RAZOR LIBRARY

Resolution Enhancement,
Smoothing, Derivatives,
Peak Picking, Peak Fitting,
and Baseline Estimation

using Bayesian,
Maximum Likelihood,

and Maximum Entropy
Spectral Analysis Methods

Version C4.0

©Copyright 1991 - 1998 by Spectrum Square Associates, Inc., Ithaca, NY 14850
All rights reserved.

COPYRIGHT: This software is protected by both United States copyright law and
international treaty provisions. No part of this publication may be reproduced or trans-
mitted in any form or by any means, without prior written consent of Spectrum Square
Associates.

SPECTRUM SQUARE LICENSE AGREEMENT: This is a legal agreement between
the user of the enclosed software and Spectrum Square Associates, Inc. BY OPENING
THE SEALED DISK PACKAGE, YOU ARE AGREEING TO BE BOUND BY THE
TERMS OF THIS AGREEMENT. IF YOU DO NOT AGREE TO THESE TERMS,
PLEASE RETURN THE UNOPENED DISK PACKAGE AND THE ACCOMPANYING
MANUAL, FOR A FULL REFUND.

GRANT OF LICENSE: Spectrum Square Associates grants you the right to use the
enclosed software on a single computer. You may make copies of the software for backup
purposes, provided that you label all copies with the copyright notice.

You may not distribute any software incorporating any portions of Razor Library source
code, object modules, or library files, without obtaiming a separate License Agreement
from Spectrum Square Associates. Royalties will apply.

DISCLAIMER OF WARRANTY: THIS SOFTWARE AND MANUAL ARE SOLD
“AS IS” AND WITHOUT WARRANTIES AS TO PERFORMANCE OR MERCHANTABIL-
ITY. The seller’s salespersons may have made statements about this software. any such
statements do not constitute warranties and shall not be relied on by the buyer in deciding
whether to purchase this sotware.

THIS SOFTWARE IS SOLD WITHOUT ANY EXPRESS OR IMPLIED WAR-
RANTIES WHATSOEVER. Because of the diversity of conditions under which the soft-
ware may be used, no warranties of fitness for a particular purpose is offered. THE USER
IS ADVISED TO TEST THE SOFTWARE THOROUGHLY BEFORE RELYING ON
IT. THE USER MUST ASSUME THE ENTIRE RISK OF USING THE SOFTWARE.
Any liability of seller or manufacturer will be limited exclusively to product replacement
or refund of the purchase price.

IN NO EVENT SHALL SPECTRUM SQUARE ASSOCIATES OR ITS SUPPLI-
ERS BE LIABLE FOR ANY DAMAGES WHATSOEVER (INCLUDING, WITHOUT
LIMITATION, DAMAGES FOR LLOSS OF BUSINESS PROFITS, BUSINESS INTER-
RUPTION, OR OTHER PECUNIARY LOSS) ARISING OUT OF THE USE OF OR
INABILITY TO USE THIS PRODUCT, EVEN IF SPECTRUM SQUARE ASSOCIATES
HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

GOVERNING LAW: This License Agreement shall be governed by the laws of the
State of New York.

Quick Start

e Copy all the Razor Library files into the desired directory on the destination
hard drive.

s Select the chapter of this manual which deseribes the Maximum Likelihood,
Maximum Entropy, or Bayesian method you wish to use. The calls for the
principal routines are found on the following pages:

rzresm — RazorEntropySmooth — page 8
rzrpsm — RazorPoissonSmooth — page 14
rzrnsm — RazorNormalSmooth — page 20
rzrdiv — RazorDivide — page 33

rzrash — RazorASharp — page 46

rzrdec — RazorDeconvolve — page 52
rzrluc — RazorLucy — page 59

rzrstr — RazorStrip — page 74

rzrdif — RazorDerivative — page 79
rzrpic — RazorPick — page 89

rzr{it — RazorFit — page 97

rzrbas — RazorBase — page 139

rzrqgba — RazorQuickBase — page 147
rzredg — RazorEdge — page 152

rzrcut — RazorCut — page 155

rzrnoi — RazorNoise — page 158

e Study the annotated source code supplied in handle.c for an example of how
to implement the desired algorithm.

o Technical Support:
Dr. Lin DeNoyer Ph: 607-272-6735 Email: lkdl@cornell.edu
Dr. Jack Dodd Ph: 607-847-6944 Email: jackdodd@clarityconnect.com

11

Changes for Vers 4.0

(released May 1998)
¢ A new baseline algorithm rzredg has been added.

e rzrfit requires larger arrays datmat and work. These changes have been made to
prepare for input limits on the fitted parameters.

e rzrfit convergence has been improved.

Changes for Vers 3.2

(released May 1997)

o rzrfit allows user to specify scale factor for Poisson-noise data. See new instructions
for vnoise on p. 98.

e The (scaled) entropy for rzrdec has been given the correct (negative) sign.

Changes for Vers 3.1

(released July 1996)

e A new function rzrstr, which is a linearized form of the classic equation for
Maximum Entropy deconvolution (p. 68), is described on p. 73. This function
provides a superior alternative to Fourier deconvolution,

o The mathematical foundations of rzrdec are fully described in the manual. (See
p. 68). rzrdec IS classic Maximum Entropy deconvelution.

e The functions rzrdec, rzrash, rzrlue, rzrstr, and rzrfit allow the user to either
input a noise value, or request auto-calculation of the noise in the input data. A
new method for calculating the noise in the data gives better resuits in low-noise
cases.

o rzrfit will fit a model to selected regions within a file. See new instructions for
vnoise on p. 98.

Changes for Vers 3.0

(released February 1996)

e rzrdec has been improved. Entropy of the resolution-enhanced configuration is
calculated each iteration. The input parameters for this function have changed.

i1

rzrfit has new capabilities. Peaks may be ‘linked’ to each other in a master/slave
relationship. A single master peak may be linked to any number of slave peaks
through position offsets, height ratios, width ratios, or other parameter ratios. Link-
ing peaks in this manner is especially valuable for x-ray spectroscopy. The Pearson?
peakshape now comes in both symmetric and asymmetric varieties. The input pa-
rameters for rzrfit have changed.

The rzxfit engine has been fortified for heavy-duty work. This peak-fitting engine
will converge under harsh conditions which cause others to fail.

All integers are now declared as long (4-byte) integers, which allows processing
of longer data arrays, and helps maintain uniformity for compilation with many
different compilers.

Changes for Versions 2.0 - 2.6

rzrfit will automatically process all the peaks in & large data array. It will automat-
ically identify a peak ‘bunch’, and process those peaks together, then move on to
identify and process the next bunch. This bunch-mode of processing is a lot faster
than the all-at-once method!

rzrfit contains two new analytic peakshapes, Pearson VII and Log Normal.
rzrfit automatically checks itself for convergence, and tells you when 1t 15 finished.

When you set up a peakshape by identifying an isolated peak from a data file or
a data array, you usually need fo remove a baseline, and often need to smooth, the
real data peakshape. A new utility rzrepk (extract peak) performs these functions
with ease. (See Page 179 and handle.for).

A new utility rzpkst will resort the peak arrays filled by rzrpic and rzrbas. The
peaks may be sorted by significance, height, width, or location. rzpkst is described
on Page 175, and source code for using this utility is given in handle.for.

A new utility rzdfil will help you fill the datmat input array for rzrfit, using the
output arrays from rzrpic and rzrbas. See Page 177, and handle.for.

rzrpic and rzrbas will automatically search for negative peaks, if a negative peak
is presented in the shape array.

v

Contents

1 Razor Library Description
1.1 Advanced Statistical Functions L.
1.2 Principal Razor functions
1.3 User input and programmer control oL
1.4 Example source code e
1.5 Source for service functions L. L o

2 RazorSmooth — rzresm/rzrpsm/rzrnsm
2.1 Smoothing which Preserves Resolution
22 Whichonetouse?
2.3 rzresm — Razor Entropy Smootho

24 Example using rZresm e e
2.5 rzrpsm — Razor Poisson Smooth
2.6 Example using rzrpsm e e e
2.7 rzrasm — Razor Normal Smooth
2.8 Example usSing rZrniSm e e e e e

2.9 Maximum Likelihood Smoothing — Theory
2.10 The purpose of a smoothing formula.
2.11 Maximum Likelihood Foundation
2,12 Smoothing Equations Lo
2.13 Three solutions
2,14 Limitations of rzrpsm and rzrnsm L.

3 RazorDivide — rzrdiv
3.1 Noise Reduction for Ratio Spectra
32 rzdiv . . L e
33 Exampleusing rzrdiv. oL L e
3.4 Reducing Noise in Transmission Spectra

4 RazorSharp — rzrash/rzrdec/rzriuc
4.1 Resolution Enhancement without Artifacts
4.2 rzrash — RazorASHarp L. .

31
31
31
36
39

vi

CONTENTS

43 Exampleusingrzrash Lo L. 49
4.4 rzrdec — RazorDEConvolve 51
4.5 Exampleusingrzrdec 56
4.6 rzrluc —RazorLUCy o 58
4.7 Example using rzrluc e 62
4.8 Statistically Sound Restoration 64
4.9 The Bayesian Principle o 64
4.10 How Bayesian/Maximum Likelthood/Maximum Entropy Restoration Works 64
4.11 Equations used by rzrash and rzrdec and rzrlue 66

4,11.1 Maximum Likelihood Restoration 66

4,11.2 Bayesian and Maximum Entropy Restoration 67

4.11.3 Razor Library’s two restoration methods 67

4114 rzrdecsolution L. 69

4115 rzrlucsolution L Lo 69

411.6 rzrashsolution L 70
4,12 What about Fourier deconvolution? 71
4.13 A Final Word of Advice, 72
4,14 rarstr — RazorSIrip L e e 73
RazorDerivative — rzrdif 77
5.1 A Fundamental Approach to Derivatives 77
52 Exampleusing rzrdif o000 82
5.3 Equations of Bayesian Derivatives 84
RazorPick — rzrpic 87
6.1 Accurate Peak-Picking for Merged Peaks 87
6.2 rzIPIC e e e 88
6.3 Exampleusing rzrpic. 93
RazorFit — rzrfit 95
7.1 Accurate Peak Areas, with Confidence Limits 85
72 rzrfit .. 96
7.3 First Example using rzefit P 105
7.4 Second Example using rzrpic and rzefit 109
7.5 Third Example using rzrbas and rzrfit L. 114
7.6 The RazorFit algorithm, 121
7.7 TheRazorFitmodel 121
7.8 RazorFit and Maximum Likelithood 122
7.9 Downhill toaminimum 124
7.10 Confidence Limits 126
7.11 Limitations of RazorFit 126

CONTENTS

8 Peakshape Catalog

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9

Captured DataPeak
GaussSIan e e e e e e e e e
Lorentzian o e e e e e e
Sum Gaussian + Lorentzian
Product GaussianxLorentzian
Asymmetric Gaussian L.
Asymmetric Lorentzian oL
Symmetric and Asymmetric Pearson7
LogNormal

8.10 Baseline types e e

9 Baselines — rzrbas/rzrqba/rzredg/rzrcut

9.1

9.2
9.3
9.4
9.5
9.6
9.7

Baseline Fitting and Removal
9.1.1 RazorBase
9.1.2 RazorQuickBase and RazorEdge
rzrbas L e e
Example using rzrbas L
rzrgba. . .. L e
Example using rzrgba L
rzred@ L L e e

10 RazorNoise — rzrnoi

10.1

FZYNOL e e e e e e e e e e e

10.2 Example using rzrnoio

11 Service Functions

11.1
11.2
11.3
11.4
11.5
11.6
11.7
11.8
11.9

Fourier transforms — forspeed o000
Transform padding —rzprep
TZPAFIL e e e e e
rzsizn tells array s1zes. L L. L e
Error messages from rzrerr.o
rzpkst - Sorts peaks from rzrpic/rzrbas oL L.
rzdfil - Loads peaks from rzrpic/rzrbas into datmat
rzrxpk - Removes baseline, smooths peakshape
New peakshapes L L o

viii CONTENTS

Chapter 1

Razor Library Description

Razor Library is furnished as an object code library. All versions assume the presence
of a numeric coprocessor.
The Razor Library contains:

e An object code library, RZRxxxx.I.IB. Royalties apply for commercial distribution
of programs containing Razor Library object code.

¢ Source code is provided for many functions, in the file rzrserve.c. You are free to
modify any source code for your own use.

¢ A gimple handling program, handle.c, is provided in source, and as an executable
program, to illustrate the calls and necessary input for each of the principal functions.

e Sample data files are included to illustrate Razor’s capabilities.

The C Razor Library is written in almost ANSI C, in order to be compatible with
as many compilers as possible. Object code for other C and Fortran compilers, and for
other operating systems, is available. Call Spectrum Square Associates, 607-272-2352,
for information.

1.1 Advanced Statistical Functions

The core of Razor Library consists of fourteen principal functions. Twelve of these func-
tions are based upon Maximum Likelihood and/or Maximum Entropy principles. They
have already proven useful in both spectroscopy and chromatography, for smoothing (Ra-
zorSmooth), enhancing resolution (RazorSharp), peak fitting (RazorFit), peak picking
(RazorPick), reducing noise in ratio spectra (RazorDivide), and baseline removal (Razor-
Base). The functions are quite general, and may be used on any linear data array where
the data have been sampled in equispaced intervals.

1

2 CHAPTER 1. RAZOR LIBRARY DESCRIPTION

All of the RazorSmooth, RazorPick, RazorFit, RazerSharp, RazorDerivative,
RazorDivide, and RazorNoise statistical functions are based on Maximum Likeli-
heod/Maximum Entropy and Bayesian principles. They were developed and/or pro-
grammed by PhD physicists at Spectrum Square Associates. The mathematical equations
behind these statistical methods are given in the appropriate chapters of this manual.

At present, the only other implementation of these powerful methods are the PC-
based products RAZOR SR., SQUARE TOOLS, and RAZOR for GRAMS/386, also
developed at Spectrum Square. RAZOR SR. is a complete spectral data processing
program with extensive batch capabilities and additional functions specifically tailored
for diode arrays and for micro-Raman analysis. SQUARE TOOLS and RAZOR for
GRAMS/386 are sets of addon programs for Galactic Industries’ data analysis programs
Spectra Calc®™, Lab Calc'™, and GRAMS/386™™.

1.2 Principal Razor functions

Fourteen principal functions are described in subsequent chapters of this manual. The
programmer has access to all of the Maximum Likelthood and Maximum Entropy ca-
pabilites of Razor Library through these functions. Razor capabilities and its fourteen
principal functions are:

RazorSmooth: Maximum Likelihood estimation of the smooth parent distribution of a
noisy data set.

RazorEntropySmooth — rzresm

RazorPoissonSmooth ~— rzrpsm

RazorNormalSmooth — rzrnsm

RazorDivide: Maximum Likelihood smoothing of the ratio of two noisy data sets, such
as smoothing sample/reference spectra.
— rzrdiv

RazorSharp: Maximum Likelihood and Maximum Entropy/Bayesian resolution sharpen-
ing and enhancement.

RazorA-Sharp — rzrash

RazorDeconvolve —- rzrdec

RazorLucy — rzrlue

RazorDerivative: Bayesian Derivatives,
- rzrdif

RazorPick: Maximum Likelihood/Bayesian peak picking.
— rzrpic

RazorFit: Maximum Likelihood fitting model peaks to data.
— rzrfit

1.3. USER INPUT AND PROGRAMMER CONTROL 3

RazorBaseline: Maximum Likelthood and other methods for estimating the baseline of
a data set.

RazorBase — rzrbas
RazorQuickBase — rzrgba
RazorEdge — rzredg
RazorCut — rzrcut

RazorNoise: Maximum Likelihood estimation of the noise vector of a data set.
— rzrnoi
The fourteen principai statistical functions of the Razor Library are provided only as
object code.

1.3 User input and programmer control

The fourteen principal functions require additional user input besides the data array. This
input usually takes two forms: knowledge about the type of noise present in the data,
and knowledge of the intrinsic shapes of peaks in the data.

In this manual, the required input for each algorithm is emphasized at the beginning
of the chapter which describes the algorithm. Often, such input must be based upon
measurements derived from an observed spectrum. The mechanism for obtaining the user
input is the responsibility of the programmer.

Programmer notes are given for many of the functions, describing shortcuts, ways to
save space, or other technical aspects of the functions.

Some of the functions are iterative. Iterations are always under the control of the
programmer. The programmer notes describe appropriate convergence criteria, or iell
the programmer when to quit. The programmer always has the option of displaying
intermediate results for the user, if he wishes. Every effort has been made to avoid
the “black box™ syndrome, by making as many parameters as possible accessible to the
programmer.

1.4 Example source code

Most programmers will want to get these routines up and running as rapidly as possible.
We have provided a demonstration program called handle for that purpose. Handle is a
very simple example of how input and output may be implemented. The file handle.c
contains documented source code which you are free to use, or modify for incorporation
into your own data processing system. (Handle contains no graphical interface, however.)

4 CHAPTER 1. RAZOR LIBRARY DESCRIPTION

1.5 Source for service functions

Source code is provided for all service functions, in the file rzrserve.c. A discussion of
those routines which you may wish to change, and the circumstances under which you
might wish to change them, is given in Chapter 11.

The most important service functions you should be aware of are those which generate
analytical peak shapes. The RazorFit algorithm requires explicit analytical peak shapes,
and Razor Library contains a set of functions which are of the proper format, and which
are called by RazorFit. You may add additional peak shapes as your needs demand. See
the source listing for instructions. Many of the other principal functions also require peak
shapes. You may wish to use the shapes functions to generate peak shapes in memory,
whenever appropriate. '

Chapter 2

RazorSmooth — rzresm/rzrpsm/rzrnsm

2.1 Smoothing which Preserves Resolution

RazorSmooth is set of Maximum Likelihood and Maximum Entropy smoothing functions
for many types of noise problems. The functions estimate the smoothed data set that
would be achieved if the user could average many, many scans similar to the one
at hand. Such a smoothed data set is usually called the parent distribution. The theory
is described in ‘Maximum Likelihood smoothing of noisy data,” published in American
Laboratory, March 1990, in International Laboratory, June 1990, and in later sections
of this chapter. The functions provide the maximum amount of smoothing possible,
consistent with minimum loss of resolution in the displayed data.

