

}

4

Rzrser24.c 6/10102

if(peaktype == 7){

datmat[i][7] = 1.0F;
datmat[i][8] = (float)(1.0*ffixa);
datmat[i][9] = O.OF;
datmat[i] [10] = (float)(-1.0*ffixa);

if(peaktype == 8){
datmat[i][7] = 2.0F;
datmat[i][8] = (float)(1.0*ffixa);

if(peaktype == 9){

datmat[iJ[3] = O.lF;
datmat[i][4] = 1.0F;
datmat[i] [5] sigpks[npick*2+i-1];
datmat[i] [6] (float)(3.0*ffixw);
datmat[i][7] = sigpks[npick*2+i-1];
datmat[i][8] = (float)(3.0*ffixw);
datmat[i] [9] (float)sqrt((double)(sigpks[npick*2+i-1]/(16.0*
3.1416*locpks[i-1])));
datmat[i] [10] = 1.0F;
datmat[i][ll] = 1.0F;
datmat[i] [12] = 1.0F;

}
if(peaktype == 10){

datmat[iJ[7] = sigpks[npick*2+i-1];
datmat[i][8] = (float)(3.0*ffixw);

}
if(peaktype >= 100 && peaktype < 200)

datmat[i][8] = (float)(-2.0*ffixa);

}

}

}
if(basetype == 200){

datmat[npks][O] = (float)basetype;
fore i = 1; i <= 19; i++){
datmat[npks][i] = O.OF;
}

}
else if(basetype >= 201 && basetype <= 204){

datmat[npks][O] = (float)basetype;
datmat[npks] [1] = (float)ymin;

datmat[npks][2] = (float)(-1.0*ffixbO);

fore i = 3; i <= 19; i++){
datmat[npks][i] = O.OF;
}

if(basetype > 201)
datmat[npks][4] = (float)(-1.0*ffixb1);

if(basetype > 202)
datmat[npks] [6] = (float)(-1.0*ffixb2);

}
else{

}
return;

}
1* **
* END module rzrser24 *
** **
*1

5

11.8. RZRXPK - REMOVES BASELINE, SMOOTHS PEAKSHAPE 179

got

~
l;

sigpk nloc + i + 1] = sigpks [oc + iJ ;

if (nlo ..*2 + i + 1 G= nsig)

,
goto L_l1;

sigpks [nloc*2 + i + 1] = si ks [nloc*2 + i] ;

L 11: /,
/

11

i = -1 i ,

L 10: :
- " f

locpks [i + 1] = (loP) (a) ;

sigpks [i + 1] = b; / \,

if (nloc + i + 1 G

7
inSl"g)

..goto L 12;
.

'.

sigpks[nloc + i/4 1] = c;\

if (nloc*2 + i
f

1 G= nsig
.

goto L_12; !

sigpks [nloc*;! + i + 1] = d;

L 12: !

i
!

II !
return; I

I
11 !* end oflfunction *!

/***

11.8 rzrxpk - Removes baseline, smooths peakshape

rzrxpk helps in extracting a peakshape out of a data file. The baseline is automatically
removed, and both a baseline-corrected peakshape and a smoothed, baseline-corrected
peakshape are made available.

/**;

!* Razor X Peak
long rzrxpk (float shape [] ,long n12, float Y [] ,float w [] ,float x [] ,long n,

double *bsens, long *nfwhm, double *sigma) ;

*
*

EXTRACTS A PEAKSHAPE BY REMOVING BASELINE AND (OPTI ONALL Y) SMOOTHING

*
* INPUT:

* SHAPE IS THE INPUT DATA, CONTAINING PEAKSHAPE

* NL2 is the index of the final point in shape (0,n12)

* x,W fY = WORK ARRAYS

-
-

180 CHAPTER 11. SERVICE FUNCTIONS

* N = is the size of the work arrays. Require N 6= NL2+1

BSENS = baseline sensitivity (Try *bsens = 1. 0)*
*
* OUTPUT:
* Y = XTRACTEDPEAK
* W = SMOOTHED-EXTRACTED PEAK

* X = BASELINE
* NFWHM = WIDTH OF PEAK

* SIGMA = RMS NOISE IN DATA

*
*/
/* ***~

11.9 New peakshapes

RazorFit gives you a fairly good selection of peakshapes, but we recognize that there are
many others we have left out. If you need something else, follow the templates, and fill
up the empty peakshape functions of rzrserve.c. RazorFit is set up to call them.

The peakshape functions are not particularly fast. They generate the peak models by
making a separate call for each data point. This allows RazorFit to do its calculations
without allocating many more arrays. It was a matter of trading time for space. The
faster method requires many work arrays, each the same size as the original data set. The
number of ADDITIONAL work arrays needed is equal to the number of parameters in
the model!

If your data sets are small, or if you have lots of space, we encourage you to call us.
There is always a Next Time....

2. c..

13 Nov. 2003 QPeaks Documentation

QPEAKS
OPeaks was developed for finding peaks in mass spectrometry, but it can be
used for any files containing peaks. OPeaks uses Razor Library's peak-picking
function rzrpic to find peaks in a spectrum. It also calls upon Razor's peak-fitting
function rzrfit to find the best-fitting parameters (position, height, width) of the
identified peaks.