The RazorSmooth functions give:

» Optimum smoothing for the declared noise statistics.

e Almost no loss of resolution when peakshapes are accurately known. (Clearly,
there would be no loss of resolution if one could obtain the true parent distribution.
However, the estimated parent distribution never achieves the ideal.)

2.2 Which one to use?

The programmer (or user) must decide whether the noise statistics are closer to a Normal
distribution or a Poisson distribution.

Razor Poisson Smooth (rzrpsm), for Poisson noise, is an iterative solution which
requires considerably more time. It constrains the smoothed solution to be positive.
(Page 14.)

Razor Entropy Smooth (rzresm) is a fast, excellent approximation to the full Max-
imum Likelihood solution for Normally- distributed noise. (Page 8.)

5

6 CHAPTER 2. RAZORSMOOTH — RZRESM/RZRPSM/RZRNSM

Razor Normal Smooth (rzrnsm), for Normal noise, is an iterative solution which
requires considerably more time. It constrains the smoothed solution to be positive.
(Page 20.)

2.3. RZRESM — RAZOR ENTROPY SMOOTH 7

2.3 rzresm — Razor Entropy Smooth

Razor Entropy Smooth provides a Maximum Likelihood estimate of a noise-free parent
spectrum, where the observed spectrum is a single noisy example drawn from this parent.
The noise is assumed to come from a Normal distribution.

rzresm is a fast, excellent approximation to the full Maximum Entropy solution for
Normally-distributed noise. It is also a Bayesian method. (Section 2.12. Page 26.)

The required user input for rzresm is;

e Data array.

e Peakshapes - either true or estimated. It is not critical that the user choose an exact
peakshape for rzresm. When all the peaks in the data are not the same, the user
should select a smooth peakshape characteristic of the narrowest feature of interest
in the data. Do not choose a peakshape that is too wide, else you will obtain false
results.

Processing notes:

o The estimated parent spectrum is not constrained to be positive in this solution.

Programmer notes:

o rzresm requires 3 full-sized arrays, ydata, yout, and trans.

The number of arrays may be reduced to 2 by setting the output array yout to the
input array ydata.

o ydata will not be altered outside the data region 0 - n2, unless you elect to do the
processing in-place by setting yout = ydata.

o If you are processing many scans, all of the same length, and using the same
peakshape for all, save processing time with this tactic. Call rzresm the first time
with newpk = 1, thereafter with newpk unchanged. When newpk = 1, all the
functions in Razor Library transfer a properly scaled, properly phased, copy of the
input shape array into the array trans, and then perform an FFT on the trans array.
When newpk > 1, the functions ignore shape, and use trans directly. This saves
the time of a Fourier transform on trans. (Note that when newpk > 1, shape can
be a dummy array of length 1, since it will not be used.)

8 CHAPTER 2. RAZORSMOOTH — RZRESM/RZRPSM/RZRNSM

fong rzresm(float ydataf |, long n2, float shapef |, long nl2,
float yout|], float trans|[], long *n, long *newpk,
fong *nfwhm, double *sigma)

Input arrays which must be filled:
ydata, filled between 0 and n2, length n2+1
shape, filled between 0 and nl2
NOTE: shape will be read only, not altered,
NOTE: If newpk > 1, shape will not be read.
Additional arrays to be furmnished:
yout, length n
trans, length n
Input variables: n2, nl2, n, newpk
n2 is the index of the last data value in ydata
nl2 is the index of the last data value in shape
n is the size of arrays ydata, yout and trans
newpk indicates whether or not shape is a new peakshape
Output arrays:
yout, filled between 0 and n2
Output variables:
= amount of array space used
NOTE: if a s returned negative, abs(n) = amount of array space
needed (but not available). Operation not successful.
newpk = n if trans was successfully loaded from shape
nfwhm = full-width-at-half-maximum of peakshape
sigma = RMS noise in ydata
Function return values:
rzresm = 0 if successful
If rzresm < 0, error occurred
Use rzrerr (page 174) to obtain error text

Description of variables

ydata on input is the raw data array. It should contain the raw data between data points

0 and n2. ydata will not be altered outside this range.

ydata must have a minimum size equal to the smallest power of two larger than

(n2+1+3*nfwhm). See the discussion below for n.

n2 is the last location of data in the ydata array. n2 is to be furnished as input.

shape is an input array which holds the peakshape of the narrowest spectral feature in
ydata which is of interest to the user. The relevant peakshape is located between

data points 0 and ni2 in shape.

2.3. RZRESM — RAZOR ENTROPY SMOOTH 9

nl2 is input and the index of the last data point of the peakshape in shape. We recommend
that nl2+1 be at least 6xnfwhm, and that the peak be approximately centered in the
(0,nl2) interval.

yout is the output smoothed data array. It will be smoothed between data points 0 and
n2, and should be ignored outside this range.

vout must have a mimimum size equal to the smallest power of two larger than
(n2+1+3*nfwhm). See the discussion below for n.

trans is an array of size n which will be used to house the Fourier transform of the
peakshape. The amount of space used in trans is calculated in rzprep. See the
discussion below for n.

trans is either empty or filled, depending on the parameter newpk. Whenever
newpk = 1, it is assumed that the contents of shape have been altered, and trans
is properly loaded by rzresm. When newpk > 1, it is expected that trans has not
been changed since the last time it was filled. See the discussion below for newpk.

n is input as the amount of space furnished in the yout, and trans arrays.

The function rzsizn will calculate n, the minimum amount of space needed. The
required size of n is determined by n2 and by the width of the peak in the shape
array. Obtain the minimum required n with this call:

n = rzsizn(n2,shape,nl2)

On output, n is the amount of space used for the Fourier transforms in the yout,
and trans arrays. If n is negative on output, the amount of space furnished was
inadequate, and no processing has taken place. If n is returned negative, then abs(n)
is the amount of space needed in the above arrays.

The space required for the Fourier transform is always calculated in rzprep, de-
scribed in Chapter 11. When newpk = 1, rzprep calculates the required size of the
Fourier transform as the smallest power of two larger than (n2+1+3*nfwhm). You
may wish to calculate n in an alternate fashion. See Chapter 11.

NOTE: When rzresm returns after successful processing, it fills both newpk and n
with the transform size. If you with to process additional data with the same peak-
shape, you need not change either newpk or n, provided that (a) your peakshapes
do not change, and (b) your input ydata sizes (n2+1) do not increase.

newpk on input 18 an integer flag set which should be initially set to 1. It informs
the peakshape processor that a new peakshape is present in shape. The processor
measures certain parameters of the new peakshape, and then fills the trans array
with the Fourier transform of a properly shifted and scaled peakshape. When the
peakshape processor finishes successfully, it will ouipur newpk = n, where n is the
actual space used in trans.

10 CHAPTER 2. RAZORSMOOTH -— RZRESM/RZRPSM/RZRNSM

The peakshape processor uses that valuable commodity, CPU time, for a Fourier
transform. On input, the programmer can circumvent the peakshape processor with
newpk > /. Whenever rzresm is called with newpk > 1, ensure that:

(a) The user wants to use the previous peakshape for the current processing, and
trans is not changed.

(b} The size of the array needed to transform the new data set is no larger than the
n used previously. If this second criterium is violated, the output value of rzresm
will be rzresm = -2.

nfwhm is output as the number of data points between the half-maxima of the peakshape
feature in shape.

sigma is output as the standard deviation (root- mean-square) of the noise which has
been removed by the smoothing process.

24. EXAMPLE USING RZRESM 11

2.4 Example using rzresm

Raman microprobe spectra rarely have enough photons. SPECS6, which is a microprobe
spectrum of a carbon thin film, is no exception. We smoothed the spectrum shown below
using a Lorentzian, 150 points wide, stored in PEAKS.

Data file: SPEC6
Peakshape file: PEAKG6

Using HANDLE:

RAZOR LIBRARY for Spectral Analysis -¢ There is only one best way'!
MaximumLikelihood (ML), Maximum Entropy (ME), and Bayesianprocessing.
ESM=EntropySMooth. Smooths Normal (thermal/gaussian} noise. ME
PSM=PoigsonSMooth. Smooths Poisson (counting) noise. ML.
NSM=NormalSMooth. Smooths Normal noise. ML.

DIV=RazorDivide. Calculates transmission spectra. ML.
ASH=RazorASharp. Enhances resolution. ML.

DEC=RazorDeconvolve. Maximum Entropy deconvolution. ME/Bayesian.
LUC=RazorLucy. Classic ML deconvelution. ML.
DIF=RazorDerivative. Derivatives Cth-nth. Bayesian.
PIC=RazorPick. Finds peak positions for FIT. ML/Bayesian.
FIT=RazorFit. Fits model peaks to data. ML.

BAS=RazorBase. Finds baseline. ME/Bayesian.

QOBA=RazorQuickBase. Finds baseline.

EDG=RazorEdge. Fits baseline to lower edge of data.
NOI=RazorNoise. Finds noise spectrum. ML.

GEN=Generates synthetic peakshape.

SaV=S8ave result, QUI=Quit.

Cheoose an operation (3 uppercase characters) : ESM

Enter name of spectrum: SPECE
Enter name of peakshape: PEAKS

Enter RZRESM. Please wait for processing. ..
The RMS noise is 0.00711781

The FWHM of fhe peakshape ig 149

The size of the array space used wasg 2048
RESULT MAY BE SAVED TO A FILE

Pregg ENTER Lo return to menu.

12

[o 4~

ESM =

CHAPTER 2. RAZORSMOOTH - RZRESM/RZRPSM/RZRNSM

: The standard deviation of removed noise iz

Result may be saved to a file

.397
Z79
2508
222

-801M45E-62

[13251552 SPFECS

-

2.5. RZRPSM — RAZOR POISSON SMOOTH 13

2.5 rzrpsm — Razor Poisson Smooth

Razor Poisson Smooth (rzrpsm) provides a Maximum Likelihood estimate of a noise-
free parent spectrum. The observed spectrum is a single a noisy example drawn from this
parent spectrum. The noise is assumed to come from a Poisson distribution.

The required user input for rzrpsm is:

e Data array. The input data set must be positive, as is appropriate for data with
Poisson noise. It is the user’s responsibility to remove the correct offset from
the raw data before using rzrpsm.

e Peakshapes - either true or estimated. It is not critical that the user choose an exact
peakshape for rzrpsm. When all the peaks in the data are not the same, the user
should select a smooth peakshape characteristic of the narrowest feature of interest
in the data.

Processing notes:

e The function produces an estimated parent spectrum which is constrained to be
positive.

o This function is iterative, and therefore takes considerably more time than rzresm.

Programmer notes:

e rzrpsm requires 4 full-sized arrays. If space is a problem, see Section 11.2.

e Set iter = 0 for the initial call. rzrpsm will then maintain iter for you. rzrpsm
needs 15 to 25 iterations. Some peakshapes converge faster. When the peakshape
is Gaussian, the convergence is faster than when the peakshape is Lorentzian.

14 CHAPTER 2. RAZORSMOQOTH — RZRESM/RZRPSM/RZRNSM

long rzrpsm(float ydata[], long n2, float shape[|, long ni2,
float yout|], float w[], float trans[], long *n, long *newpk,
long *iter, long *nfwhm, double *sigma)

Input arrays which must be filled:
ydata, filled between 0 and n2, length n
shape, filled between 0 and nl2
NOTE: If newpk = 0, shape will not be used.
NOTE: shape will be read only, not altered.
Additional arrays to be furnished:
yout, length n
w, length n
trans, length n
Input variables: n2, nl2, n, newpk
n2 is the index of the last data values in ydata
nl2 is the index of the last data value in shape
n is the size of arrays ydata, yout and trans
newpk indicates whether or not shape is a new peakshape
iter is the iteration count
Output arrays:
yout, filled between 0 and n2
Qutput variables:
n = amount of array space used
NOTE: if n is returned negative, abs(n) = amount of array space
needed (but not available). Operation not successful.
newpk = 0 if trans was successfully loaded from shape
nfwhm = full-width-at-half-maximum of peakshape
sigma = RMS noise in ydata
Function return values:
rzrpsm = 0 if successful
If rzrpsm < O, error occurred
Use rzrerr (page 174) to obtain error text

Description of variables

ydata on input is the raw data array. It should contain the raw data between data points
0 and n2. ydata will be altered outside this range.

ydata must have a minimum size equal to the smallest power of two larger than
(n2+1+3*nfwhm). See the discussion below for n.

n2 is the /ast location of data in the ydata array. n2 is to be furnished as input.

2.5. RZRPSM — RAZOR POISSON SMOOTH 15

shape is an input array which holds the peakshape of the narrowest spectral feature in
ydata which is of interest to the user. The relevant peakshape is located between
data points 0 and nl2 in shape.

ni2 is input and the index of the last data point of the peakshape in shape. We recommend
that nl2+1 be at least 6xnfwhm, and that the peak be approximately centered in the
(0,nl2) interval.

yout is the output smoothed data array. It will be smoothed between data points 0 and
n2, and should be ignored outside this range.

yout must have a minimum size equal to the smallest power of two larger than
(n2+1+3*nfwhm). See the discussion below for n.

w 1s a work array of size n which will be used for computations. W must have a
minimum size equal to the smallest power of two larger than (n2+1+3*nfwhm).
See the discussion below for n.

trans is an array of size n which will be used to house the Fourier transform of the
peakshape. The amount of space used in trans is calculated in rzprep. See the
discussion below for n.

trans is either empty or filled, depending on the parameter newpk. Whenever
newpk = 1, it is assumed that the contents of shape have been altered, and trans
is properly loaded by rzrpsm. When newpk = 0, it is expected that trans has not
been changed since the last time it was filled. See the discussion below for newpk.

n is input as the amount of space furnished in the yout, w, and trans arrays.

The function rzsizn will calculate n, the minimum amount of space needed. The
required size of n is determined by n2 and by the width of the peak in the shape
array. Obtain the minimum required n with this cail;

n = rzsiza(n2,shape,nl2)

On output, n is the amount of space used for the Fourier transforms in the yout,
w, and trans arrays. If n is negative on output, the amount of space furnished
was inadequate, and no processing has taken place. If n is returned negative, then
abs(n) is the amount of space needed in the above arrays.

The space required for the Fourier transform is always calculated in rzprep, de-
scribed in Chapter 11. When newpk = 1, rzprep calculates the required size of the
Fourier transform as the smallest power of two larger than (n2+1+3*nfwhm). You
may wish to calculate n in an alternate fashion. See Chapter 11.

NOTE: When rzrpsm returns after successful processing, it fills both newpk and n
with the transform size. If you with to process additional data with the same peak-
shape, you need not change either newpk or n, provided that (a) your peakshapes
do not change, and (b) your input ydata sizes (n2+1) do not increase.

16 CHAPTER 2. RAZORSMOOTH — RZRESM/RZRPSM/RZRNSM

newpk on input is an integer flag set which should be initially set to 1. It informs
the peakshape processor that a new peakshape is present in shape. The processor
measures certain parameters of the new peakshape, and then fills the trans array
with the Fourier transform of a properly shifted and scaled peakshape. When the
peakshape processor finishes successfully, it will output newpk = n, where n is the
actual space used in trans.

The peakshape processor uses that valuable commodity, CPU time, for a Fourier
transform. On input, the programmer can circumvent the peakshape processor with
newpk > /. Whenever rzrpsm is called with newpk > 1, ensure that:

(a) The user wants to use the previous peakshape for the current processing, and
trans is not changed.

(b} The size of the array needed to transform the new data set is no larger than the
n used previously. If this second criterium is violated, the output value of rzrpsm
will be rzrpsm = -2,

iter is an input index for the iteration loop. Set iter = O for the initial cail only. The
function distinguishes between iter = 0 and iter > 0. It will update iter automatically.

nfwhm is output as the number of data points between the half-maxima of the peakshape
feature in shape.

sigma is output as the standard deviation (root- mean-square) of the noise which has
been removed by the smoothing process. '

2.6. EXAMPLE USING RZRPSM 17

2.6 Example using rzrpsm

The data file SPEC4 represents radio chromatography, where one is counting nuclear
disintegrations in a flow cell, and the background counts are 50% of the total signal. The
peakshape is derived from a strong peak in the same cell. The original data had more
noise than you will see in the peakshape data file PEAK4. One really should average a
lot of strong peaks to get a smooth representation. We only had one strong peak, so we
smoothed it, and used it. Because the peakshapes in a flow cell are so asymmetric, it is
important to use real data.

Data file: SPEC4
Peakshape file: PEAK4

Using HANDLE:

RAZOR LIBRARY for Spectral Analysis -¢ There is cnly one best way!
MaximumLikelihocd (ML}, Maximum Entropy (ME), and Bayesian processing.
ESM=EntropySMooth. Smooths Normal {thermal/gaussian) noise. ME
PSM=PoissonSMooth. Smooths Poisson {counting) noise. ML.
NSM=NormalSMcoth. Smooths Normal noise. ML.

DIV=RazorDivide. Calculates transmigssion spectra. ML.
ASH=RazorASharp. Enhancesg resclution. ML.

DEC=RazorDeconvolve. Maximum Entropy deconvolution. ME/Bayesian.
LUC=RazorLucy. Classic ML deconvolution. ML.
DIF=RazorDerivative. Derivatives Oth-nth, Bayesian.
PIC=RazorPick. Finds peak positions for FIT. ML/Bayesian.
FIT=RazorFit. Fits model peaks to data. ML.

BAS=RazorBase. Finds baseline. ME/Bayesian.

QBA=RazorQuickBase. Finds baseline.

EDG=RazorEdge. Fits baseline to lower edge of data.
NOI=RazorNoise. Finds noise spectrum. ML.

GEN=Generates synthetic peakshape.

SAV=Save result, QUI=Quit.