OPeaks is faster and more flexible to use than standard Razor Library functions.
It is faster because it processes a spectrum by sections, rather than all-at-once.
It is more flexible because it handles data from (a) spectrometers that operate at
constant peak width (L1m)and (b) spectrometers that operate at constant
resolution (m/L1m). (Razor Library peak-finding functions all operate in constant
width mode).

OPeaks is easier to use than the Razor Library because all the programming
details are automatically handled behind-the-scenes within the DLL. Opeaks
programming calls are much easier to implement than the programming calls for
Razor Library functions.

OPeaks is easily tailored for a particular spectrometer by specifying the following:

1. Peak Width or Resolution. OPeaks requires that the user identify an
approximate width for the peaks in the data. It performs in two modes: (a)
constant peak width, and (b) constant resolution or resolving power (i.e. m/lI.m for
mass spectrometry).

2. Signal/Noise cutoff for peak-finding.

3. Number of the rzrpic peak-picker to use. (In practice, we have found that
picker #4 seems to be the best performer for the mass spectrometry files we
have dealt with so far, and so it is usually selected at the start.).

4. Noise Statistics (Poisson or Normal/Gaussian).

5. For Normal noise, RMS Noise if known (else input zero).

6. For Poisson noise, number of scans that were averaged, if known (else input
zero).

7. Baseline parameter, if baseline removal is desired.

Thus one can select peaks by signal/noise ratios in either gaussian or poisson
noise environments, and tune OPeaks performance by choosing different peak
pickers.

13 Nov. 2003 QPeaks Documentation 2

Overview: RazorQPK and R:l7orDQPK DLLs
RazorQPK contains a single-precision implementation of Qpeaks; RazorDQPK
contains a double-precision implementation.

The purpose of the QPeak (QPK) algorithm of the RazorQPK DLL is to find peak
positions, and to perform a Levenberg-Marquardt fit of those peaks to find the
most probable (maximum likelihood) peak positions, heights, widths, and areas.
QPK also has an option to perform automated baseline finding in conjunction
with the peak finding.

QPK output includes (1) a table listing the found peaks and their parameters, and
(2) an array showing the positions and amplitudes of the found peaks, as well as
the found baseline (if requested). Other arrays are also available; see the
Qpkqpk.cpp source file.

Detail: Input
The RazorQPK DLL requires the following information for QPK processing:

. xdata, ydata arrays of length numdata, containing mass spectrometer m/z
data. RazorQPK assumes that the spectrometer data is complete (i.e. no
missing data samples, profile data).

. spectrometer (singlet) width. The spectrometer smearing width is the full-
width at the half-power point (FWHM) of typical isolated peaks in the
spectrometer data. This width may be the same as the instrumental
resolution; it may be the natural width of peaks. Choose whichever width
matches the widths of peaks as seen in the data. Units are the same as the
units of the x_axis of the data (usually m/z).

. peak_signaI2noise. Cutoff for the peak finder. (Same as psens for rzrpic.
See the Razor Library manual.)

The peak finder operates on a second derivative of the data. The finder
estimates the height and width and area of a peak from the shape of the
second derivative, using the input peak shape to assist in this task. It then
accepts or rejects the candidate peak according to the peak_signal2noise
criterion provided by the user.

When the peak_signal2noise is positive, the acceptance is based on
amplitude_ oCpeaklamplitude_oCnoise >= peak_signaI2noise. When the
peak_signal2noise is area, the acceptance is based on

13 Nov. 2003 QPeaks Documentation 3

area_oCpeaklnoise_area >= abs(peak_signaI2noise). The noise_area is
calculated as rms_noise*sqrt(peak_width_in_datapoints).

. picker. Same as iperf for rzrpic. See the Razor Library manual. The
RazorQPK DLL contains an additional peak picker; number (iperf=) 10.
Available Pickers: -1 Quick]ick (single pass)

-3 Quick_Pick (2 passes, narrow+wide)
1 High_Performance
2 High_Resolution
3 2nd_Order High Performance
4 Quietyick
5 Narrow_Wide

10 PerfecU 0
11 Gentle smooth, then Perfect_10

Most of these pickers are 'resolving' pickers. When they encounter a peak
that is wider than the spectrometer (singlet) width, they will attempt to resolve
the wide component into peaks of the given width. If this performance is
undesirable, choose one of the non-resolving Quick Pick (-1 or -3), or the
semi-resolving Quiet Pick (4) picker.
Most of these pickers will perform quite well even if the input spectrometer
width (singlet width) is too wide (up to a factor of 1.5x or even 2x). Most will
give too many peaks when the input spectrometer width is too narrow. Only
the Quick Pick picker will forgive you when you give it too small a value for
spectrometer width.
If your singlet width is larger than 0.5amu, none of the pickers will find
multiply-charged peaks (spaced by 0.5 amu). If you want to find doubly-
charged peaks in a spectrum that has wide (>0.5 amu) peaks, set the singlet
width to 0.5 amu, and use picker 4 or 11.