Chocge an operation (3 uppercase characterg): PSM

Enter name of spectrum: SPEC4
Enter name of peakshape: PEAK4

Entering RZRPSM with iter=0. Please wait for setup...
At iter 1 the RMS noise igs 1.880

At iter 15 the RMS noise ig 1.258
More iterations? Enter the additional number required [0]:

18 CHAPTER 2. RAZORSMOOTH — RZIRESM/RZRPSM/RZRNSM

The standard deviation of the removed noise is 1.257
The FWHM of the peakshape is 141

The size of the array space used was 40896

RESULT MAY BE SAVED TO A FILE

PSM = PoissonSMooth: Iter= 14, RMS noise= .125949E+01
More iterations? Enter the additional number required: (0]

12121992 SPEC4
7.333

6.667
Y
U 6.000
H
I 5.333
T
S 4.667

4 .00G

2= Wt

o I e' Wiw%ii i m .
: |n||u”| M uuMu'

2.667

|
I

2.000

-3

= I i

10.00 13.41 16.81 20.22 23.63 27.03 30.44 33.85 3I7.25 40.66
X INITS

2.7. RZRNSM — RAZOR NORMAL SMOOTH 19

2.7 rzrnsm — Razor Normal Smooth

Razor Normal Smooth (rzrnsm) provides a Maximum Likelihood estimate of a noise-free
parent spectrum. The observed spectrum is a single a noisy example drawn from this
parent spectrum. The noise is assumed to come from a Normal distribution.

The required user input for rzrnsm is:

o Data array. The input data set must be positive, as is appropriate for data with
Poisson noise. It is the user’s responsibility to remove the correct offset from
the raw data before using rzrnsm,

¢ Peakshapes - either true or estimated. It is not critical that the user choose an exact
peakshape for rzrnsm. When all the peaks in the data are not the same, the user
should select a smooth peakshape characteristic of the narrowest feature of interest
in the data.

Processing notes:

e The function produces an estimated parent spectrum which is constrained to be
positive.

o This function is iterative, and therefore takes considerably more time than rzresm.

Programmer notes:

e rzrnsm requires 4 full-sized arrays. If space is a problem, see Section 11.2,

e Set iter = 0 for the initial call. rzrnsm will then maintain iter for you. rzrnsm
needs 15 to 25 iterations. Some peakshapes converge faster. When the peakshape
is Gaussian, the convergence is faster than when the peakshape is Lorentzian.

20 CHAPTER 2. RAZORSMOOTH — RZRESM/RZRPSM/RZRNSM

long rzrnsm(float ydata[], long n2, float shape[], long nl2,
float yout] |, float w[], float z|[|, float trans[], long *n, long *newpk,
long *iter, long *nfwhm, double *sigma)

Input arrays which must be filled:
ydata, filled between ¢ and n2, length n2 + 1
shape, filled between 0 and nl2
NOTE: If newpk = 0, shape will not be used.
NOTE: shape will be read only, not altered.
Additional arrays to be furnished:
yout, length n
w, length n
z, length n
trans, length n
Input variables: n2, nl2, n, newpk
n2 is the index of the last data values in ydata
nl2 is the index of the last data value in shape
n is the size of arrays ydata, yout and trans
newpk indicates whether or not shape is a new peakshape
iter is the iteration count
Output arrays:
yout, filled between ¢ and n2
Output variables:
n = amount of array space used
NOTE: if n is returned negative, abs(n) = amount of array space
needed (but not available). Operation not successful.
newpk = 0 if trans was successfully loaded from shape
nfwhm = full-width-at-half-maximum of peakshape
sigma = RMS noise in ydata
Function return values:
rzronsm = 0 if successful
If rzrnsm < (), error occurred
Use rzrerr (page 174) to obtain error text

Description of variables

ydata on input is the raw data array. It should contain the raw data between data points
0 and n2. ydata will not be altered outside this range.

ydata must have a minimum size equal to the smallest power of two larger than
(n2+1+3*nfwhm). See the discussion below for n.

n2 is the last location of data in the ydata array. n2 is to be furnished as inpur.

2.7. RZRNSM — RAZOR NORMAL SMOOTH 21

shape is an input array which holds the peakshape of the narrowest spectral feature in
ydata which is of interest to the user. The relevant peakshape is located between
data points 0 and nl2 in shape.

nl2 is input and the index of the last data point of the peakshape in shape. We recommend
that nl2+1 be at least 6xnfwhm, and that the peak be approximately centered in the
(0,nl2) interval.

yout is the output smoothed data array. It will be smoothed between data points 0 and
n2, and should be ignored outside this range.

yout must have a minimum size equal to the smallest power of two larger than
(n2+1+3*nfwhm). See the discussion below for n.

w is a work array of size n which will be used for computations. W must have a
minimum size equal to the smallest power of two larger than (n2+1+3*nfwhm).
See the discussion below for n.

z is a work array of size n which will be used for computations. W must have a
minimum size equal to the smallest power of two larger than (n2+1+3*nfwhm).
See the discussion below for n.

trans is an array of size n which will be used to house the Fourier transform of the
peakshape. The amount of space used in trans is calculated in rzprep. See the
discussion below for n.

trans is either empty or filled, depending on the parameter newpk. Whenever
newpk = 1, it is assumed that the contents of shape have been altered, and trans
is properly loaded by rzrnsm. When newpk = 0, it is expected that trans has not
been changed since the last time it was filled. See the discussion below for newpk.

n 1S input as the amount of space furnished m the yout, w, and trans arrays.

The function rzsizn will calculate n, the minimum amount of space needed. The
required size of n is determined by n2 and by the width of the peak in the shape
array. Obtain the minimum required n with this call:

n = rzsizn(n2,shape,nl2)

On output, n is the amount of space used for the Fourier transforms in the yout,
w, and trans arrays. If n is negative on output, the amount of space furnished
was inadequate, and no processing has taken place. If n is returned negative, then
abs(n) is the amount of space needed in the above arrays.

The space required for the Fourier transform is always calculated in rzprep, de-
scribed in Chapter 11. When newpk = 1, rzprep calculates the required size of the
Fourier transform as the smallest power of two larger than (n2+1+3*nfwhm). You
may wish to calculate n in an alternate fashion. See Chapter 11.

22 CHAPTER 2. RAZORSMOOTH — RZRESM/RZRPSM/RZRNSM

NOTE: When rzrnsm returns after successful processing, it fills both newpk and n
with the transform size. If you with to process additional data with the same peak-
shape, you need not change either newpk or n, provided that (a) your peakshapes
do not change, and (b) your input ydata sizes (n2+1) do not increase.

newpk on input is an integer flag set which should be initially set to 1. It informs
the peakshape processor that a new peakshape is present in shape. The processor
measures certain parameters of the new peakshape, and then fills the trans array
with the Fourier transform of a properly shifted and scaled peakshape. When the
peakshape processor finishes successfully, it will oufput newpk = n, where n is the
actual space used in trans.

The peakshape processor uses that valuable commodity, CPU time, for a Fourier
transform. On input, the programmer can circumvent the peakshape processor with
newpk > /. Whenever rzrnsm is called with newpk > 1, ensure that:

(a) The user wants to use the previous peakshape for the current processing, and
trans is not changed.

(b) The size of the array needed to transform the new data set is no larger than the
n used previously. If this second criterium is violated, the output value of rzrnsm
will be rzrasm = -2.

iter is an input index for the iteration loop. Set iter = O for the initial call only. The
function distinguishes between iter = 0 and iter > 0. It will update iter automatically.

nfwhm is output as the number of data points between the half-maxima of the peakshape
feature in shape.

sigma is output as the standard deviation (root- mean-square) of the noise which has
been removed by the smoothing process.

2.8. EXAMPLE USING RZRNSM 23

2.8 Example using rzrnsm

Data file: SPEC2
Peakshape file: PEAK2

Using HANDLE:

RAZOR LIBRARY for Spectral Analysis -¢ There is only one best way!
MaximumLikelihood (ML), Maximum Entropy (ME), and Bayesian processing.
ESM=EntropySMooth. Smooths Normal {thermal/gaussian} noise. ME
PSM=PoissonSMooth. Smooths Poisson {(counting) noise. ML.
NSM=NormalSMooth. Smocths Normal noise. ML.

DIV=RazorDivide. Calculates transmission spectra. ML.
ASH=RazorASharp. Enhances resolution. ML.

DEC=RazorDeconvolve. Maximum Entropy deconvolution. ME/Bayesian.
LUC=RazorLucy. Clasgic ML deconvolution. ML.
DIF=RazorDerivative. Derivatives Oth-nth. Bayesian.
PIC=RazorPick. Finds peak positions for FIT. ML/Bayesian.
FIT=RazorFit. Fits model peaks toc data. ML.

BAS=RazorBase. Finds baseline. ME/Bayesian.

QBA=RazorQuickBasge. Finds bageline.

EDG=RazorEdge. Fits baseline to lower edge of data.
NOI=RazorNoise. Finds noise spectrum. ML.

GEN=Generates synthetic peakshare.

SAV=Save result, QUI=Quit.

Choose an operation (3 uppercase characters) : NSM

Enter name of spectrum: SPEC2
Enter name of peakshape: PEAK2

Entering RZRNSM with iter=0. Please wait for setup...
At iter 1 the RMS noise is 5.5789

At iter 15 the RMS noise is 4.1990
More iterations? Enter the additional number required [0]:

The standard deviation of the removed noise is 4.190
The FWHM of the peakshape is 80

The size of the array space used was 2048

RESULT MAY BE SAVED TO A FILE

24 CHAPTER 2. RAZORSMOOTH — RZRESM/RZRPSM/RZRNSM

NSM = NormalSMooth: Iter = 14, WS noige= .417703E.01

Hore iterations? Ewter the additiomal number required: (8]
12-32/1952 SPEC2
%.57 |

1.407 I 1) []] L

1,000 160.9 200.8 300.7 460.6 500.5 660.4 790.3 000.2 900.1
X UNITS

2.9, MAXIMUM LIKELIHOOD SMOOQTHING — THEORY 25

2.9 Maximum Likelihood Smoothing — Theory

Maximum Likelihood techniques are used by chemists and spectroscopists every day.
Methods such as least-square peak fitting, linear regression, and even the simple formula
for averaging a set of scans, all can be derived from Maximum Likelihood principles. We
have used Maximum Likelihood methods to derive a new, statistically sound method for
smoothing.

The remaining sections of this chapter are organized so that our readers may understand
the concepts, while skipping the mathematical sections, if they choose. We discuss our
premise in Section 2.10, and the Maximum Likelihood principle in Section 2.11. The
mathematical parts and equations in Section 2.12, where we set up the basic equations,
and Section 2.13, where we show which forms of the basic equations are being solved by
the RZRESM, RZRPSM and RZRNSM algorithms.

2.10 The purpose of a smoothing formula

Smoothing prescriptions should answer the question: what would the data look like if
the observer could average many, many scans? If one could make many measurements
of a sample, and stack scans, the underlying features of the physical process would be
revealed, without any sacrifice in resolution. The final averaged smooth curve, called the
parent spectrum, is the desired result.

The purpose of a good smoothing formula should be to provide an estimate of the
parent spectrum from which a particular noisy sample (spectrum, chromatogram)
was drawn. This estimate should be formulated from physical knowledge about the
experiment which can be agreed upon in advance. The formula should not contain any
arbitrarily chosen parameters.

The idea behind Maximum Likelihood smoothing is simple: Each scan (of a spectrum),
and each run (in chromatography), can be thought of as a single noisy sample drawn from
some parent spectrum. Maximum Likelihood estimates the parent spectrum by answering
the question: “What is the most probable spectrum, or chromatogram, buried under all
this noise?”

Maximum Likelihood smoothing derives its power from the a priori information known
to the observer. When an observer looks at noisy data, he usually has a fairly good idea of
what is ‘real’, and what is noise. His judgement is governed by his intuitive knowledge of
what a ‘real peak’ looks like. In fact, it is precisely this intuitive knowledge of peakshapes
which allows him to select a parameter such as a filter width.

In Maximum Likelihood smoothing, we take the a priori knowledge of the peakshape,
as well as a priori information about the type of noise seen in the data, and cast both into
a mathematical framework. The result is a smoothing formula which is optimum, in the
sense that it provides the best possible estimate of what we would see if we could average
our data for a much longer time.

26 CHAPTER 2. RAZORSMOOTH — RZRESM/RZRPSM/RZRNSM

2,11 Maximum Likelihood Foundation

Suppose we have measured a data set {y1,%2, ... }. The individual values in this data
set, the y;, may be absorbances at different frequencies, or they may be radioactive disin-
tegrations counted as a function of time, or whatever is being measured. We really want to
know the values of the data set {z;, z,...2,,}, where each z; is a mean of many measure-
ments of y;. In other words, the set {21, 23, ...2,, } is the high signal/noise result we would
obtain if we could average for a long time. The relation between the set {y1,ve, .40}
and the set {zy, 2, ...2,, } i ¥; = 2; + n;, where n; are the noise fluctuations. We will use
Maximum Likelihood to estimate {zy, 2, ...2, }.

What does it mean to say we will estimate {21, 2, ...2,}? We have only one data sam-
ple {y1,¥2,...¥n}, and so we cannot estimate {21, z9,...2,} by averaging. Furthermore,
we do not presume that {z;, 25, ...2,} can be modeled by some analytic function (i.e., a
polynomial, or a sum of 14 gaussians, etc.) whose parameters we might obtain through
a least-squares peak-fitting technique. Instead, we obtain our estimate as follows: We
require that the estimate conform to certain a priori knowledge about the noise charac-
teristics, and about the instrument. Beyond that, we assume that our observations have
occurred in a very ordinary room, in an ordinary corner of the universe.

Here is the kernal of Maximum Likelihood: We assume that the particular data sample
we have observed, the set {y1,y2,...yn}, 18 & typical, representative sample. This data
sample is so ordinary that there is no statistical difference between this one and many
thousands of other noisy data sets which might have occurred. The sample is therefore
representative of the most likely statistical behavior. Consequently, we wiil estimate the
parent spectrum {zj, 2z, ...z, } by writing an equation which describes the probability for
the data set {y1,¥2, ..U}, and then we will maximize that probability, under conditions
which also satisfy all known a priori constraints.

2.12 Smoothing Equations

We want to set up an equation which describes the probability of obtaining the data set
{y1,¥2, ---yn}, in terms of the parent spectrum {2, 23, ...z, }. For a given parent spectrum,
the probability p for the sample {1, ¥o, ...¥» } 1s determined by the probability distributions
for the noise {ni,ng,...nx}. P is usually called the likelihood function.

We now incorporate our a priori knowledge about the nature of the noise. Usually
we know the statistical characteristics of the noise in an experiment. When we are
counting individual particles, such as beta or gamma particles from radioactive decay, x-
rays, or photons in a low-light situation, the fluctuations n; in the data usually come from
Poisson distributions. Poisson noise has the property that the root-mean-square (rms) noise
amplitude is proportional to the square root of the signal amplitude. On the other hand,
when detector noise dominates, as in system noise in amplifiers, in thermal detectors, and
in many other cases, then the noise is independent of the signal amplitude, additive, and

2.12. SMOOTHING EQUATIONS 27

describable by a Normal distribution. There are cases where neither Normal nor Poisson
statistics apply, as in photomultiplier dark current. Whatever the noise, we must write an
equation which incorporates its statistics.

We are ready to write an equation for the probability of obtaining our observed
data {y1,v2,...yn}. From a parent spectrum {2, 2s,...z,}, We have drawn a data set
{1, %2, ...y} containing data points y1, y2, -.-Yn, Where y; = z + n;. The n; are the noise
values.

If the noise n; is random, and additive, with a Normal distribution, then the probability
for y; is

1 (yi — z)°
p(yi|z) = WEXP[——%—Z{*]

If the noise n; is random noise with a Poisson distribution, then the probability for y;
18
ZiYie_zi

yil

Assume that the noise n; is uncorrelated with the noise ny, for all ,j. Then the
likelihood of observing the set {y;,¥2,...yn} 18 the product of the probabilities for each
of the y;:

p(yi | z) =

n

P(Y1, . Yn | Z1, .0y Zn) = H p(yi | %)

i=1
For Normal noise, this becomes
< 1 (Yi - Zi)2
P(¥1, ... ¥n | 21, ..., 2Zn) = —————exXpl—————1|.
(|) 1_1_11 Vv (27)a; [202]
For Poisson noise,
n Zi)’ie_zi

P(¥1,¥n | Z1, 1 Zn) = H |
i=1 Yi

The Maximum Likelthood prescription says we must maximize p. The maximization
is be done under a set of constraints. An important constraint is our knowledge of the
peakshapes. We assume that the parent spectrum is composed of many individual peaks,
of known shapes. However, we make absolutely no assumption about how many peaks
there are, how large they are, or where they are. In fact, we allow as many peaks as there
are data points in the observed spectrum or chromatogram! We may also have additional
knowledge about the parent spectrum, e.g., often the parent spectrum cannot be negative.
Any such constraints are allowed. In fact, the more we known about the underlying
smooth spectrum, or about the instrument, or the measurement bias, or the noise, etc, the

better will be our estimate of the parent spectrum.

28 CHAPTER 2. RAZORSMOOTH — RZRESM/RZRPSM/RZRNSM

We now proceed in one of two ways:
(1)} We maximize the probability

p(Yla s ¥n f 210y Zn);

by looking for the set {z} which maximizes p, and also satisfies the conditions
z = 0 ® s, where s is the characteristic shape of all single peaks, o is the object function,
and ® denotes convolution. In certain cases, such as photon counting, o must be positive.
(2) We maximize the probability

P21, %0 | ¥1, . ¥n),

by invoking Bayes Rule. This is now commonly called the Bayesian method. It used
to be called the MAP (Maximum A Posteriori) method.

Bayes Rule says that the probability p{zi,...,2n | ¥1, ..., ¥n) is related to the proba-
bility p(¥1, .-, ¥n | 21, ..., Zn) through

P(¥1, s ¥n | Z1, -y Zn) (21, ... 25)

PlZ1,...,2n | ¥1, -2 ¥n) =
(! | ! ﬂ) p(Yl:"'vyn)

In order to solve the equation, we must also provide the a priori probabilities p(y1, ..., ¥n)
for our observed spectrum and p(2y, ..., z,) for all parent spectrums. Clearly, the proba-
bility for our single observation is p(yy,...,¥n} = 1.

A common expression of the a priori probability for the parent spectrum is given by
the combinatorial probability

(Z]_ +Zo A ..+ 2y = N)]
Zz1!z51...2,.!

p(z1, ...y Zn) =

The combinatorial probability states that if you have N items which are to be sorted
into n boxes, the probability of obtaining an arrangement where 2; are in the first box,
zy are in the second box, etc, is proportional to the number of combinations of the N
distinct items which give box occupation numbers {z;, z, ...z, }.

When all possible parent spectrums have the same a priori probability,

p(z1,...,2z,) = constant
, then the solution will be the same as that for case (1) above.

Again, we will require that the condition z = o ® s, where s is the peakshape and o
is the object function, is satisfied. In some cases, we may also require that o is positive.

2.13. THREE SOLUTIONS 29

2.13 Three solutions

Razor Library contains three separate smoothing methods, corresponding to three differ-
ent solutions of the equations posed in Section 2.12. The three methods, and the equations
which they solve, are given here.

Razor Entropy Smooth — RZRESM is both a Maximum Entropy and a Bayesian method.
It maximizes the probability

n 1 (yi —2zi)%,, (Z1+ ... + 20 = N)!
p(Z | y) - {];:[L \/(27T)Ujexp[2 2]}{ Z]_!Zg!...Zn! }1
under the constraint that z = o0 ® s. The Maximum Entropy character becomes
evident if we take the logarithm of p,

n 2

In(p{z | y)) = Z(—M — z;Inz;) + constant terms

2
i=1 20

The term — ¥ z;Inz; is the same expression as the Shannon entropy for the spectrum
{z1, 2, ...2, }. Note that maximizing In(p(z | y)) is the same as maximizing p(z | y},
because the probability p(z | y) is always positive.

Razor Poisson Smooth — RZRPSM is an iterative solution to the Poisson probability
distribution equation

n

p(y |z} =[]

i=1 Y1I

Ziyie*zi

= maximum,

under the constraints that z = o ® s, and that o is positive.

Razor Normal Smooth — RZRNSM is an iterative solution to the Normal probability
distribution equation

5 1 (yi —z)? .
p(y|z)= :zH1 mexP[—Tizl] = maximum,

under the constraints that z = o ® s, and that o is positive.

30 CHAPTER 2. RAZORSMOOTH — RZRESM/RZRPSM/RZRNSM

2.14 Limitations of rzrpsm and rzrnsm

rzrpsm and rzrnsm are iterative algorithms which search for the maximum of the prob-
ability expressions shown in Section 2.13. They are not particularly fast, but we make
no apology for that here. The specific algorithms were chosen for their stability, and for
immunity to such detaiis as cumulative truncation error.

For rzrpsm, 15 - 25 iterations are adequate for most data we have encountered.
However, if you find that rzrpsm does not provide you with a satisfactory result, we
request that you contact us. We would appreciate your sending us your difficult data.

rzrnsm is yet another story. Because it is very slow to converge, we think you might
decide to use rzresm for all your Normal data, just as we do.

Chapter 3

RazorDivide — rzrdiv

3.1 Noise Reduction for Ratio Spectra

RazorDivide is designed for transmission spectra, which have two especially difficult
noise problems. RazorDivide solves the problem of how to reduce the noise in these ratio
spectra. ‘

The first noise problem arises when one divides a noisy sample spectrum by its noisy
reference, producing a transmission spectrum with more noise, and with different noise
statistics. If both the sample and reference spectra contained additive random noise
from Gaussian distributions, the resultant transmission spectrum has random noise with a
Cauchy distribution,

The second noise problem arises because of nonuniform spectral brightness of the
source, or because of nonuniform instrument transmission efficiency. The noise in the
resulting transmission spectrum often varies significantly in amplitude over the spectral
region under study. Often, the ends are much noisier than the center.

Faced with a noisy transmission spectrum, the impulse to smooth is strong. Here is
the problem: should one smooth the sample and reference spectra separately, smooth the
transmission spectrum, or do something else? We recommend something else.

RazorDivide is the Maximum Likelihood solution to this problem. It provides an
estimate of the noiseless transmission spectrum which would result from averaging many,
many noisy spectra such as the one at hand.

The technique was described in a paper presented at the 1990 Pittsburgh Conference,
and is described in Section 3.4.

3.2 rzrdiv

rzrdiv is a rigorous Maximum Likelihood solution to the problem of ‘smoothing’ a spec-
trum produced by dividing one noisy spectrum by another noisy spectrum, in that it yields

31

32 CHAPTER 3. RAZORDIVIDE — RZRDIV

a statistical estimate of the ratio spectrum you would obtain if each of its components
were noise-free.

The required user input is:

e The unnormalized sample spectrum.
e The reference spectrum.

o A smooth peakshape characteristic of the narrowest feature of interest present in
the data. It is not critical that the user choose an exact peakshape for rzrdiv.

Processing notes:

¢ The resultant smooth transmittance spectrum is constrained to be between 0 and 1.

Programming notes:

o This algorithm is a space hog. It requires six! fill-size arrays, s, r, trans, u, v and
Ww.

Usually one is able to trade memory space for processing time in algorithm devel-
opment. We were able to do neither here. The rzrdiv algorithm uses a lot of array
space and a lot of time. Furthermore, it is slow to converge, requiring at least fifty
iterations.

o If the noise is not severe, then we recommend the use of rzresm separately on
sample and reference spectra, before division, as a quicker alternative.

e For the first call, set iter = 0. rzrdiv will then maintain iter.

e The particular method we have used to estimate the smooth ratio spectrum is very
slow to converge, especially when the absorbances are small. We continue to work
on it...

3.2. RZRDIV 33

long rzrdiv(float s| |, float r{ }, long n2,
float shapef], long nl2, float u|], float v]|],
float wi |, float trans[], long *n, long *newpk,
long iter, long *nfwhm, double *sigma)

Input arrays which must be filled:
s, filled between 0 and n2, length n
r, filled between 0 and n2, length n
shape, filled between 0 and nl2
NOTE: shape will be read only, not altered.
NOTE: If newpk > 1, shape will not be read.
Additional arrays to be furnished:
u, length n
v, length n
w, length n
trans, length n
Input variables: n2, nl2, n, newpk, iter
n2 is the index of the last data value in s and r.
nl2 is the last position of data in shape.
n is the size of arrays s, r, u, v, w and trans.
iter, the iteration number, must be = 0 for the first call.
newpk indicates whether or not shape is a new peakshape.
If newpk = 1, shape will be processed.
Output arrays:
r, filled between 0 and n2
Output variables:
n = amount of array space used
NOTE: if n is negative, abs(n) = amount of array space
needed (but not available). Operation not successful.
newpk = n if trans was successfully loaded
nfwhm = full-width-at-half-maximum of peakshape
sigma = RMS noise in r
Function return values:
rzrdiv = 0 if successful
If rzrdiv < 0, error occurred
Use rzrerr (page 174) to obtain error text

Description of variables

s 1s the input unnormalized sample data array. It must be filled between data points 0
and n2, and it WILL be altered outside this range by the function, so you may wish
to retain a copy before calling rzrdiv.

34 CHAPTER 3. RAZORDIVIDE — RZRDIV

s must have a minimum size equal to the smallest power of two larger than
(n2+1+3*nfwhm). See the discussion below for n.

r is the input reference data array. It will be processed between data points 0 and n2,
and zeroed outside this range.

r must have a minimum size equal to the smallest power of two larger than
(n2+1+3*nfwhm). See the discussion below for n.

On output, r will contain the smooth transmission, or ratio array, between data
points 0 and n2. r may be displayed at the end of each iteration, if desired.

n2 is input as the last location of data in the s and r arrays which are to be ratioed.

shape 1s an input array which holds the peakshape of the narrowest spectral feature in
s which is of interest to the user, The relevant peakshape is located between data
points 0 and nl2 1n shape.

nl2 is input and the index of the last data point of the peakshape in shape. We recommend
that nl2+1 be at least 6xnfwhm, and that the peak be approximately centered in the
{0,nl2) interval.

u is a work array of size n which will be used for computations. u must have a minimum
size equal to the smallest power of two larger than (n2+1+3*nfwhm). See the
discussion below for n.

v is a work array of size n which will be used for computations. v must have a minimum
size equal to the smallest power of two larger than (n2+1+3*nfwhm). See the
discussion below for n.

w is a work array of size n which will be used for computations. w must have a
minimum size equal to the smallest power of two larger than (n2+1+3*nfwhm).
See the discussion below for n.

trans is an array of size n which will be used to house the Fourier transform of the
peakshape. The amount of space used in trans is calculated in rzprep. See the
discussion below for n.

trans is either empty or filled, depending on the parameter newpk. Whenever
newpk = |, it is assumed that the contents of shape have been altered, and trans is
newly loaded by rzrdiv. When newpk > 1, it is expected that trans has not been
changed since the last time it was filled. See the discussion below for newpk.

n is input as the amount of space furnished in the yout, w, and trans arrays.

The function rzsizn will calculate n, the minimum amount of space needed. The
required size of n is determined by n2 and by the width of the peak in the shape
array. Obtain the minimum required n with this call:

3.2, RZRDIV 35

n = rzsizn(n2,shape,nl2)

On output, n is the amount of space used for the Fourier transforms in the yout,
w, and trans arrays. If n is negative on output, the amount of space furnished
was inadequate, and no processing has taken place. If n is returned negative, then
abs(n) is the amount of space needed in the above arrays.

The space required for the Fourier transform is always calculated in rzprep, de-
scribed in Chapter 11. When newpk = 1, rzprep calculates the required size of the
Fourier transform as the smallest power of two larger than (n2+1+3*nfwhm). You
may wish to calculate n in an alternate fashion. See Chapter 11.

NOTE: When rzrdiv returns after successful processing, it fills both newpk and n
with the transform size. If you with to process additional data with the same peak-
shape, you need not change cither newpk or n, provided that (a) your peakshapes
do not change, and (b) your input ydata sizes (n2+1) do not increase.

newpk on input is an integer flag set which should be initially set to 1. It informs
the peakshape processor that a new peakshape is present in shape. The processor
measures certain parameters of the new peakshape, and then fills the trans array
with the Fourier transform of a properly shifted and scaled peakshape. When the
peakshape processor finishes successfully, it will output newpk = n, where n is the
actual space used in trans.

The peakshape processor uses that valuable commodity, CPU time, for a Fourier
transform. On input, the programmer can circumvent the peakshape processor with
newpk > J. Whenever rzrdiv is called with newpk > 1, ensure that:

(a) The user wants to use the previous peakshape for the current processing, and
trans is not changed.

(b) The size of the array needed to transform the new data set is no larger than the
n used previously. If this second criterium is violated, the ourput value of rzrdiv
will be rzrdiv = -2,

nfwhm is output as the number of data points between the half-maxima of the peakshape
feature in shape. nfwhm is computed internally.

iter is an input index for the iteration loop. Set iter = 0 for the initial call only. The
algorithm distinguishes between iter = 0 and iter > 0. rzrdiv will maintain iter.

sigma is oufput as the standard deviation (root- mean-square) of the noise which has
been removed by the estimation process.

36 ' CHAPTER 3. RAZORDIVIDE — RZRDIV

3.3 Example using rzrdiv

The figure shown in Section 3.4 was produced using rzrdiv. You can create your own
version using HANDLE.EXE and the data files:

Upnormalized sample spectrum file: SPECS
Reference spectrum file: REF5
Peakshape file: PEAKS

Using HANDLE:

RAZOR LIBRARY for Spectral Analysis -¢ There is only one best way!
Maximum Likelihood (ML), Maximum Entropy (ME), and Bayesian processing.
ESM=EntropySMooth. Smocths Normal (thermal/gaussian) ncise. ME
PSM=PoissonSMocth. Smooths Poisson (counting) noise. ML.
NSM=NormalSMoocth. Smooths Normal noise. ML.

DIV=RazorDivide. Calculates transmission gspectra. ML.
ASH=RazorASharp. Enhances resolution. ML.

DEC=RazorDeconvolve. Maximum Entropy deconvolution. ME/Bayesian.
LUC=RazorLucy. Classic ML deconvolution. ML.
DIF=RazorDerivative. Derivatives Oth-nth. Bayesian.
PIC=RazorPick. Finds peak positions for FIT. ML/Bayesian.
FIT=RazorFit. Fits model peaks to data. ML.

BAS=RazorBase. Finds baseline. ME/Bayesian.

QBA=RazorQuickBase. Finds baseline.

EDG=RazorEdge. Fits baseline to lower edge of data.
NOI=RazorNoise. Finds noise spectrum. ML.

GEN=Generates synthetic peakshape.

SAV=8ave result, QUI=Quit.

Choose an operation (3 uppercase characters) : DIV

RazorDivide giveg Maximum Likelihood estimate

of the ratio of two spectra.

You will need an unnormalized sample gpectrum,

a reference gpectrum, and a peakshape (bandshape} .

Enter name of unnormalized sample spectrum (Try SPECS) : SPECS
Enter name of reference spectrum {(Try REF5} : REF5
Enter name of peakshape file (see manual} (Try PEAKS): PEAKS

Entering RZRDIV with iter=0. Wait for setup...
At iter 1 the RMS noise is 0.0772

3.3. EXAMPLE USING RZRDIV

At iter 25 the RMS noise is 0.05555
More iterations? Enter the additional number required [0]:

The FWHM of the peakshape is 19
The size of the array space used was 4096
RESULT MAY BE SAVED TO A FILE

The figure below shows the sample, and the reference.

ol] F,tl.i‘ J
i | 'i”'!'{wli.' G

!

Arbitrary Y
o

O 1000 2000
Arbitrary X

37

38 CHAPTER 3. RAZORDIVIDE — RZRDIV

The second figure shows the transmission spectrum produced by direct division,
and the one produced by rzrdiv. rzrdiv is slow to converge. We let it run 25
iterations. If you do the same, and then overlay the results on the transmission file,
you will see that it has not yet converged in the strong absorbance regions. In our
experience, it takes 50 or more iterations for convergence. However, rzrdiv provides
superior noise suppression, as you can see looking at the ends of this spectrum.
Sometimes, when the data are very noisy, there is no better way.

Arbitrary Y

0 1000 2000
Arbitrary X

3.4. REDUCING NOISE IN TRANSMISSION SPECTRA 39

3.4 Reducing Noise in Transmission Spectra

(This is a summary of a paper given at the 1990 Pittsburgh Conference.)

Absorption spectroscopy begins with two spectra,

Sample + noise

Reference + noise

Their ratio gives a transmission spectrum,
T; = Sample + noise/Reference + noise,

where the subscript j is used to remind us that, due to the presence of noise, this particular
ratio is just one of the many possible resultant transmission spectra which could have
occurred.

The ratio is usually very noisy, especially at the ends of the spectrum where both the
sample and the reference have low fluxes. The usual solution is to smooth the transmission
spectrum T. However, ordinary smoothing methods are usually not applicable due to the
character of the noise. Unfortunately, the noise is not constant, nor even well-behaved!
Also, the apparent transmission after smoothing may exceed 100%.

If the sample noise and the reference noise come from Normal probability distributions,
then the transmission noise will have a Cauchy distribution. The Cauchy distribution is
the origin of the large noise spikes often seen in transmission spectra at the ends of the

40 : CHAPTER 3. RAZORDIVIDE — RZRDIV

observing band. The problem is illustrated in the unsmoothed spectrum below.

© Unsmoothed
g
[~
=
g 5
E Savitsky—Golay smoothed
e~
0 1RazorDivide smoothed

3000 2000 1000
Wavenumbers (cm-—1)

Faced with such a noisy transmission spectrum, the impulse to smooth is strong. But
should one smooth the sample and reference spectra separately, smooth the transmission
spectrum, or do something else? We recommend something else.

One really wants the best possible estimate of a noiseless transmission spectrum,
i.e., the spectrum which would result from averaging many, many noisy spectra such
as the one at hand. The Maximum Likelihood method provides this estimate. It finds
the MOST LIKELY transmission spectrum T, i.e. the transmission that would result from
averaging many T;.

Maximum Likelihood smoothing derives its power from the chemist’s a priori know}-
edge about the data. Any chemist or spectroscopist would be able to smooth the data
shown above, because his eye tells him the approximate width of true absorption features.
Yet each might choose a different smoothing method, or different parameters. Maximum
Likelihood is the analytical tool for changing ‘smooth by eye’ into ‘optimum smooth’, so
that all users obtain the best possible result. In this case, the chemist’s intuitive knowledge
of peak widths is replaced by one of these statements: the peakshapes are determined by
the known instrumental resolution, or the peakshapes are determined by known sample
bandshapes.

3.4. REDUCING NOISE IN TRANSMISSION SPECTRA 41

We have solved the appropriate Maximum Likelihood equations for the transmission
problem, incorporating the following a priori knowledge:

o Transmissions are < 1 (i.e., sample absorbances are > Q).

o The shapes of isolated single features in the transmission spectrum are known.
These shapes are determined by either

— Instrumental smearing
— Intrinsic bandshapes in the sample

The Maximum Likelihood prescription for Cauchy noise distributions is this: To find
the best estimate of T, maximize the probability P of obtaining the given transmission
spectrum T; = §;/R;,

1
P{T;) =
(J) 1+ﬁf‘§(Tj—T)2’

where S; is the sample absorption spectrum, and R; is the reference spectrum. T is the
transmission spectrum which would result from long-term averaging of many T;.

N; is the width of the Cauchy noise distribution. N; will be a function of the noise
N, in the sample spectrum S;, the noise N, in the reference spectrum R;, and S and R.
Thus, N; = N,(N,,N,,S,R). Note that S, R, T;, T, N;, N,, and N; are all functions of
frequency.

When the peakshapes are determined by sample bandshapes b;, then T 1s constrained

by
T = exp(—shapey * o{vy)).

The probability of obtaining the particular transmission spectrum T; then becomes

P(TJ (Xla X2,y xn)) =

1
e mz(Ti() — exp(—by x o(xx))}?

Maximum Likelihood asks and answers this question:

Of all the possible sets {o}, which one maximizes P?

The Maximum Likelihood solution is then an estimate of the transmission spectrum
T which would result from long-term averaging.

The solution presented by the RazorDivide algorithm is displayed in the previous
figure. The figure shows (top) the original single transmission spectrum T;, (middle})
Savitsky-Golay smoothing of T;, and (bottom) our Maximum Likelihood estimate of the

42 CHAPTER 3. RAZORDIVIDE — RZRDIV

“smoothed” spectrum T. The Maximum Likelihood estimate does not have transmissions
> 100%. Further, it accurately! finds no absorption below 800 cm~:. (The synthetic
sample has no absorption at wavenumbers < 1000 cm™ nor >3400 cm™1).