. Noise_statistics. If the noise statistics are normal/gaussian, or if you do not
know what the statistics are, set noise statistics = 1. If the noise statistics are
Poisson, set noise_statistics = 2. Same as istat for rzrpic. See Razor Library
manual. Default noise_statistics = 1.

Recommendation: Usually, the noise statistics will be neither normal nor
Poisson, but something in between. Our recommendation for in-between
cases is this: If the noise on your biggest peaks is approximately the same as
the noise on your smallest peaks, choose Normal (noise_statistics = 1),
statistics, and set rms_noise =1. Then use peak_signal2noise to select all
peaks with amplitudes greater than a particular value, i.e. set
peak_signal2noise = 10 to select all peaks with amplitudes greater than 10.
If the noise on your biggest peaks is larger than the noise on your smallest
peaks, then your noise statistics are closer to Poisson. In this case, choose
Poisson (noise_statistics = 2), and initially set Poisson_scans = 1.

13 Nov. 2003 QPeaks Documentation 4

Readjust Poisson_scans to a more appropriate value if necessary, but do
not set Poisson_scans = O.

rms_noise. The rms noise in the data (if known). If unknown, set input
rms_noise=O.O, which is a signal for the DLL to estimate the rms noise. This
parameter is only used for normal/gaussian statistics. Same as sigma for
rzrpic. See Razor Library manual.

How does Qpeaks calculate the rms_noise? Rms_noise is returned from
rzrpic. It is calculated inside rzrpic by first smoothing the data (usually via
rzresm), and then by calculating the mean square difference between the
smoothed and raw data.

Note: If you set input rms_noise=O.O,and your peaks are not well sampled
«3 points between half-power points), Razor may not be able to use rzresm
to smooth the data. It will have to 'punt' (i.e. use a box-car smoothing
algorithm). The smoothing will be too heavy-handed, the smoothed data will
lose resolution, and Qpeaks will have trouble calculating an accurate value for
rms_noise. QPeaks usually errs by returning too large a value for rms_noise
in these cases.

. Poisson_scans. The number of scans that were averaged to obtain the
current scale (in counts). If unknown, set input poisson_scans=O.O, which is
a signal for the DLL to estimate this parameter. This parameter is only used
for poisson statistics.

. Baseline_width_multiplier. The RazorQPK peak picker will automatically
define a baseline (rzredg) under the data, before picking peaks. This usually
helps in finding peaks in mass spectrometry data. Start with a value of the
baseline_width_multiplier = 3. Increase this parameter if the baseline cuts too
much energy out of the peaks. Set this parameter = 0 to turn off the
automatic baseline.

What does this baseline_width_multiplier actually do? If you look at the
documentation for any of the baseline algorithms in the Razor Library manual,
you will see that the algorithm want you to tell it the width (FWHM) of the
widest peak in the data. It will then attempt to preserve any features that are
equal to, or narrower than, the widest peaks. When Qpeaks calls upon one of
the Razor Library algorithms for a baseline, it takes the singlet_width that you
gave it, multiplies that width by the baseline_width_multiplier, and sends the
resulting width into the baseline routine.

13 Nov. 2003 QPeaks Documentation 4

Readjust Poisson_scans to a more appropriate value if necessary, but do
not set Poisson_scans = 0.

rms_noise. The rms noise in the data (if known). If unknown, set input
rms_noise=O.O, which is a signal for the DLL to estimate the rms noise. This
parameter is only used for normal/gaussian statistics. Same as sigma for
rzrpic. See Razor Library manual.

How does Qpeaks calculate the rms_noise? Rms_noise is returned from
rzrpic. It is calculated inside rzrpic by first smoothing the data (usually via
rzresm), and then by calculating the mean square difference between the
smoothed and raw data.

Note: If you set input rms_noise=O.O, and your peaks are not well sampled
«3 points between half-power points), Razor may not be able to use rzresm
to smooth the data. It will have to 'punt' (i.e. use a box-car smoothing
algorithm). The smoothing will be too heavy-handed, the smoothed data will
lose resolution, and Qpeaks will have trouble calculating an accurate value for
rms_noise. QPeaks usually errs by returning too large a value for rms_noise
in these cases.

. Poisson_scans. The number of scans that were averaged to obtain the

current scale (in counts). If unknown, set input poisson_scans=O.O, which is
a signal for the DLL to estimate this parameter. This parameter is only used
for poisson statistics.

. Baseline_width_multiplier. The RazorQPK peak picker will automatically
define a baseline (rzredg) under the data, before picking peaks. This usually
helps in finding peaks in mass spectrometry data. Start with a value of the
baseline_width_multiplier = 3. Increase this parameter if the baseline cuts too
much energy out of the peaks. Set this parameter = ° to turn off the
automatic baseline.

What does this baseline_width_multiplier actually do? If you look at the
documentation for any of the baseline algorithms in the Razor Library manual,
you will see that the algorithm want you to tell it the width (FWHM) of the
widest peak in the data. It will then attempt to preserve any features that are
equal to, or narrower than, the widest peaks. When Qpeaks calls upon one of
the Razor Library algorithms for a baseline, it takes the singlet_width that you
gave it, multiplies that width by the baseline_width_multiplier, and sends the
resulting width into the baseline routine.