Maximum Likelihood smoothing outperforms other methods in tough situations, where
the signal/noise ratio is low. Furthermore, if the a priori knowledge included in the solution
is accurate and complete, then we have obtained the best possible estimate of the ‘true’
transmission T.

The benefits of using Maximum Likelihood for obtaining smooth transmission spectra
are (1) superior performance in low signal/noise situations, (2) the user does not have
to select an arbitrary smoothing procedure, (3) Maximum Likelihood gives the optimum
answer, the first time, and (4) all users obtain the same result.

Chapter 4

RazorSharp — rzrash/rzrdec/rzrluc

4.1 Resolution Enhancement without Artifacts

RazorSharp is a collection of Maximum Likelihood and Maximum Entropy/Bayesian
methods which enhance resolution, and so can separate overlapping peaks. These methods
can increase resolution by factors of two to five, depending upon the signal/noise ratio
in the data, and depending on the peak shapes. RazorSharp resolution enhancement
techniques are proper whenever:

» The spectrum, or chromatogram, in the absence of noise, would have no negative
intensities.

e The peaks have been broadened, either by intrinsic physical processes, or by an
instrument, and the shape of an isolated broadened peak is known.

e Any baseline, drift, or offset has been removed.

e The noise statistics are either Norma!l or Poisson.

RazorSharp methods are based upon Maximum Likelihood, Maximum Entropy, and
Bayesian principles, and are superior to standard linear “deconvolution” methods in the
following ways:

¢ Do not produce negative artifacts.
¢ Do not require a high signal/noise ratio.
e Do not produce strong “sidelobes” which mask weak peaks.

o Eliminate requirements to specify aphysical parameters, such as a filter shape in the
Fourier domain.

43

44 CHAPTER 4. RAZORSHARP — RZRASH/RZRDEC/RZRLUC

RazorSharp attempts to answer the question, “What is the most likely enhanced
sample spectrum which could have produced the observed data, given the a priori
knowledge of peak shapes and inherent noise?” The answer will be the same for all
users, because the a priori information represents physical knowledge about the experiment
which can be agreed upon in advance.

4.2. RZRASH — RAZORASHARP 45

4.2 rzrash — RazorASHarp

rzrash is the proper resolution enhancement algorithm to use when the peaks 1n the data
set are upright, positive, and unbounded from above, and when the noise is Poisson.

rzrash provides a Maximum Likelihood estimate of the noise-free object spectrum
which has been convolved with a known peakshape function to produce the observed
absorbance, emission, or counting spectrum.

Required user input:

e Data set in which any baseline or offset has been properly removed. Note that
rzrash is designed for use on data with positive values only!

o Select a peakshape which represents the peaks in the data set. It is very, very
important that the chosen peakshape be an accurate representation of the true shapes
of peaks in the data.

Processing notes:

o The solution is constrained to be positive.

rzrash is designed to work only with positive spectra from which any baseline
offset has been previously removed. Remove any baseline or offset! If a baseline
shift is not removed, then artifacts will be generated.

Programming notes:

e The programmer will need to provide four full-size arrays, ydata, yout, w, and
trans, for processing. ydata will be altered outside the range (0,n2).

e Call rzrash with iter = O for the first iteration only. The function will then maintain
iter for you. Most data files require 15 to 25 iterations.

46 CHAPTER 4. RAZORSHARP — RZRASH/RZRDEC/RZRLUC

long rzrash{float ydatal[], long n2, float shape| |, long nl2,
float yout|], float w[|, float trans{ |, long *n, long *newpk,
long *iter, long *nfwhm, double *chisq, double *sigma)

Input arrays which must be filled:
ydata, filled between 0 and n2, length n
shape, filled between 0 and nl2
NOTE: shape will be read only, not altered.
NOTE: If newpk > 1, shape will not be read.
Additional arrays to be furnished:
yout, length n
w, length n
trans, length n
Input variables: n2, ni2, n, newpk
n2 is the index of the last data values in ydata
nl2 is the index of the last data value in shape
n is the size of arrays ydata, yout, w and trans
newpk indicates whether or not shape is a new peakshape
sigma = RMS noise in ydata (optional).
Output arrays:
yout, filled between 0 and n2
Output variables:
n = amount of array space used
NOTE: if n is negative, abs(n) = amount of array space
needed (but not available), Operation not successful.
newpk = n if trans was properly loaded.
nfwhm = full-width-at-half-maximum of peakshape
chisq = ((ydata - yout-convolved-with-shape)/sigma)?.
sigma = RMS noise in ydata.
Function return values:
rzrash = 0 if iteration was successful
If rzrash < 0, error occurred
Use rzrerr (page 174) to obtain error text

Description of variables

ydata on input is the raw data array. The data of interest is contained in the range (0,
n2). ydata will be altered outside this range.

On output, it will be the smoothed data array.

ydata must have a minimum size equal to the smallest power of two larger than
(n2+1+3*nfwhm). See the discussion below for n.

4.2. RZRASH — RAZORASHARP 47

n2 is the /ast location of data in the ydata array. n2 is ic be furnished as input.

shape is an input array which holds the peakshape of the narrowest spectral feature in
ydata which is of interest to the user. The relevant peakshape is located between
data points 0 and nl2 in the shape array. The minimum size of the shape array is
nl2+1. nl2 must always be less than n.

nl2 is input as the index of the last data point of the peakshape in shape. We recommend
that nl2+1 be at least 6xnfwhm, and that the peak be approximately centered in the
0,nl2 nterval.

yout is an array of size n. On output, yout will be the resolution-enhanced data array.
yout is available for display at the end of each iteration.

yout must have a minimum size equal to the smallest power of two larger than
(n2+1+3*nfwhm). See the discussion below for n,

w is a work array of size n which will be used for computations. w must have a
minimum size equal to the smallest power of two larger than (n2+1+3*nfwhm).
See the discussion below for n.

trans is an array of size n which will be used to house the Fourier transform of the
peakshape. The amount of space used in trans is calculated in rzprep.

See the discussion below for n.

trans is either empty or filled, depending on the parameter newpk. Whenever
newpk = 1, it is assumed that the contents of shape have been altered, and thus
trans is newly loaded by rzrash. When newpk > 1, it is expected that trans has
not been changed since the last time it was filled. See the discussion below for
newpk,

n 1s input as the amount of space furnished in the yout, w, and trans arrays.

The function rzsizn will calculate n, the minimum amount of space needed. The
required size of n 1s determined by n2 and by the width of the peak in the shape
array. Obtain the minimum required n with this call:

n = rzsizn{n2,shape,nl2)

On output, n is the amount of space used for the Fourier transforms in the yout,
w, and trams arrays. If n is negative on oufput, the amount of space furnished
was inadequate, and no processing has taken place. If n is returned negative, then
abs(n) is the amount of space needed in the above arrays.

The space required for the Fourier transform is always calculated in rzprep, de-
scribed in Chapter 11. When newpk = 1, rzprep calculates the required size of the
Fourier transform as the smallest power of two larger than (n2+1+3*nfwhm). You
may wish to calculate n in an alternate fashion. See Chapter 11.

48

CHAPTER 4. RAZORSHARP — RZRASH/RZRDEC/RZRLUC

NOTE: When rzrash returns after successful processing, it fills both newpk and n
with the transform size. If you with to process additional data with the same peak-
shape, you need not change either newpk or n, provided that (a) your peakshapes
do not change, and (b) your input ydata sizes (n2+1) do not increase.

~ newpk on input is an integer flag set which should be initially set to 1. It informs

the peakshape processor that a new peakshape is present in shape. The processor
measures certain parameters of the new peakshape, and then fills the trans array
with the Fourier transform of a properly shifted and scaled peakshape. When the
peakshape processor finishes successfully, it will output newpk = n, where n is the
actual space used in trans.

The peakshape processor uses that valuable commodity, CPU time, for a Fourier
transform. On input, the programmer can circumvent the peakshape processor with
newpk > /. Whenever rzrash is called with newpk > 1, ensure that:

{(a) The user wants to use the previous peakshape for the current processing, and
trans is not changed.

(b) The size of the array needed to transform the new data set is no larger than the
n used previously. If this second criterium is violated, the output value of rzrash
will be rzrash = -2,

iter is an input index for the iteration loop. Set iter = 0 for the initial call only. The

function distinguishes between iter = 0 and iter > 0, and will automatically update
the value of iter.

nfwhm is output as the number of data points between the half-maxima of the peakshape

feature in shape.

chisq is output as the standard deviation (root- mean-square) of the difference between

the observed data ydata and the result spectrum yout convolved with shape, nor-
malized to the RMYS noise sigma. It is a measure of the convergence of the algorithm.
It may be displayed at the end of each iteration.

sigma is either/both an input and an output variable. It is the standard deviation (root-

mean-square) of the noise.
When the RMS noise in the ydata array is known, it should be inpuf in sigma.

When the RMS noise is not known, set sigma = 0.0, as a signal to the function to
auto-calculate sigma.

4.3. EXAMPLE USING RZRASH 49

4.3 Example using rzrash

Benzene is a favorite for testing the resolution of a slit spectrometer. One of the spectra in
the figure below was taken with a 2 nanometer slit setting. At the same time, the operator
scanned one of the narrow lines of his deuterium lamp, providing us with the spectrum
we give you in the file PEAKI.

We passed these files through the HANDLE program contained on your disk, using
RazorASharp (Command ASH). The result is shown.

Data file: SPEC1
Peakshape: PEAK1

Using HANDLE:

RAZOR LIBRARY for Spectral Analysis -¢ There is only one best way!
MaximumLikelihood (ML), Maximum Entropy (ME), and Bayesianprocessing.
ESM=EntropySMooth. Smoocths Normal (thermal/gaussian) noise. ME
PSM=PoissonSMooth. Smooths Poisson (counting} noise. ML.
NSM=NozrmalSMooth. Smooths Normal noise. ML.

DIV=RazorDivide. Calculates transmission spectra. ML.
ASH=RazorASharp. Enhances resolution. ML.

DEC=RazorDeconvolve. Maximum Entropy deconvolution. ME/Bayesian.
LUC=RazorLucy. Classic ML deconvolution. ML.
DIF=RazorDerivative. Derivatives Oth-nth. Bayesian.
PIC=RazorPick. Finds peak pogitions for FIT. ML/Bayesian.
FIT=RazorFit. Fits model peaks to data. ML.

BAS=RazorBage. Finds baseline. ME/Bayesian.
QBA=RazorQuickBase. Finds baseline.

EDG=RazorEdge. Fits baseline to lower edge of data.
NOI=RazorNoise. Finds noise spectrum. ML.

GEN=Generates synthetic peakshape.

SAV=5ave result, QUI=Quit.

Choosge an operation (3 uppercase characters) : ASH

Enter name of unnormalized sample spectrum (Try SPEC1l) : SPEC1
Enter name of peakshape file (Try SPEC1) : PEAKL

Entering RZRASH with iter = 0. Wailt for setup...
At iter 1, RMS noise = .000171, Chisg = 159.40

........

At iter 15, RMS noise = .000171, Chisg = 2.C17

More iterations? Enter the additional number required [0]: O
ASH: Final RMS noige = .000171, Chisg=2.017

The FWHM of the peakshape is 20.

50 CHAPTER 4. RAZORSHARP — RZRASH/RZRDEC/RZRLUC

RESULT MAY BE SAVED TO A FILE

ASH = i Iter= 15, RS noise= .323136E-63, Chisq= .115B63E+01
More iterations? Enter the additional number required: I0]

fﬁﬁ?ﬁﬁ TECL

UEEE T

EEEEEEENENEE

1 —rn I 1 1 1 |

225.86 239.9 Z235.¢ 240.0 245.¢ 250.0 255.6 260.0 265.06 Z/.8
X INITS

4.4, RZRDEC — RAZORDECONVOLVE 51

4.4 rzrdec — RazorDEConvolve

rzrdec is the proper resolution enhancement algorithm to use when the peaks in the data
set are upright, positive, and unbounded from above, and when the noise is Normal.

rzrdec provides a Maximum Entropy estimate of the noise-free object spectrum which
has been convolved with a known peakshape function to produce the observed absorbance,
or emission, spectrum.

Required user input:

e Data set in which any baseline or offset has been properly removed. Note that
rzrdec is designed for use on data with positive values only!

e Seclect a peakshape which represents the peaks in the data set. It is very, very
important that the chosen peakshape be an accurate representation of the true shapes
of peaks in the data. The correct peakshape is more important for rzrdec than for
any other function of Razor Library, because the underlying algorithm of rzrdec
is more powerful than any other, and thus it is more sensitive to nuances in the
peakshape.

Processing notes:

¢ The solution is constrained to be positive.

rzrdec is designed to work only with positive spectra from which any baseline
offset has been previously removed. Remove any baseline or offset! If a baseline
shift is not removed, then artifacts will be generated.

Programming notes:

o The programmer will need to provide four full-size processing arrays, yout, w, X,
and trans, as well as the data array ydata. ydata will NOT be altered by rzrdec.

e Call rzrdec with iter = 0 for the first iteration only. The function will then maintain
iter for you. Most data files require 100 to 200 iterations.

e rzrdec contains the most powerful processing algorithm in Razor Library. The
algorithm is so powerful that it eventually reaches the limits of double precision
arithmetic. When this happens, rzrdec has converged within the limits available.
It will send back a return value of -10, indicating that further iterations would give
no improvement. You may look for this return value as a natural stopping point,
and use the output yout with confidence!

52 CHAPTER 4. RAZORSHARP — RZRASH/RZRDEC/RZRLUC

long rzrdec(float ydataf], float prior{], long n2, float shape[|, long nl2,

float yout| |, float v[|, float w[], float x[], float trans[|, long *n, long *newpk,
int

pflag, long *iter, double things[], long *nfwhm, double *chisq, double *sigma)

Input arrays which must be filled: .
ydata, filled between 0 and n2, length n2 + 1
prior, optionally filled between 0 and n2, length 1, or n2 + 1
NOTE: If pflag = 0, prior will not be used.
shape, filled between 0 and ni2
NOTE: shape will be read only, not altered.
NOTE: If newpk > 1, shape will not be read.
Additional arrays to be furnished:
yout, length n
v, length n
w, length n
x, length n
trans, length n
things, length = 10
Input variables: n2, ni2, n, newpk, pflag, iter, things{10}
n2 is the index of the last data value in ydata
nl2 is the index of the last data value in shape
n is the size of arrays ydata, yout, w and trans
newpk indicates whether or not shape is a new peakshape
pflag indicates whether or not prior contains information
iter must be set to 0 for the first iteration
things[0], ete should be set to 0 for standard operation
sigma = RMS noise in ydata (optional).
Output arrays:
yout, filled between 0 and n2
Output variables:
n = amount of array space used
NOTE: if n is negative, abs(n) = amount of array space
needed (but not available). Operation not successful.
newpk = n if trans was properly loaded.
iter will be updated to show the next iteration number
nfwhm = full-width-at-half-maximum of peakshape
chisq = ((ydata - yout-convolved-with-shape)/sigma)?,
sigma = RMS noise in ydata.
things[4] = Entropy of resolved configuration in yout
Function return values:
rzrdec = 0 if iteration was successful

4.4. RZRDEC — RAZORDECONVOLVE 53

= -10 when it reaches the limits of double precision arithmetic
If rzrdec < 0, and != -10, an error occurred
Use rzrerr (page 174) to obtain error text

Description of variables

ydata on input is the raw data array. The data of interest is contained in the range (0,
n2). ydata will NOT be altered outside this range.

prior on input is the your best (biased) estimate of the output array.
When pflag = 0, rzrdec uses a flat prior, and the prior array is ignored.

When pflag = 1, the prior is a smoothed version of the data. In this case, you only
need to provide an array of size n2. rzrdec will fill it and maintain it.

When pflag =2, rzrdec will read the array prior to find your prior estimate of the
deconvolved result.

n2 is the /ast location of data in the ydata array. n2 is to be furnished as input.

shape is an input array which holds the peakshape of the narrowest spectral feature in
ydata which is of interest to the user. The relevant peakshape is located between
data points 0 and nl2 in the shape array. The minimum size of the shape array is
ni2+1. nl2 must always be less than n.

nl2 is input as the index of the last data point of the peakshape in shape. We recommend
that nl2+1 be at least 6xnfwhm, and that the peak be approximately centered in the
0,nl2 interval,

yout is an array of size n. On output, yout will be the resolution-enhanced data array.
yout is available for display at the end of each iteration.

yout must have a minimum size equal to the smallest power of two larger than
{n2+1+3*nfwhm). See the discussion below for n.

v is a work array of size n which will be used for computations. v must have a minimum
size equal to the smallest power of two larger than (n2+1+3*nfwhm). See the
discussion below for n.

W iS a work array of size n which will be used for computations. w must have a
minimum size equal to the smallest power of two larger than (n2+1+3*nfwhm).
See the discussion below for n.

X 1s a work array of size n which will be used for computations. x must have a minimum
size equal to the smallest power of two larger than (n2+1+3*nfwhm). See the
discussion below for n.

54 CHAPTER 4. RAZORSHARP — RZRASH/RZRDEC/RZRLUC

trans is an array of size n which will be used to house the Fourier transform of the
peakshape. The amount of space used in trans is calculated in rzprep. See the
discussion below for n.

trans is either empty or filled, depending on the parameter newpk. Whenever
newpk = 1, it is assumed that the contents of shape have been altered, and thus
trans is newly loaded by rzrdec. When newpk > 1, it is expected that trans has
not been changed since the last time it was filled. See the discussion below for
newpk.

n is input as the amount of space furnished in the yout, v, w, and trans arrays.

The function rzsizn will calculate n, the minimum amount of space needed. The
required size of n is determined by n2 and by the width of the peak in the shape
array. Obtain the minimum required n with this call:

n = rzsizn(n2,shape,nl2)

On output, n is the amount of space used for the Fourier transforms in the yout,
v, w, and trans arrays. If n is negative on output, the amount of space furnished
was inadequate, and no processing has taken place. If n is returned negative, then
abs(n) is the amount of space needed in the above arrays.

The space required for the Fourier transform is always calculated in rzprep, de-
scribed in Chapter 11. When newpk = 1, rzprep calculates the required size of the
Fourier transform as the smallest power of two larger than (n2+1+3*nfwhm). You
may wish to calculate n in an alternate fashion. See Chapter 11.