13 Nov. 2003 QPeaks Documentation 3

area_oCpeaklnoise_area >= abs(peak_signaI2noise). The noise_area is
calculated as rms_noise*sqrt(peak_width_in_datapoints).

. picker. Same as iperf for rzrpic. See the Razor Library manual. The
RazorQPK DLL contains an additional peak picker; number (iperf=) 10.
Available Pickers: -1 Quick_Pick (single pass)

-3 Quick_Pick (2 passes, narrow+wide)
1 High_Performance
2 High_Resolution
3 2nd_Order High Performance
4 Quietyick
5 Narrow_Wide

10 PerfecUO
11 Gentle smooth, then Perfect_ 10

Most of these pickers are 'resolving' pickers. When they encounter a peak
that is wider than the spectrometer (singlet) width, they will attempt to resolve
the wide component into peaks of the given width. If this performance is
undesirable, choose one of the non-resolving Quick Pick (-1 or -3), or the
semi-resolving Quiet Pick (4) picker.
Most of these pickers will perform quite well even if the input spectrometer
width (singlet width) is too wide (up to a factor of 1.5x or even 2x). Most will
give too many peaks when the input spectrometer width is too narrow. Only
the Quick Pick picker will forgive you when you give it too small a value for
spectrometer width.
If your singlet width is larger than 0.5amu, none of the pickers will find
multiply-charged peaks (spaced by 0.5 amu). If you want to find doubly-
charged peaks in a spectrum that has wide (>0.5 amu) peaks, set the singlet
width to 0.5 amu, and use picker 4 or 11.

. Noise_statistics. If the noise statistics are normal/gaussian, or if you do not
know what the statistics are, set noise_statistics = 1. If the noise statistics are
Poisson, set noise_statistics = 2. Same as istat for rzrpic. See Razor Library
manual. Default noise_statistics = 1.

Recommendation: Usually, the noise statistics will be neither normal nor
Poisson, but something in between. Our recommendation for in-between
cases is this: If the noise on your biggest peaks is approximately the same as
the noise on your smallest peaks, choose Normal (noise_statistics = 1),
statistics, and set rms_noise =1. Then use peak_signal2noise to select all
peaks with amplitudes greater than a particular value, Le. set
peak_signal2noise = 10 to select all peaks with amplitudes greater than 10.
If the noise on your biggest peaks is larger than the noise on your smallest
peaks, then your noise statistics are closer to Poisson. In this case, choose
Poisson (noise_statistics = 2), and initially set Poisson_scans = 1.

13 Nov. 2003 QPeaks Documentation 5

Detail: Output
During setup for QPK processing, the programmer will have allocated two arrays,
a workspace array, and an output array. (See QpkDirect.cpp, DqpkDirect.cpp).

The output array, which will be the same length as the input array, will contain
spikes of appropriate height at the positions of the found peaks, superimposed
on the found baseline (if requested).

A table of peak parameters is located within the workspace. This table is
described in the next section. The peak table address is (float *)(Workspace +
glthings[69J). The peak table address is (double *)(Workspace + glthings[69J) in
RazorDQPK.

RazorQPK Peak Table
The RazorQPK DLL creates a table of peaks and peak parameters. This table,
stored within the WorkSpace, is complete when the processing is complete
(*percentDone = 100.0F). Instructions for accessing the table are given below.
Example source code that accesses the table and prints it to a file is given in the
files QpkDlrect.cpp and DqpkDirect.cpp.

The table has 1 row, 40 columns, for each peak. Columns are filled as follows:
1 Peak_ID Peak ID numbers are assigned sequentially.
2 Loc_lndex The original index position of the peak, as chosen by rzrpic. This
position is derived by looking at the second derivative of the data.
3 Total_Height Total height = height of peak + value in baseline array at
position of peak center. RazorQPK processing automatically removes a baseline
from the data, in order to obtain better parameters for the fitted peaks. The
baseline is available in the workspace also, and may be displayed. The baseline
address is (float *)(Workspace + glthings[62J). J). J) In RazorDQPK, the baseline
address is (double *)(Workspace + glthings[62. The length of the baseline array
is the same as the length of the raw data array.
4 RMS/Poiscns Value of RMS noise (for Normal statistics), or number of
Poisson scans (for Poisson statistics), used in rzrpic.

[Columns 5-22 are results of peak fitting by rzrfit.]
5 m/z The center of mass of the peak, calculated by the Maximum Likelihood
peak-fitting algorithm rzrfit. (Calculated from index_position in column 11).
6 +/-m/z Uncertainty in the peak center position. (Calculated from uncertainty
in index_position, column 12).
7 peak_height The peak height returned from rzrfit, which performs a full
Levenberg Marquardt fit.
S +/-height Uncertainty in the peak height, calculated by rzrfit.
9 m/z_width Width of the peak. (Calculated from index_width in column 13).
10 +/-m/z_width Uncertainty in the peak width. (Calculated from uncertainty in
index_position, column 14).