NOTE: When rzrdec returns after successful processing, it fills both newpk and n
with the transform size. If you with to process additional data with the same peak-
shape, you need not change either newpk or n, provided that (a) your peakshapes
do not change, and (b) your input ydata sizes (n2+1) do not increase.

newpk on input is an integer flag set which should be initially set to 1. It informs
the peakshape processor that a new peakshape is present in shape. The processor
measures certain parameters of the new peakshape, and then fills the trans array
with the Fourier transform of a properly shifted and scaled peakshape. When the
peakshape processor finishes successfully, it will oufput newpk = n, where n is the
actual space used in trans.

The peakshape processor uses that valuable commodity, CPU time, for a Fourier
transform. On input, the programmer can circumvent the peakshape processor with
newpk > /. Whenever rzrdec is called with newpk > 1, ensure that:

{a) The user wants to use the previous peakshape for the current processing, and
trans is not changed.

(b) The size of the array needed to transform the new data set is no larger than the
n used previously. If this second criterium is violated, the output value of rzrdec

4.4. RZRDEC — RAZORDECONVOLVE 35

will be rzrdec = -2.

pflag is an input flag that tells rzrdec your a priori estimate of the true result. When
pflag = 0, rzrdec uses a flat prior, and the prior array is ignored. When pflag =
1, the prior is a smoothed version of the data. The prior array will be used; rzrdec
will fill it and maintain it. When pflag =2, rzrdec will read the array prior to find
your prior estimate of the deconvolved result.

iter is an input index for the iteration loop. Set iter = 0 for the initial call only. The
function distinguishes between iter = 0 and iter > 0, and will automatically update
the value of iter.

things is a work array which holds parameters that must be saved between iterations. On
input, before the first iteration, set things = 0.0, for standard operation.

nfwhm is output as the number of data points between the half-maxima of the peakshape
feature in shape.

chisq is output as the standard deviation (root- mean-square) of the difference between
the observed data ydata and the result spectrum yout convolved with shape, nor-
malized to the RMS noise sigma. It is a measure of the convergence of the algorithm.
It may be displayed at the end of each iteration.

sigma is either/both an inpu and an oufput variable. It is the standard deviation (root-
mean-square) of the noise.
When the RMS noise in the ydata array is known, it should be inpuf in sigma.

When the RMS noise is not known, set sigma = 0.0, as a signal to the function to
auto-calculate sigma.

56 CHAPTER 4. RAZORSHARP — RZRASH/RZRDEC/RZRIUC

4.5 Example using rzrdec

Benzene is a favorite for testing the resolution of a slit spectrometer. One of the spectra in
the figure below was taken with a 2 nanometer slit setting. At the same time, the operator
scanned one of the narrow lines of his deuterium lamp, providing us with the spectrum
we give you in the file PEAKI.

We passed these files through the HANDLE program contained on your disk, using
RazorDeconvolve (Command DEC). The result is shown.

Data file: SPEC1
Peakshape: PEAK1

Using HANDLE:

RAZOR LIBRARY for Spectral Analysis -¢ There is only one best way!
Maximum Likelihood (ML), Maximum Entropy (ME), and Bayesianprocessging.
ESM=EntropySMooth. Smooths Normal (thermal/gaussian) ncoise. ME
PSM=PoissonSMooth. Smocoths Poisson (counting) noise. ML.
NSM=NormalSMooth. Smooths Normal ncise. ML.

DIV=RazorDivide. Calculates transmission spectra. ML.
ASH=RazorASharp. Enhances resolution. ML.

DEC=RazorDeconvolve. Maximum Entropy deconvolution. ME/Bayesian.
LUC=RazorLucy. Classic ML deconvolution. ML.
DIF=RazorDerivative. Derivativeg Oth-nth. Bayesian.
PIC=RazorPick. Finds peak positions for FIT. ML/Bayegian.
FIT=RazorFit. Fits model peaks to data. ML.

BAS=RazorBasgse. Finds baseline. ME/Bayesian.
QBA=RazorQuickBase. Finds baseline.

EDG=RazorEdge. Fits baseline to lower edge of data.
NOI=RazorNoise. Finds noise spectrum. ML.

GEN=Generates synthetic peakshape.

SAV=Save result, QUI=Quit.

Choose an coperation (3 uppercase characters): DEC

Enter name of unnormalized sample spectrum {Try SPECL) : SPECL
Enter name of peakshape file (Try SPECL) : PEAKL

RZRDEC is Bayesian, and uses an a priori spectrun.
Sdt pflag=0 for uniform prior. [Default]

Set pflag=1 to use smoothed data as prior.

Choose pflag (Use 0 if not sure) : 0

Entering RZRDEC with iter = 0. Wait for setup...
RZRDEC Iter=1, RMS= .000171, Chisqg = 252681, Mean Entropy= -2.625
RZRDEC Iter=2, RMS= .000171, Chisg=13037.2, MeanEntropy=-.0834

4.5. EXAMPLE USING RZRDEC

........

RZRDEC Iter= 97, RMS= .000171, Chisq = 15.96, Entropy=-.519
RZRDEC has finished!

The FWHM of the peakshape is 20.

The size of array space used was 1024

RESULT MAY BE SAVED TC A FILE

DEC = RaznrDecomvoleve: At iter 25 the reduced chi-squared iz .S66360E+61
More iterations? Enter the additional mumber required: [€]

[[1ZA5-1952 “SPECT

-

417

- -

U I E—

EEE NN NN R

] L 1 1 1 1 |

2250 23866 235.0 240.6 2450 2500 2559 2500 2650 ZM.0
X UNITS

57

58 CHAPTER 4. RAZORSHARP — RZRASH/RZRDEC/RZRLUC

4.6 rzrluc — RazorLUCy

rzrluc is the proper resolution enhancement algorithm to use when the peaks in the data
set are upright, positive, and unbounded from above, and when the noise is Poisson.

rzrluc provides a Maximum Likelithood estimate of the noise-free object spectrum
which has been convolved with a known peakshape function to produce the observed
absorbance, emission, or counting spectrum,

Required user input:

e Data set in which any baseline or offset has been properly removed. Note that
rzrluc is designed for use on data with positive values only!

o Select a peakshape which represents the peaks in the data set. It is very, very
important that the chosen peakshape be an accurate representation of the true shapes
of peaks in the data.

Processing notes:

e The solution is constrained to be positive.

rzrluc is designed to work only with positive spectra from which any baseline offset
has been previously removed. Remove any baseline or offset! If a baseline shift is
not removed, then artifacts will be generated.

Programming notes:

e The programmer will need to provide four full-size arrays, ydata, yout, w, and
trans, for processing. ydata will be altered outside the range (0,n2).

o Call rzrluc with iter = O for the first iteration only. The function will then maintain
iter for you. Most data files require 15 to 25 iterations,

4.6. RZRLUC — RAZORLUCY

long rzriuc(float ydataj], long n2, float shapef], long ni2,
float yout[], float w[], float trans|], long *n, long *newpk,
long *iter, long *nfwhm, double *chisq, double *sigma)

Input arrays which must be filled:
ydata, filled between 0 and n2, length n
shape, filled between 0 and nl2
NOTE: shape will be read only, not altered.
NOTE: If newpk > 1, shape will not be read.
Additional arrays to be furnished:
yout, length n
w, length n
trans, length n
Input variables: n2, nl2, n, newpk
n2 is the index of the last data values in ydata
nl2 is the index of the last data value in shape
n is the size of arrays ydata, yout, w and trans
newpk indicates whether or not shape is a new peakshape
sigma = RMS noise in ydata (optional).
Output arrays:
yout, filled between 0 and n2
Qutput variables:
n = amount of array space used
NOTE: if n is negative, abs(n) = amount of array space
needed (but not available). Operation not successful.
newpk = n if trans was properly loaded.
nfwhm = full-width-at-half-maximum of peakshape
chisq = ((vdata - yout-convolved-with-shape)/sigma)?.
sigma = RMS noise in ydata.
Function return values:
rzrluc = 0 if iteration was successful
If rzrluc < O, error occurred
Use rzrerr (page 174) to obtain error text

59

Description of variables

ydata on input is the raw data array. The data of interest is contained in the range (0,

n2). ydata will be altered outside this range.
On output, it will be the smoothed data array.

ydata must have a minimum size equal to the smallest power of two larger than

(n2+1+3*nfwhm). See the discussion below for n.

60 CHAPTER 4. RAZORSHARP — RZRASH/RZRDEC/RZRLUC

n2 is the last location of data in the ydata array. n2 is to be furnished as input.

shape is an input array which holds the peakshape of the narrowest spectral feature in
ydata which is of interest to the user. The relevant peakshape is located between
data points 0 and nl2 in the shape array. The minimum size of the shape array is
nl2+1. nl2 must always be less than n.

nl2 is input as the index of the last data point of the peakshape in shape. We recommend
that nI2+1 be at least 6xnfwhm, and that the peak be approximately centered in the
0,nI2 imnterval,

yout is an array of size n. On output, yout will be the resolution-enhanced data array.
yout is available for display at the end of each iteration.

yout must have a minimum size equal to the smallest power of two larger than
(n2+1+3*nfwhm). See the discussion below for n.

w is a work array of size n which will be used for computations. w must have a
minimum size equal to the smallest power of two larger than (n2+1+3*nfwhm).
See the discussion below for n.

trans is an grray of size n which will be used to house the Fourier transform of the
peakshape. The amount of space used in trans is caiculated in rzprep. See the
discussion below for n.

trans is either empty or filled, depending on the parameter newpk. Whenever
newpk = 1, it is assumed that the contents of shape have been altered, and thus
trans is newly loaded by rzrluc. When newpk > 1, it is expected that trans has
not been changed since the last time it was filled. See the discussion below for
newpk.

n is input as the amount of space furnished in the yout, w, and trans arrays.

The function rzsizn will calculate n, the minimum amount of space needed. The
required size of n is determined by n2 and by the width of the peak in the shape
array. Obtain the minimum required n with this call:

n = rzsizn{n2,shape,nl2)

On output, n is the amount of space used for the Fourier transforms in the yout,
w, and trans arrays. If n is negative on output, the amount of space furnished
was inadequate, and no processing has taken place. If n is returned negative, then
abs(n) is the amount of space needed in the above arrays.

The space required for the Fourier transform is always calculated in rzprep, de-
scribed in Chapter 11. When newpk = 1, rzprep calculates the required size of the
Fourier transform as the smallest power of two larger than (n2+1+3*nfwhm). You
may wish to calculate n in an alternate fashion. See Chapter 11.

4.6. RZRLUC — RAZORLUCY 61

NOTE: When rzrluc returns after successful processing, it fills both newpk and n
with the transform size. If you with to process additional data with the same peak-
shape, you need not change either newpk or n, provided that (a) your peakshapes
do not change, and (b) your input ydata sizes (n2+1) do not increase.

newpk on input is an integer flag set which should be initially set to 1. It informs
the peakshape processor that a new peakshape is present in shape. The processor
measures certain parameters of the new peakshape, and then fills the trans array
with the Fourier transform of a properly shifted and scaled peakshape. When the
peakshape processor finishes successfully, it will output newpk = n, where n is the
actual space used in trans.

The peakshape processor uses that valuable commodity, CPU time, for a Fourier
transform. On input, the programmer can circumvent the peakshape processor with
newpk > /. Whenever rzrluc is called with newpk > 1, ensure that:

(a) The user wants to use the previous peakshape for the current processing, and
trans is not changed.

(b) The size of the array needed to transform the new data set is no larger than the
n used previously. If this second criterium is violated, the output value of rzrluc
will be rzrluc = -2.

iter is an input index for the iteration loop. Set iter = 0 for the initial call only. The
function distinguishes between iter = 0 and iter > 0, and will automatically update
the value of iter.

nfwhm is output as the number of data points between the half-maxima of the peakshape
feature in shape.

chisq is output as the standard deviation (root- mean-square) of the difference between
the observed data ydata and the result spectrum yout convolved with shape, nor-
malized (o the RMS noise sigma. It is a measure of the convergence of the algorithm.
It may be displayed at the end of each iteration.

sigma is either/both an input and an ousput variable. It is the standard deviation (root-
mean-square) of the noise.
When the RMS noise in the ydata array is known, it should be input in sigma.

When the RMS noise is not known, set sigma = 0.0, as a signal to the function to
auto-calculate sigma.

62 CHAPTER 4. RAZORSHARP — RZRASH/RZRDEC/RZRLUC

4.7 Example using rzrluc

Data file: SPEC2
Peakshape: PEAK2

Using HANDLE:

RAZOR LIBRARY for Spectral Analysis -¢ There is only one best way!
MaximumLikelihcod (ML}, Maximum Entropy (ME), and Bayesian processing.
ESM=EntropySMooth. Smooths Normal (thermal/gaussian) noise. ME
PSM=PoissonSMooth. Smooths Poisson (counting) noise. ML.
NSM=NormalSMooth. Smooths Normal noige. ML.

DIV=RazorDivide. Calculates transmission spectra. ML.
ASH=RazorASharp. Enhances resolution. ML,

DEC=RazorDeconvolve. Maximum Entropy deconvolution. ME/Bayesian.
LUC=RazorLucy. Classic ML deconvolution. ML.
DIF=RazorDerivative. Derivatives Oth-nth. Bayesian.
PIC=RazorPick. Finds peak positions for FIT. ML/Bayesian.
FIT=RazorFit. Fits model peaks to data. ML.

BAS=RazorBase. Finds baseline. ME/Bayesian.

QBA=RazorQuickBase. Finds baseline.

EDG=RazorEdge. Fits baseline to lower edge of data.
NOI=RazorNoise. Finds noise spectrum. ML.

GEN=Generates synthetic peakshape.

SAV=Save result, QUI=Quit,

Choose an operation (3 uppercase characters) : LUC

Enter name of unnormalized sample spectrum (Try SPEC2) : SPEC2
Enter name of peakshape file {Try SPECZ) : PEAK2

Entering RZRLUC with iter = 0. Wait for setup...
At iter 1, RMS noige = 3.4088, Chisg = 2.636

At iter 15, RMS noise = 3.4088, Chisqgq=1.270

More iterations? Enter the additional number required [0]: 0
The FWHM of the peakshape is 80.

The size of array space used was 1024

RESULT MAY BE SAVED TO A FILE

4.7. EXAMPLE USING RZRLUC

More iterations? Ewter the additional mumbar required: [01
Result may be saved to & file

1251552

138.7?

126.5
¥
U 114.2
N
1 162.0
T
8§ 89.69

70.5?
65.35

53.12
40.9%%
28 .67
16 .45
4.223

1.606 100.9 200.8 3006.7 400.6 508.5 606.4 700.3 D99.2 960.1
X UNITS

64 CHAPTER 4. RAZORSHARP — RZRASH/RZRDEC/RZRLUC

4.8 Statistically Sound Restoration

The functions in RazorSharp are Maximum Likelihood and Maximum Entropy/Bayesian
Restoration methods. Spectrum Square specializes in methods of this type, because they
are statistically sound and immune to the usual diseases found in linear “deconvolution”
techniques. Although Maximum Likelihood and Maximum Entropy restoration is widely
used in geophysics and astrophysics, the principles are not generally known to spectro-
scopists. We will describe them here.

4.9 The Bayesian Principle

Every spectroscopist knows that a spectrometer distorts, even as it reveals, the spectrum
produced by a sample. A feature that the chemist suspects is a group of sharp peaks may
appear in a spectrum as a single broad asymmetric peak, probably contaminated by noise.
This may not surprise the chemist, but also may not help him much. If he can run the
sample again with sufficient resolution then he will do so, but if this is not possible then
he is faced with a problem of interpretation. From previous experience he may know
what a single sharp peak looks like when viewed “through” the spectrometer, and he may
then try to guess what the composition of the observed feature must be in order to appear
as it does. That is, the spectroscopist will try to decide by eye what the most likely input
spectrum must have been, to have produced the observed spectrum. It’s a little like trying
to fit a straight line to a data set by eye, but a lot harder.

There should be a better way to solve problems of this kind, and there is. It’s called
Bayesian Spectral Restoration. Bayesian restoration responds to the spectroscopist’s need
by answering the question,

“What is the most likely sample behavior that could have resulted in the ob-
served spectrum, given a specific set of known characteristics of the observing
system?”.

The answer is then given in a statistically reliable and reproducible manner.

4.10 How Bayesian/Maximum Likelihood/Maximum En-
tropy Restoration Works

We have asked the question, what 1s the most probable sample spectrum (usually called
the object spectrum), consistent with the data at hand, and consistent with a set of known
system constraints?

These constraints consist of everything the experimenter knows about the system,
including the data set he is trying to interpret. “Everything” may include but is not
limited to:

4.10. HOW BAYESIAN/MAXIMUM LIKELIHOOD/MAXIMUM ENTROPY RESTORATION WORKS65

1. The spectrometer peakshape function. (What does it do to a single peak?)
2. The signal-to-noise ratio.

3. Whether the signal has an upper and/or a lower bound, and if it does, what these
bounds are.

4. The noise. (Is the noise additive or multiplicative? Is it Normal or Poisson? What
are the spectral characteristics of the noise?)

5. The total energy, always presumed to be conserved.

6. A priori object spectrum probabilities. (For example, in atomic mass spectrometry,
signals can appear only at certain positions.)

The list can go on. Some of the constraints are very well known and have small
variability; these are often taken as “known” to simplify the computation. An example
is the instrument peakshape function. Other constraints, such as detector noise, are not
known except as to type of statistical behavior and mean square magnitude. In practice,
the more one knows about the system, the better. Since we are adding knowledge that is
not implicit in the data, it is well to add a lot of it, provided it is correct!

We emphasize that appropriate constraints will all be known or ascertainable for a
given system. One does not tinker with them to obtain a result one /ikes, any more than
one pushes data points around to obtain a least squares fit whose slope and intercept one
likes. We want, after all, the most likely result. If it is not pleasing, well, we did the best
we could with the data we had!

Maximum Likelihood algorithms are constructed around the following paradigm: The
object spectrum is caused by a physical process which is statistically stationary, so that
successive samples are short-time approximations to some mean behavior which has a
definite limit as the sampling period increases without limit.