13 Nov. 2003 OPeaks Documentation 6

11 index-position Peak center, index location, as returned from rzrfit.
12 +/-index_posn Uncertainty in the peak index location, calculated by rzrfit.

The rzrfit peak-fitting procedure finds a best fit in the least-square sense for
certain peak parameters (position, height, width, etc.) The +/- errors quoted for
these parameters have the following meaning: If the measurement errors are
independent, and are normally distributed, then the +/- errors given above are the
1-sigma width of a normal probability distribution for the corresponding
parameter. (Columns 7-8,11-22 contain the output of rzrfit. Columns 5-6,9-10
are derived from columns 11-14).

13 index_width Peak width, as returned from rzrfit.
14 +/-index_width Uncertainty in peak width, as returned from rzrfit.
15 rms_fit RMS difference between peak model and data in region of peak fit.
16 error_code Error code returned from rzrfit. Error code -10 indicates that the
peak fit did not formally converge within the allowed 100 iterations; parameters
must be taken with caution. Error code -13 means that the final matrix inversion
for obtaining the rms errors of the parameters was ill-conditioned, and thus the
errors are not to be trusted.
17 Area Peak area, (total counts), as returned from rzrfit. Note that even if the

spectrum is a mass spectrum, with x_units Daltons, the area units reported in
columns 17 and 18 will not be counts*Daltons. The area units for columns 17
and 18 are simply total counts.

18 +/- area Uncertainty in peak area (total counts), as returned from rzrfit.
19 Fourth parameter, as returned from rzrfit
20 +/- fourth parameter Uncertainty as returned from rzrfit.
21 Fifth parameter, as returned from rzrfit
22 +/- fifth parameter Uncertainty as returned from rzrfit.

23 First index of peak-picking segment
24 Last index of peak-picking segment.

[Columns 25-32 are outputs of the peak apex algorithm.]
25 Height of peak at apex position (derived from raw data).
26 Apex mIz position of peak (derived from raw data).
27 Apex mIz position of peak (derived from smoothed data).
28 Area (counts) of peak at apex position.
29 +/- Area (counts) of peak at apex position.
30 Start m/z for computing peak area given in column 28
31 End m/z for computing peak area given in column 28
32 RMSnoise used for computing +/- area in column 29. This RMS value is
obtained from the difference betweenthe smoothedand raw data.
33-40 Reserved Columns33-40 are currently used in testing and debugging.

13 Nov. 2003 OPeaks Documentation 7

Updates 20 Nov 2003:
1. Upgraded documentation in section 'Detail: Input' for parameters

singlet_width, peak_signaI2noise, baseline_width_mujltiplier, rms_noise.
2.

25 August 2003 QPKDirect Documentation 1

QPKDirect is furnished as
(a) RazorQPK.DLL, the DLL that performs peak processing of the data.
(b) QPKDirect.exe, a console program that drive the RazorQPK DLL.
(c) QPKdireclcpp, source code for a demonstration console program that reads

an XY data file, receives input from the user, processes the data, and writes
output files. QPKDirect calls the RazorQPK DLL functions directly.

(d) MOPread.cpp, source code for functions to read/write ASCII XY data files.
(e) Razor.h, MOPread.h, rzrqpk.h, and RazorQPK.lib.

RazorQPK input requirements are:

. X and Y data arrays, containing the masses and counts from the
spectrometer.

. Peak Width or Resolution. QPeaks requires that the user identify an
approximate width for the peaks in the data. It performs in two modes: (a)
constant peak width, and (b) constant resolution or resolving power (Le.
m/.6.mfor mass spectrometry).

. Signal/Noise cutoff for peak-finding.

. Number of the rzrpic peak-picker to use. In practice, we have found that
picker #4, Quiet Pick, seems to be the best performer for the mass
spectrometry files we have dealt with so far, and so it is usually selected at
the start.

. Noise Statistics (Poisson or Normal/Gaussian).

. For Normal noise, RMS Noise if known (else input zero).

. For Poisson noise, number of scans that were averaged, if known (else input
zero).

. Baseline parameter, if baseline removal is desired.

. DLL control parameter: length of time DLL is allowed to process before
returningcontrol to calling program (delayticks).

25 August 2003 QPKDirect Documentation 2

Source code for the console program QPKDirect shows how to directly call
functions within the RazorQPK DLL. The steps for directly calling the DLL are:

1. Obtain the required input parameters listed above.

2. Call CalcArraySizes to get the required size of the workspace array, and the
required size of the output (result) array.

EXPORT32 long FAR EXPORT CalcQpkArraySizes(
float *input_masses,float *input_intensities,long numdata,
float *input~spectrometer_shape_func,long numshape,
£loat singletwidth, £loat signa12noise, 10T1g iperf, long istat,
float sigma, float poiscns, float basewidthmult,
'~lns~gned .:o)".g *sizewkspace, long *numoutarray);

3. Allocate the workspace and the output array.

4. CalilnitWorkSpaceQPK to initialize the workspace.

EXPORT32 long FAR EXPORT InitWorkSpaceQpk(
float *input_masses,float *input_intensities,long numdata,
f~oa~ *input_spectrometer_shape_func,long numshape,
f~oaT singletwidth, float signa12noise, long iperf, long istat,
float sigma, float poiscns, float basewidthmult,
c~ar *WorkSpace,unsigned long sizeWorkSpace,
float *outputlntensities, long numOutputArraY)i

5. Set up a loop to repeatedly call the processing function rzrqpk until the
parameter PercentDone = 100.

EXPORT32 long FAR EXPORT rzrqpk(float *x, float *y, long irnax,
float *shape, long nurnshape,
float *yout, long nurnout,
char *WorkingSpace, long size_workspace,
float *PercentDone, long DelayTicks)i

DelayTicks = number of CPU processor ticks allowed before the RazorQPK DLL yields control of
the processor.

The RazorQPK DLL is Windows-friendly. It processes data for the allowed
number of clock ticks, and then returns control to the calling program. When the
calling program is ready, it may send a signal to the DLL to process a little more.
This back-and-forth loop continues until the DLL sends a signal that the
processing is complete and the results are ready.

5. Recover any desired arrays or parameters from the workspace.

6. Delete the workspace.

14 Nov 2003 Ithings and Fthings Documentation

Storage Arrays in the QPK workspace

Ithings Array
The Ithings array stores (long) integer variables at the beginning of the
workspace used by RazorQPK The array has 100 locations, filled as described
below. (The parameters saved in reserved locations are not guaranteed to be
the same in all versions of RazorQPK. The parameters below that are shown in
bold tvpe and underlined are maintained in all versions of the RazorQPK DLL.)

o Re uested number of iterations.

. When the workspace is initialized by the function InitWorkSpaceQpk, this
location is filled with the number 1.

1 Peak Picker # i ert. Onl -4 -3 -101 234510111213 are acce table
2 Reserved. Baseline type. (O=Offse!. -1=None. 2=Same shape as envelope)
3 Com leted number of iterations.
4 Noise statistics ista!. Only 0 and 1 are permitted.
5 Reserved. ifirst = index where x_value>adductionmass)
6 Reserved. Not used.
7 Reserved. baseline flag (0 = yes, -1=no, 1=envelope shape)
8 Reserved. bzero
9 Reserved. jmxmx
10 Reserved jmin
11 Reserved. jmax
12 Reserved. Ipmin = processing start index in image
13 Reserved. ipmax = processing end index in image
14 Number of eaks in eak table.
15 Clock ticks used.
16 State vector. Current subroutine
17 State vector. Current position within subroutine
18 State vector. Current j index
19 State vector. Current I index
20 State vector. Current k index
21 Reserved. Saves parameters during Station Breaks (ileft, kto)
22 Reserved. Saves parameters during Station Breaks (iright, kfar)
23 Reserved. Saves parameters during Station Breaks (left point of current
processing region)
24 Reserved. Saves parameters during Station Breaks (right point of current
processing region)
25 Reserved. imax
26 Reserved. gsize
27 Reserved. npomax

14 Nov 2003 Ithings and Fthings Documentation

28 Reserved. longkmax
29 Reserved. kmax
30 Reserved. ntimag, jmin in rzkern
31 Reserved. jemin, jmax in rzkern
32 Reserved. jemax
33 Reserved. lekmin
34 Reserved. lekmax
35 Reserved. isamp
36 Max ks fit - maximum # eaks allowed in a setu
37 Reserved. For qpeaks2, peakshape_type.
38 Reserved. For qpeaks2, fix_width.
39 Reserved. For qpeaks2, fix_fourthparm.
40 Reserved. For qpeaks2, fix_fifthparm.
41 Reserved. For qpeaks2, tinLpeakshape_type.
42 Reserved. For qpeaks2, group_shape_linker.
43 Reserved. For qpeaks2, max_groupsize.
44 Reserved.
45 Reserved.
46 Reserved.
47 Reserved.
48 Reserved.
49 Reserved.
50 Size of ithinas.
51 Size of fthinas
52 Reserved. Size1
53 Reserved. Size2
54 Reserved. Size3
55 Reserved. Size4
56 Reserved. SizeS
57 Reserved. Size6
58 Reserved. Size7
59 Reserved. Size8
60 Reserved.
61 Location offset
62 Location offset
63 Location offset
64 Location offset
65 Location offset
66 Location offset
67 Location offset
68 Location offset
69 Location offset
70 Reserved.
71 Reserved.
72 Reserved.
73 Reserved.

for rzrfit.

of fthin s in works ace
of work1 in works ace = baseline arra
of work2 in works ace
of work3 in works ace = smoothed data arra
of work4 in works ace
of workS in works ace
of work6 in works ace
of work7 in works ace
of work8 in works ace = eak table

2

14 Nov 2003 Ithings and Fthings Documentation 3

74 Reserved.
75 Reserved.
76 Reserved.
77 Reserved.
78 Reserved.
79 Reserved.
80 Reserved.
81 Reserved.
82 Reserved.
83 Reserved.
84 Reserved.
85 Reserved.
86 Reserved.
87 Reserved.
88 Reserved.
89 Reserved. Temporary value of npks
90 Reserved.
91 Reserved.
92 Reserved.
93 Reserved.
94 Reserved.
95 Reserved.
96 Reserved.
97 Reserved.
98 Reserved.
99 Reserved.