We see at once that this assumption cannot be correct. Light sources bumn out, the
sample evaporates, etc. Nevertheless, we must make the assumption that at least during
the time of the experiment, nothing has changed. In particular, nothing in the above list
of constraints changes during the data acquisition period.

One then constructs a probability function which assigns a probability to every physi-
cally possible outcome of a particular experiment. One finds that for some object choices,
the observed data spectrum is very probable; for other arrangements of the object spectrum,
the observed data spectrum is highly unlikely. We simply choose that object spectrum
which has the highest probability of giving us our observed data set.

There 1s no magic here, and no way to adjust the outcome. One does not guess, except
in the sense that one guesses that 1000 tosses of a fair coin on flat ground will result in
most of the trials ending with the coin flat on the ground. (Such a prediction is not really
a guess, but the result of a rapid Maximum Likelihood analysis!)

66 CHAPTER 4. RAZORSHARP — RZRASH/RZRDEC/RZRLUC

4.11 Equations used by rzrash and rzrdec and rzrluc

The equations needed for Bayesian/Maximum Likelihood/Maximum Entropy spectral res-
toration are not particularly difficult to set up.

Suppose we have measured a data set {yi,ya,...yn}. We really want to know the
values of the data set {0y, 02, ...0,}, where each y; is related to o; by the equation

yi = (0 ®s8); -+ n;.

The set {o1,02,...0,} is a more highly resolved spectrum, ® denotes convolution,
s is the peakshape function, and n; are the noise fluctuations. We will use Maximum
Likelihood and Bayesian methods to estimate {01, 02, ...0, }.

If the noise n; is random, and additive, with a Normal distribution, then the probability
for obtaining a particular value y; is

ply: | 0) = Wexp[_ (yi — g;;@ s)i) 1

If the noise n; is random noise with a Poisson distribution, then the probability for y;

is
(0 R S)iYie—(o®s)i
yi!
Assume that the noise n, is uncorrelated with the noise n;, for all ¢, 7. Then the

likelihood of observing the set {y;,¥z,...yn} is the product of the probabilities for each
of the y;:

p(yi| o) =

n

p(Y1,¥yul01,...,0n) = H p(yi | o)

i=1
For Normal noise, this becomes
5 _ 1 (yi—(0o® S)i)z]
2 .

P(Y1,¥n | 01,...,0n) = 1=]11 WEXP[— 2

i
For Poisson noise,

" (ORS _Yie—(o®s);
P(Y1,---Yn l 015---70n) = H ()l 1
i=1 Yi-

4.11.1 Maximum Likelihood Restoration

When we maximize the probability

P(yl: -y ¥n I 01, "'JOD))

in order to find the best estimate of {0;, 02, ...0, }, then we are performing Maximum
Likelihood Spectral Restoration.

4.11. EQUATIONS USED BY RZRASH AND RZRDEC AND RZRLUC 67

4.11.2 Bayesian and Maximum Entropy Restoration

When we maximize the probability

p(oli "')Orl ! ylﬂ "'!yn)'ﬁ

by invoking Bayes Rule, then we are using a Bayesian Spectral Restoration method
(also called the MAP (Maximum A Posteriori) method).

Bayes Rule says that the probability p(oy, ..., 0n | ¥1,-.., ¥n) is related to the proba-
bility p{y1,--+¥n | 01, ..., 0n) through

(yla---ser L01,-..,0n)p(01,...on)
P(¥1, .., ¥n)

P
P(Ols---,on | Y1, '“ayn) =

In order to solve the equation, we must also provide the a priori probabilities p(y1, ..., ¥u)
for our observed spectrum and p{os,...,0,) for all parent spectrums. Clearly, the proba-
bility for our single observation is p(yy, ..., ¥n) = 1.

For this application, we will use the multinomial probability law, combined with a
prior spectrum {G, @z, ...Q0» }, and so the a priori probability for the parent spectrum is

NI [a] [a]
p(01, ..., 0n) = ————Q; 7 Qx"%..Q,""

01!02!...()“!

When we maximize the probability p(o1,...,0pn | ¥1, .., ¥n), and use the multinomial
probability law for p(oy, ..., 0n), then we are performing Maximum Entropy Spectral
Restoration.
~ In summary, the Maximum Likelihood prescription says we must maximize p{y | o).
The Bayesian prescription says we must maximize p{o | y). The Maximum Entropy pre-
scription says we must maximize p{o | y), and additionally use a multinomial probability
law as the degeneracy factor for the prior spectrum. The maximizations are to be done
under a set of constraints. An important constraint is our knowledge of the peakshapes.
We assume that the object function {o1, 0, ...0,} is composed of many individual peaks.
However, we make no assumption about how many peaks there are, or where they are. We
assume that the object function has been convolved with a peakshape function, thereby
producing the spectrum we observe. The convolving peakshape function is known to
us; its shape is represented by s. We also assume that the object function is positive
everywhere.

4.11.3 Razor Library’s two restoration methods

Razor Library contains two separate restoration methods, Maximum Entropy/Bayesian,
and Maximum Likelihood restoration. The two methods, and the equations which they
solve, are given here.

68 CHAPTER 4. RAZORSHARP — RZRASH/RZRDEC/RZRLUC

RazorDeconvolve — rzrdec is a Maximum Entropy/Bayesian method. It maximizes
the probability

plo 1) = {[] grexpl- L2 29y

’iT)O'i i

01+ ... +On == N)]
01]02!...0,1!

Q17 Q2%...Qx""},

under the constraint that o is positive. {Q;, @2,...Q,} is the prior spectrum. The
Maximum Entropy character becomes evident if we take the logarithm of p,

L 2
In(p{o|y)) = Z(—(y‘ (025))" _ oilno; + 0;InQ;) + constant terms

The term "
— Z o;lno;
i=1

is the same expression as the Shannon entropy for the spectrum {o;, 0g, ...0, }. Note
that maximizing In(p(o | y)) is the same as maximizing p{o | y), because the
probability p{o | y) is always positive.

Another form of this Maximum Entropy equation emerges when we take the deriva-
tive of In(p{o | y)) with respect to o;,. The derivative equation is

0®s)i)®s

2
i

d[In(p{o | y))]/do; = (-~(‘Y.1 l —Ino; +1nQ; — 1) = 6.

Rearranging terms, exponentiating, renormalizing, and then dropping the subscripts
produces the familiar classic equation of Maximum Entropy deconvolution:

(y~(o®s))®s

0 = Qexp(—).

rzrdec solves this classic (nonlinear) Maximum Entropy equation.

RazorASharp and RazorLucy — rzrash and rzrluc are both Maximum Likelihood
methods. They maximize the probability (Poisson noise case):

n 0 ¥i —(l::u®s)l
p(y | o) H @s); = maximum,
i=1 yl'

under the constraint that o is positive.

rzrash and rzrluc use different mathematical algorithms for solving this equation.

4.11. EQUATIONS USED BY RZRASH AND RZRDEC AND RZRLUC 69

4,11.4 rzrdec solution

rzrdec is a solution to the Maximum Entropy equation for Normal noise statistics. rzrdec
contains the constraint that the solution is positive, and in addition, allows one to select
a prior {Q1,Q2,...0,}. The prior is the user’s best guess, or his prejudices, of the
deconvolved solution. (Note that the prior only marginally influences the final solution.)

The equations solved by rzrdec are not new!!! The equations are described by
B. Roy Frieden in “Unified Theory for Estimating Frequency of Occurrence Laws and
Optical Objects”, Journal Optical Society of America, 73, 927-938, July 1983. (rzrdec
assumes no degeneracy, and therefore uses the classical limit of the equations in Appendix
C of this reference). The Maximum Entropy equations are also described by J. Skilling in
“Fundamentals of MaxEnt in Data Analysis”, Chapter 2 of Maximum Entropy in Action,
ed. Brian Buck and Vincent A. Macaulay, Oxford Science,

The algorithm used by rzrdeec to solve this classic Maximum Entropy Restoration
problem is entirely new. The algorithm, which is proprietary to Spectrum Square Asso-
ciates, is many times faster than the classic conjugate gradient methods used previously.

4,11.5 rzrlue solution

rzrluc is a solution to the above Maximum Likelihood Poisson equation. It contains the
additional constraint that the solution is positive. rzrluc is an appropriate function to use
for emission, absorbance, and counting spectra. The rzrluc algorithm is as follows:

k+1 e Y
o)) = 0 & 5.
= o ()

The kernal of this solution may be easily obtained from the Maximum Likelihood
equation for Poisson noise using

8(Inp(y | o))

7 =0.

This algorithm was first described by W. H. Richardson,“Bayesian Iterative Method
of Image Restoration”, Journal Optical Society America, 62, 55-59, 1972, and shown to
converge to the Likelihood maximum by L. B. Lucy, “An iterative technique for the recti-
fication of observed distributions”, Astron. Journal 79, 745-765, 1974. It has been named
the EM algorithm by L. A. Shepp and Y. Vardi, “Maximum Likelihood Reconstruction
in Positron Emission Tomography”, IEEE Transactions on Medical Imaging 1, 113-122,
1982, (Astronomers have called it the Lucy algorithm for many years, and we continue
to do so here.)

The Lucy algorithm makes good progress for about 10-15 iterations, and then gets
bogged down. Although mathematically proven to eventually converge, you may grow
old waiting!

70 CHAPTER 4. RAZORSHARP — RZRASH/RZRDEC/RZRL.UC

4,11.6 rzrash solution

rzrash is useful for resolution enhancement of any emission, absorbance, and counting
spectra, provided that the convolving peakshape function s is well known.
The rzrash algorithm is a solution to the Poisson equation
n (G ® S)iyiek(0®5)i

p(ylo)= H Vi == maximum.
i=1 i

This is the same equation used by rzrluc. However, the rzrash and rzrluc algorithms
are different. You will find that rzrash converges to a solution faster than rzrluc does.

Technically, rzrash is an appropriate function to use for resolution enhancement of
data with Poisson noise. However, we have found that it may be used with confidence
on Normal noise data also. How do we know this?

We have used a modification of the rzrash algorithm to solve the Normal equation

- (yi — {0 ®s))?
20?2

p(y | o) H \/ 2o Tz P | = maximum.

We have compared the Poisson-statistics algorithm rzrash, and the corresponding
Normal-statistics algorithm on every spectrum we could find, and many that we conjured
up ourselves, containing noise of both types. In every case, the differences between
the results were small, smaller than the uncertainties associated with our approximate
solutions.

We believe we would mislead our users if we presented them with a choice of al-
gorithms — suggesting that the differences in the results were meaningful. Instead, we
provide you with you this information about the performance of rzrash.

e In most cases, rzrash is only capable of increasing resolution by a factor of 2 to
3. The best resolution enhancement which can be achieved depends critically upon
the peakshapes. In the worst case, when peaks are Gaussian in shape, rzrash is
incapable of separating peaks whose centers are closer together than 40 % of the
fwhm. In the best case, when the peakshapes have sharp features such as seen in
the triangular shape of characteristic of the transfer function of a slit spectrometer,
resolution enhancement by a factor >5 is easy.

e Peak areas may be in error by as much as 2 % of the largest peak in the data, even
in the absence of noise. {Usually they are better than this. The actual performance
depends upon peakshapes, and amount of overlap.) When you need better peak
areas, we suggest that you use rzrash to help you estimate the number of peaks
present, and to find the center positions, which it does exceptionally well. Then use
RZRFIT to get accurate areas.

rzrash contains our Poisson algorithm. We decided to put this one in for these reasons:
(1) The results we obtain, using the Poisson algorithm and the Normal algorithm on the

4.12. WHAT ABOUT FOURIER DECONVOLUTION? 71

same data, are indistinguishable in most cases. (2) A Poisson error curve is nearly the
same as a Normal error curve when the signal is large. (Clearly, this is one reason our
two algorithms have nearly the same performance.) (3) The hardest cases are those with
Poisson statistics and low signal/noise. If anyone is down there pushing the limit, he
may need the Poisson algorithm. (4) Our Poisson algorithm is more stable for highly
asymmetric peakshapes. (5) The Poisson algorithm converges more quickly than the
Normal one.

4.12 What about Fourier deconvolution?

Fourier deconvolution and Maximum Likelihood Restoration begin with the same problem.
There is an observed data set {yi1, Y2, ...yn }, Where

yi = (0 ®s); + m,

where {01, 0z, ...0,} is a more highly resolved spectrum, ® denotes convolution, s de-
scribes the shapes of the peaks, and n, are the noise fluctuations.

Fourier deconvolution estimates the more highly resolved spectrum in this way: Ignore
the noise, and solve the equation

vi = (0 ® s);.

The solution is obtained in the Fourier domain, by dividing the Fourier transform of the
data {y1, Y2, .--Yn ; by the transform of the peakshape {s1, s2, ...5, }. The inverse transform
of the quotient is the estimate of {01, 0, ...0,}. Problems arise. The noise, which has
been ignored, doesn’t go away. It dominates the signal at large Fourier frequencies, and
is now amplified. The inverse transform produces ringing, and negative intensities, in
{01,09,...0n}. These problems are ‘solved’ by applying a filter in the Fourier domain
before doing the inverse transform. The filter function is arbitrary. The art of Fourier
deconvolution is tinkering with the filter.

Maximum Likelihood Restoration and Fourier deconvolution are two different
methods of selving exactly the same problem. They both begin with the assumption
that the observed spectrum is the sum of many peaks which have a known shape s. There
is no underlying pedestal or baseline. Note that the equation

yi=(0o®s);

doesn 't intrinsically vequirve that all peaks have the same shape. The requirement that
all peaks have the same shape, and width, is added so that one can use fast Fourier
transforms (FFTs) for the convolution operation. Fourier deconvolution wouldn’t work
without this assumption. And you wouldn’t want to wait long enough for rzrash to
perform convolutions without the aid of an FFT.

72 CHAPTER 4. RAZORSHARP — RZRASH/RZRDEC/RZRLUC

Maximum Likelihood Restoration and Fourier deconvelution differ in these
ways: Fourier deconvolution ignores the noise, and then applies an arbitrary filter in
the Fourier domain to clean things up. Maximum Likelihood Restoration acknowledges
the noise, looks for the solution which has the highest probability of being correct, and
imposes the additional condition that {01, 02, ...0,} is positive (the source didn’t put out
negative intensities).

4.13 A Final Word of Advice

The secret of success in spectral restoration is: don’t guess. Guessing involves tinkering
with the process until you like the result, get tired, or no longer believe anything you see.
Everyone who goes this route eventually ends up in the last state, and properly so. Decide
upon your constraints, run the program, and if the results still fall short of your needs
then either you need better data, or a different algorithm better adapted to your particular
constraints, or you have a research-grade problem.

4.14. RZRSTR — RAZORSTRIP 73

4.14 rzrstr — RazorStrip

RazorStrip (rzrstr) is a linear deconvolution method, similar to Fourier deconvolution.
The main differences between rzrstr and Fourier deconvolution are (a) rzrstr is less
sensitive to noise, due to its Maximum Entropy roots, and (b) rzrstr does not have any
arbitrary, user-selected parameters.

rzrstr is obtained by expanding the exponent in the classic equation for Maximum
Entropy deconvelution (p. 68), and then using the first two terms of the expansion.
We don’t think that rzrstr is an optimum method of deconvolution'; rzrdec is better.
However, we provide rzrstr as an excellent alternative for users who might need a linear
method, and for users who are still tempted by Fourier deconvolution {or FSD).

We believe that if you are bound and determined to use a linear deconvolution method,
then rzrstr is the best choice. Best of all, rzrstr has no tinkering parameters’!

Required user input:

e Data set in which any baseline or offset has been properly removed. Remember
that rzrstr and Fourier deconvolution are based upon the assumption that the data
file contains a set of overlapping peaks of the same shape, but no baseline!

e Seclect a peakshape which represents the peaks in the data set. It is very, very
important that the chosen peakshape be an accurate representation of the true shapes
of peaks in the data.

'Thus we have hidden rzrstr here in the back of the deconvolution chapter. We hope you will turn to
rzrdec instead.

74 CHAPTER 4. RAZORSHARP — RZRASH/RZRDEC/RZRLUC

long rzrstr{float ydata|], long n2, float shépe[1, long nl2,
float yout|], float trans| |, long *n, long *newpk, long *nfwhm, double *sigma)

Input arrays which must be filled:
ydata, filled between 0 and n2
shape, filled between 0 and nl2
NOTE: shape will be read only, not altered.
NOTE: If newpk > 1, shape will not be read.
Additional arrays to be furnished:
yout, length n
trans, length n
Input variables: n2, nl2, n, newpk
n2 is the index of the last data value in ydata
nl2 is the index of the last data value in shape
n is the size of arrays yout and trans
newpk indicates whether or not shape is a new peakshape
sigma = RMS noise in ydata (optional).
QOutput arrays:
yout, filled between 0 and n2
Output variables:
n = amount of array space used
NOTE: if n is negative, abs(n) = amount of array space
needed (but not available). Operation not successful.
newpk =n if trans was properly loaded.
nfwhm = full-width-at-half-maximum of peakshape
sigma = RMS noise in ydata.
Function return values:
rzrstr = Q if iteration was successful
If rzestr < 0, error occurred
Use rzrerr (page 174) to obtain error text

Description of variables

ydata on input is the raw data array. The data of interest is contained in the range (0,
n2). ydata will NOT be altered.

n2 is the last location of data in the ydata array. n2 is to be furnished as input.

shape is an input array which holds the peakshape of the narrowest speciral feature in
ydata which is of interest to the user. The relevant peakshape is located between
data points 0 and nl2 in the shape array. The minimum size of the shape array 1s
nl2+1. nl2 must always be less than n.

4.14. RZRSTR — RAZORSTRIP 75

nl2 is input as the index of the last data point of the peakshape in shape. We recommend
that nl2+1 be at least 6xnfwhm, and that the peak be approximately centered in the
0,nl2 interval.

yout is an array of size n. On output, yout will be the resolution-enhanced data array.

yout must have a minimum size equal to the smallest power of two larger than
(n2+1+3*nfwhm). See the discussion below for n.

trans is an array of size n which will be used to house the Fourier transform of the
peakshape. The amount of space used in trans is calculated in rzprep.