14 Nov 2003 Ithings and Fthings Documentation 4

Fthings Array
The fthings array stores float (double) variables in the workspace used by
RazorQPK (RazorDQPK).

Fthings has 50 - 100 locations (depending on version of RazorQPK). The size of
fthings (number of locations) is stored in ithings[51]. The location of the start of
the fthings vector is stored in ithings[61].

Fthings is filled as described below. The parameters saved in reserved locations
are not guaranteed to be the same in all versions of RazorQPK. The parameters
below that are shown in bold tvpe and underlined are maintained in all versions
of the RazorQPK DLL.

o siama
1 poiscns
2 basewidthmult
3 sin let width The units are amu if sin If sin letwidth < 0
then the value = Resolution or Resolvin
4 Reserved.
5 sianal2noise
6 Reserved. Current sigma
7 Reserved. Current poiscns
8 Reserved.
9 Reserved.
10 Reserved.
11 Reserved.
12 Reserved. specwidth =spectrometer width in bins
13 Reserved. delo
14 Reserved. bzero (noninteger)
15 isoto icwidth = isoto ic width in Da
16 Reserved. Max vaue in image
17 Reserved. Mean counts in image
18 Reserved. Saves parameters during Station Breaks
19 Reserved. Saves parameters during Station Breaks
20 Reserved. Saves parameters during Station Breaks
21 Reserved. Saves parameters during Station Breaks
22 Reserved. Saves parameters during Station Breaks
23 Reserved. Saves parameters during Station Breaks
24 Reserved. Saves parameters during Station Breaks
25 Reserved. Saves parameters during Station Breaks
26 Reserved. Saves parameters during Station Breaks
27 Reserved. Saves parameters during Station Breaks
28 Reserved. Saves parameters during Station Breaks
29 Reserved. Saves parameters during Station Breaks
30 Reserved.

14 Nov 2003

31 Reserved.
32 Reserved.
33 Reserved.
34 Reserved.
35 Reserved.
36 Reserved.
37 Reserved.
38 Reserved.
39 Reserved.
40 Reserved.
41 Reserved.
42 Reserved.
43 Reserved.
44 Reserved.
45 Reserved.
46 Reserved.
47 Reserved.
48 Reserved.
49 Reserved.
50 Reserved.

Ithings and Fthings Documentation 5

For qpeaks2, min_width.
For qpeaks2, max_width.
For qpeaks2, fourthparm.
For qpeaks2, min_fourthparm.
For qpeaks2, max_fourthparm.
For qpeaks2, fifthparm.
For qpeaks2, min_fifthparm.
For qpeaks2, max_fifthparm.
For qpeaks2, fulUiLrange.

25 August 2003 QPKDemo Documentation 1

QPKDemo
QPKDemo is furnished as
(a) RazorQPK.DLL, the DLL that contains the required processing functions.

(Under special arrangement, Qpeaks can be provided for operating systems
other than Windows.)

(b) QPKdemo.cpp, source code for a demonstration console program that reads
an XY data file, receives input from the user, allocates workspace, and writes
output files.

(c) Qpkqpk.cpp, source code for the functions that call the RazorQPK DLL and
control the processing.

(d) Mopread.cpp, source code for functions to read/write ASCII XY data files.
(e) QPKdirect.cpp, source code for a demonstration console program that reads

an XY data file, receives input from the user, allocates workspace, and writes
output files. QPKdirect calls the processing functions within the RazorQPK
DLL directly, rather than using the intermediate functions of qpkqpk.cpp.

Overview: QPKDemo Processing Functions
When using QPKDemo, the programmer needs to fill the input structure, then call
the following 3 functions (which are presented as source code in qpkqpk.cpp):
These functions provide calls into the RazorQPK DLL.

. SetupNewTaskQpk, calculates size of workspace needed. Also calculates
size of output array.

(Programmer then allocates a workspace array, and an output array.)

. SetupWorkSpaceQpk, initializes the workspace.

. PerformTaskQpk, interacts with the RazorQPK DLL and controls the
processing loop. At the end of processing, the output array will be filled, and
a table of peak positions, heights, widths, etc. will be available within the
workspace.

25 August 2003 QPKDemo Documentation 2

The following structure, defined in the file mopdemo.h, contains the input
parameters needed by the RazorQPK DLL for QPK processing.

struct qpk_setup_struct
II This structure combines all fioat and long values, and all array pointers,
II that a user (programmer) must specify for the RazorQPK peak picking engine:
{

fioat singlet_width;

fioat peak_signaI2noise;

long picker;

long noise_statistics;

fioat rms_noise;

fioat poisson_scans;

II Required.
II Spectrometer (damage) width in data,
II If singlet_width is a POSITIVE number, it is
II interpreted as a constant width in the input data.
Illf singlecwidth is a NEGATIVE number, it is
II interpreted as constant resolution (m/z)/(delta_m/z)

II Required.
II Signal to noise criterion for picking peaks
II Use positive peak_signal2noise for height criteria
II Use negative peak_signal2noise for area criteria
II Note: peak_signal2noise values -1 to -5 (area criteria)
II seem to work well for mass spec data.

II Optional. May be set to O.
II Same as iperf in razor manual.
II Acceptable values = -1,0,1,2,3,4,5,10
II Recommended picker = 10.
II If picker = 0, picker = 10 will be used.

II Optional. May be set to O.
II Same as istat in razor manual.
II Acceptable values = 1 (gaussian/normal noise)
II or 2 (poisson noise)
II If noise_statistics = 0.0, gaussianlnormal will be used.

II Optional. May be set to O.
II Rms noise (if known).
II Used when noise_statistics = 1
II Input 0.0 if not sure.

II Optional. May be set to O.
II # scans which have been averaged in current data.
II Effectively rescales data to # counts.
II Used when noise_statistics = 2
II Input 0.0 if not sure.

fioat baseline_width_multiplier; II Used if need a rzredg baseline in the problem.
II Adding a rzredg baseline is recommended.
II Recommend using multiplier 3 - 10.
II If this parameter is zero, a baseline will not be used.

fioat'input_masses;
fioat'inpuUntensities;
long num_datapoints;

II pointer to spectrum masses array (required).
II pointer to spectrum intensities array (required).
II size of xdata, ydata arrays
II require that num_datapoints > zero.

II NOTE: The following input spectrometer shape function is

25 August 2003 QPKDemo Documentation 3

II not yet implemented in the RazorQPK DLL!
/I Therefore, these inputs are ignored at present.
float *inpuCspectrometer_shape_func; /I pointer to input spectrometer shape array

II (may be NULL).
long num_shapepoints; II size of spectrometer shape function array

II if num_shapepoints = 0, spectrometer shape is
II assumed gaussian, with width = singlet_width

};

The 3 processing control functions that drive QPK processing, by calling
functions in the RazorQPK DLL, also use the following information:

. DelayTicks = number of CPU processor ticks allowed before the RazorQPK
DLL yields control of the processor. The RazorQPK DLL is windows-friendly.
It processes data for the allowed number of clock ticks, then returns control to
the calling program. When the calling program is ready, it may send a signal
to the DLL to process another round. This back-and-forth loop continues until
the DLL sends a signal that the processing is complete and the results are
ready.. quiet = flag that allows printf during execution.

25 August 2003 QPKDemo Documentation

Detail: Programming calls for QPeak
The steps for running Qpeaks from QPKDemo are as follows:

1. Fill the qpeak input structure.

2. Get the required size of the workspace array, and the required size of the
output (result) array by calling SetupNewTaskQpk.

long SetupNewTaskOpk(struct qpk_setup_struct *qpksetptr,
unsigned long *sizeWorkSpace, long *numOutArray,
long quiet);

II input qpksetptr
/I output sizeWor1<.Space
/I output numOutArray
/I Use quiet = 0 unless debugging

3. Allocate the workspace and the output array.

4. Call SetupWorkSpaceQpk to initialize the workspace.

long SetupWor1<.SpaceOpk(struct qpk_setup_struct *qpksetptr,
char *WorkSpace, unsigned long sizeWorkSpace,
fioat *outputY Array, long numOutArray,
long quiet);

/I input qpksetptr
/I input array WorkSpace, size sizeWorkWpace
/I input array outputYArray, size numOutArray
/I Use quiet = 0 unless debugging

5. Run PerformTaskQpk.

long PerformTaskOpk(struct qpk_setup_struct *qpksetptr,
char *WorkSpace, long sizeWorkSpace,
fioat *outputYArray, long numOutArray,
long delayTicks, long *completedlters,
fioat *percentDone, long quiet);

/I input qpksetptr
/I input array WorkSpace, size sizeWorkWpace
/I input array outputYArray, size numOutArray
/I outputYArray will be filled during processing
/I input delayTicks = time allowed for processing before control returned to caller
/I delayTicks enables programmer to maintain control
II and prevent long processing delays under Windows
/I output completedlters
/I output percentDone
/I Use quiet = 0 unless debugging

4

25 August 2003 QPKDemo Documentation 5

6. Recover the peak table from the workspace.

The RazorQPK workspace begins with an integer (long) array that contains
information on (a) the state of the processing and (b) the locations of all
arrays used in the processing. The offset of the eak table from the
be innin of the works ace is stored in the 7 Ion inte er location of the
worksDace. The number of eaks in the eak table is stored in the 15th Ion
inteaer location of the worksDace.

The following example code, from qpkqpk.cpp, accesses the table.

II write out the final peak table
if(*percentDone== 1OO.OF){

II offset of table from beginning of workspace is in glthings[69];
II number of peaks in the table = glthings[14];
gTableResults = (float *)(WorkSpace+glthings[69]);
iwrite_err = tablesave("TABLEOF.DA T", gTableResults, glthings[14], OL);
printf('Wrote file TABLEOF.DAT # Peaks = %Id In", glthings[14]);

}
II end write out final peaktable

7. Delete the workspace.