See the discussion below for n.

trans is either empty or filled, depending on the parameter newpk. Whenever
newpk = 1, it is assumed that the contents of shape have been altered, and thus
trans is newly loaded by rzrstr. When newpk > 1, it is expected that trans has
not been changed since the last time it was filled. See the discussion below for
newpk.

n is input as the amount of space furnished in the yout and trans arrays.

The function rzsizn will calculate n, the minimum amount of space needed. The
required size of n is determined by n2 and by the width of the peak in the shape
array. Obtain the minimum required n with this call:

n = rzsizn(n2,shape,ni2)

On output, n 1s the amount of space used for the Fourier transforms in the yout
and trans arrays. If n is negative on output, the amount of space furnished was
inadequate, and no processing has taken place. If n is returned negative, then abs(n)
is the amount of space needed in the above arrays.

The space required for the Fourier transform is always calculated in rzprep, de-
scribed in Chapter 11. When newpk = 1, rzprep calculates the required size of the
Fourier transform as the smallest power of two larger than (n2+1+3*nfwhm). You
may wish to calculate n in an alternate fashion. See Chapter 11.

NOTE: When rzrstr returns after successful processing, it fills both newpk and n
with the transform size. If you with to process additional data with the same peak-
shape, vou need not change either newpk or n, provided that (a) your peakshapes
do not change, and (b) your input ydata sizes (n2+1) do not increase.

newpk on input is an integer flag set which should be initially set to 1. It informs
the peakshape processor that a new peakshape 1s present in shape. The processor
measures certain parameters of the new peakshape, and then fills the trans array
with the Fourier transform of a properly shifted and scaled peakshape. When the
peakshape processor finishes successfully, it will ouzput newpk = n, where n is the
actual space used in trans,

76 CHAPTER 4. RAZORSHARP — RZRASH/RZRDEC/RZRLUC

The peakshape processor uses that valuable commodity, CPU time, for a Fourier
transform. On input, the programmer can circumvent the peakshape processor with
newpk > /. Whenever rzrstr is called with newpk > 1, ensure that:

(a) The user wants to use the previous peakshape for the current processing, and
trans is not changed.

(b) The size of the array needed to transform the new data set is no larger than the
n used previously. If this second criterium is violated, the output value of rzrstr
will be rzrstr = -2.

nfwhm is output as the number of data points between the half-maxima of the peakshape
feature in shape.

sigma is either/both an inpur and an output variable. It is the standard deviation (root-
mean-square) of the noise.
When the RMS noise in the ydata array is known, it should be input in sigma.

When the RMS noise is not known, set sigma = 0.0, as a signal to the function to
auto-calculate sigma.

Chapter 5

RazorDerivative — rzrdif

5.1 A Fundamental Approach to Derivatives

There seem to be many, arbitrary ways to create a derivative from an array of numbers,
ranging from a simple two-point difference to a Savitsky- Golay derivative with m-point
polynomial-smoothing. Razor Library employs a different approach, one which uses only
the fundamental knowledge available to the spectroscopist. The rzrdif derivatives answer
the following question:

If I assume that my data set ydata consists of peaks like the one in shape, what does
the most 2nd likely derivative (or 3rd derivative, etc...) look like?

The differences between this statistical method, and other methods, are:

The statistical approach doesn’t force the user into an arbitrary choice of methods.

e The statistical approach has no arbitrary parameters.

The mathematics which implement statistical derivatives are explained in Section 5.3,
on page 84.

77

78 ' CHAPTER 5. RAZORDERIVATIVE — RZRDIF

The required user input for rzrdif is:

e Data array.

e Peakshapes - either true or estimated. It is not critical that the user choose an exact
peakshape for rzrdif. When all the peaks in the data are not the same, the user
should select a smooth peakshape characteristic of the narrowest feature of interest
in the data.

Programming notes:
¢ Set nord = 2 to calculate the 2nd derivative, etc.

e The programmer will need to provide two full-size processing arrays, yout, and
trans, as well as the data array ydata. ydata will nor be altered by rzrdif.

¢ You may SAVE SPACE by allowing the derivative, which is returned in the array
yout, to replace the input ydata. Pass the ydata address again, instead of an
address to a separate array yout, in the fifth argument position. Ensure that the size
of ydata array is > n. In this case, ydata will be altered outside the range (0,n2).

5.1, A FUNDAMENTAL APPROACH TO DERIVATIVES 79

long rzrdif(float ydata[|, long n2, float shape|], long ni2, float yout| |,
float trans[], long *n, long *newpk, long *nord, long *nfwhm, double *sigma)

Input arrays which must be filled:
ydata, filled between 0 and n2, length n
shape, filled between nil and nl2
NOTE: shape will be read only, not altered.
NOTE: If newpk > I, shape will not be read.
Additional arrays to be furnished:
yout, length n
trans, length n
Input variables: nl, n2, n, nl2, npks, psens, newpk
n2 is the last position of data in ydata
nl2 is the last position of data in shape
n is the size of arrays yout, and trans
newpk indicates whether or not shape is a new peakshape.
nord is the ordinal number of the desired derivative.
Output arrays:
yout, filled with the desired derivative
QOutput variables:
n = amount of array space used
NOTE: if n is negative, abs(n) = amount of array space
needed (but not available). Operation not successful.
newpk = n if trans was Joaded successfully.
nfwhm = full-width-at-half-maximum of peakshape in shape
sigma = RMS noise in the ydata.
Function return values:
rzrdif = O if operation was successful
If rzrdif < 0, error occurred
Use rzrerr (page 174) to obtain error text

ydata on input is the raw data array. It should contain the raw data between data points
0 and n2. ydata will nor be altered outside this range.

n2 is the last location of data in the ydata array. n2 is to be furnished as input.

shape is an input array which holds the peakshape of the narrowest spectral feature in
ydata which is of interest to the user. The relevant peakshape is located between
data points 0 and nl2 in shape.

nl2 is input and the index of the last data point of the peakshape in shape.

80 CHAPTER 5. RAZORDERIVATIVE — RZRDIF

yout is the output derivative. The derivative will be found between data points 0 and
n2, and should be ignored outside this range.

yout must have a minimum size equal to the smallest power of two larger than
(n2+1+3*nfwhm). See the discussion below for n.

trans is an array of size n which will be used to house the Fourier transform of the
peakshape. The amount of space used in trans is calculated in rzprep. See the
discussion below for n.

trans is either empty or filled, depending on the parameter newpk. Whenever
newpk = 1, it is assumed that the contents of shape have been altered, and trans
is properly loaded by rzrdif. When newpk > 1, it is expected that trans has not
been changed since the last time it was filled. See the discussion below for newpk.

n is input as the amount of space furnished in the yout, and trans arrays.

The function rzsizn will calculate n, the minimum amount of space needed. The
required size of n is determined by n2 and by the width of the peak in the shape
array. Obtain the minimum required n with this call:

n = rzsizn(n2 shape,nl2)

On output, n is the amount of space used for the Fourier transforms in the yout,
and trans arrays. If n is negative on output, the amount of space furnished was
inadequate, and no processing has taken place. If n is returned negative, then abs(n)
is the amount of space needed in the above arrays.

The space required for the Fourier transform is always calculated in rzprep, de-
scribed in Chapter 11. When newpk = 1, rzprep calculates the required size of the
Fourier transform as the smallest power of two larger than (n2+1+3*nfwhm). You
may wish to calculate n in an alternate fashion. See Chapter 11.

NOTE: When rzrdif returns after successful processing, it fills both newpk and n
with the transform size. If you with to process additional data with the same peak-
shape, you need not change either newpk or n, provided that (a) your peakshapes
do not change, and (b) your input ydata sizes (n2+1) do not increase.

newpk on input is an integer flag set which should be initially set to 1. It informs
the peakshape processor that a new peakshape is present in shape. The processor
measures certain parameters of the new peakshape, and then fills the trans array
with the Fourier transform of a properly shifted and scaled peakshape. When the
peakshape processor finishes successfully, it will oufput newpk = n, where n is the
actual space used in trans.

The peakshape processor uses that valuable commodity, CPU time, for a Fourier
transform. On input, the programmer can circumvent the peakshape processor with
newpk > /. Whenever rzrdif is called with newpk > 1, ensure that:

3.1, A FUNDAMENTAL APPROACH TO DERIVATIVES 81

(a) The user wants to use the previous peakshape for the current processing, and
trans i1s not changed.

(b) The size of the array needed to transform the new data set is no larger than the
n used previously. If this second criterium is violated, the outpur value of rzrdif
will be rzrdif = -2,

nord is input as the ordinal number of the desired derivative. For example, set nord =
2 to obtain the 2nd derivative.

nfwhm is output as the number of data points between the half-maxima of the peakshape
feature in shape.

sigma is output as the standard deviation (root- mean-square) of the noise which was
found in ydata.

82 CHAPTER 5. RAZORDERIVATIVE — RZRDIF
5.2 Example using rzrdif

HANDLE is set up to use rzrpic to pickk peaks from a spectrum, ask you a few ques-
tions, and then pass the chosen peaks into rzrfit. rzrpic uses a form of the Maximum
Likelihood/Bayesian 2nd derivative calculated by rzrdif. You may obtain your own 2nd
derivative to use in peak selection. The example here uses the file SPEC2, which is an
ICP spectrum of iron.

Spectrum file: SPEC2
Peakshape file: PEAK2

Using HANDLE:

RAZOR LIBRARY for Spectral Analysis -¢ There is only one best way!
Maximum Likelihood (ML), Maximum Entropy (ME), and Bayesianprocessing.
ESM=EntropySMooth. Smooths Normal (thermal/gaussian) noise. ME
PSM=PolissonSMooth. Smooths Poisgson (counting) noise. ML.
NSM=NgrmalSMooth. Smooths Normal noise. ML.

DIV=RazorDivide. Calculates transmission spectra. ML.
ASH=RazorASharp. Enhances resolution. ML.

DEC=RazorDeconvolve. MaximumEntropy deconvolution. ME/Bayesian.
LUC=RazorLucy. Classic ML deconvolution. ML.
DIF=RazorDerivative. Derivatives Oth-nth. Bayesian.
PIC=RazorPick. Finds peak positions foxr FIT. ML/Bayesian.
FIT=RazorFit. Fits model peaks to data. ML.

BAS=RazorBase. Finds baseline. ME/Bayesian.
QBRA=RazorQuickBase. Finds baseline.

EDG=RazorEdge. Finds bagseline.

EDG=RazorEdge. Fits baseline to lower edge of data.
NOI=RazorNoise. Finds noise spectrum. ML.

GEN=Generates synthetic peakshape.

SAV=Save result, QUI=Quit.

Choose an operation (3 uppercase characters) : DIF

Enter name of unnormalized sample spectrum (Try SPEC2) : SPEC2
Enter name of peakshape file (Try SPEC2}: PEAK2

Enter derivative order 1=1st, 2=2nd, ... : 2

Entering RZRDIF., Wait for processing...

DIF = RazorDerivative

The estimated RMS noise is 3.4088

The FWHM of the peakshape is 80

The computed derivative = 2 {lgt,2nd, etc)

The size of array space used was 2048

RESULT MAY BE SAVED TO A FILE

5.2. EXAMPLE USING RZRDIF

DPIF * RarawDifferentiate: Derivative order= 2 IS nolss in data wax 40622
ZResult say be saved to a file

95.57
g7.01
¥
U 7.5
N
I 69.89
T
§61.33
5.7

“.21

3»s.65
Z7.99
18,53

9.9?

1.407 [1 1 L 1 1 i —t |

1.000 166.9 200.8 300.7 400.6 500.5 600.4 700.3 000.2 900.1
X UNIYS

83

84 CHAPTER 5. RAZORDERIVATIVE — RZRDIF

5.3 Equations of Bayesian Derivatives

(This is a summary of a paper given at the 1991 Pittsburgh Conference.)

We will show how we find the Bayesian second derivative of a given data set. Other
derivatives are found in a similar manner.

We begin by setting up an equation which describes the probability of obtaining the
data set d(z;), d(x2), ...d(x,), in terms of the parent spectrum y(z).

From a parent spectrum y(xz), we have drawn a data set d(z) containing data points
d(z1), d(z2), ...d(zn), where d(z;) = y(z;) + ni. The d{z;) are the data values, and n;
are the noise values.

We assume that the parent distribution y{x;} consists of a set of peaks of some shape
— not necessarily all the same shape - plus a baseline:

y(x) = o(x) ®@s(x) -+ b(x),

where o(z) = an object function = a set of delta-functions, ® means convolution, s{z) =
the peakshapes, and b(x:) = the baseline.

For a given parent spectrum, the probability p for the sample d(z) is determined by
the probability distributions for the noise {n;,ns,..n.}. p is called the Likelihood.

If the noise n; is random, and additive, with a Normal distribution, then the probability
(likelihood) for d(z;) is

p(d(x;) | y(xi)) = \/(%mexp[_ (d(xi)z—gg(xi))

i

]

Assume that the noise 7; is uncorrelated with the noise n;, for all ¢, 7. Then the
likelihood of observing the set d = {dy,ds,...d,} is the product of the probabilities for
each of the d(z;):

p(d|y) = Hp i) | y(xi)

For Normal noise, this becomes

d | y H \/(2 exp[_ (d(XI)Z_O_?(XI))]’

We wish to find the best possible estimate of the second derivative. Thus we will
maximize the probability

p(y" [d).

We will do this by invoking Bayes Rule. This is the Bayesian method.

5.3. EQUATIONS OF BAYESIAN DERIVATIVES 85

Bayes Rule says that the probability p(y” | d) is related to the probability p{d | y")
through

vy 4 Py)py")
p(y"i1d)= od) ,

where

p(d|y") H\/(zw exp[—(d(Xi) _2fa{2yﬂ(xi)) J

In order to solve the equation, we must also provide the a priori probabilities p(d) for
our observed spectrum and p(y”) for all parent derivative spectra. Clearly, the probability
for our single observation is p(d) = 1. What is needed 1s an a priori statement about y”.

This seems to be a reasonable statement about y”: In the absence of data, we don’t
want to find any peaks in 3”. Consequently, in the absence of data, we want

y'=ax+ec,

which means that

Hiy

y =0

Translating this statement into an equation we can use brings us:

Hexp[(mr(xl))2]

20'4

The only problem left is to choose g4 wisely. To obtain a value for o4 , we used the
following equations:

d(x;) = y(x;) + n(xi),
E]Nln('xl)2 Nog?

N nix;) =0.

To get a final solution for the second derivative y”, and to maintain consistency with
our assumptions about /", we also used a baseline that was of the form,

b{x) =ax+c.

The final solution to the Bayesian equations shown above gives a transformation T,
which transforms the data d into its Bayesian second derivative:

86 CHAPTER 5. RAZORDERIVATIVE -—— RZRDIF

The transformation Tis implemented in rzrdif, and also used by rzrpic. Tdepends
upon the noise in the data, and also weakly depends upon the peakshape function s(z).
The dependence upon the noise in the data was exactly what we expected. It means that
the second derivative will be optimally smoothed. The fact that our final transformation
was only weakly dependent upon s(x) was a lucky break. Because the shape of our final
second derivative 3" was not overwhelmed by the shape we assumed for s, we were able to
use the second derivative to estimate peak widths as well as peak heights. Consequently,
we have been able to give you peak width and peak height estimates in rzrpic.

Chapter 6

RazorPick — rzrpic

6.1 Accurate Peak-Picking for Merged Peaks

The human eye and brain are the best peak pickers. Previous computer programs designed
for this task have set up parameters such as slope, threshold, minimum atea, skim/drop
decision trees, etc. Even then, the programs turn helpless when given very noisy data,
Why can’t the computer be more like ourselves?

We have applied Maximum Likelihood and Bayesian methods to this problem. Maxi-
mum Likelihoed is a mathematical formulation of the same statistical and a priori knowl-
edge the brain uses. The human observer discriminates between peaks and noise, and
judges when peaks overlap, by the peak shapes. His decision about whether to accept
small peaks is based upon probability factors.

RazorPick uses a Bayesian 2nd derivative to find candidate peaks. Tt then uses the
statistics of the noise (Maximum Likelihood) to generate a significance (= signal/noise ra-
tio) for each candidate peak. Finally, it sorts the peaks in order of decreasing significance,
and returns a list of all peaks which meet the acceptance criteria.

RazorPick is a collection of 4 excellent peak-picking algorithms. RazorPick is su-
perior to most other peak-pickers in the following ways:

e Detects peaks even when merged or overlapping.
e Reports peak significances in signal/noise units, for Normal or Poisson noise.

o Lstimates and reports peak heights and peak widths, using information from the
(Bayesian) 2nd derivative.

o Identifies positive peaks when presented with a positive template; identifes negative
peaks when given a negative template.

87

88

6.2

CHAPTER 6. RAZORPICK — RZRPIC

rzrpic

Required user input:

Select a peakshape which represents the narrowest peaks in the data set. The actual
peakshape is not very critical for this algorithm.

When the selected peakshape is positive, rzrpie will search for positive peaks; when
the peakshape is negative, negative peaks in the data will be identified.

Processing notes:

The High-Performance picker (iperf = 1) finds overlapping peaks if the peak
centers are not closer together than about one-half of a peak width. This picker is
recommended for data containing peaks of different widths.

The High-Resolution picker (iperf = 2) finds overlapping peaks if the peak centers
are not closer together than about one-quarter of a peak width. (The actual resolution
will depend on the peak shape.)

In the 2nd-Order High-Performance picker (iperf = 3), an extra asymmetry cor-
rection is applied. For symmetric peaks, the High-Performance and 2nd-Order
High-Performance modes are exactly the same. For asymmetric peaks, sometimes
the extra correction is helpful, and sometimes not. When helpful, it provides extra
resolution. (NOTE: both the High-Performance and High-Resolution pickers have
Ist-order asymmetry corrections built in!)

The Quiet Picker (iperf = 4) is a Bayesian picker tailored for narrow peaks (widths
< 5 datapoints).

The Quick-Pick picker (iperf = -1) does not separate overlapping peaks, mainly
because it is not using a Bayesian 2nd derivative.

Programming notes:

Set istat = 1 if the noise is Normal. Set istat = 2 if the noise is Poisson.

Set psens = 3 to find all the peaks with heights > 3 times the RMS noise, i.e. all
peaks with signal/noise ratios > 3. Set psens = -3 to find all the peaks with areas
> 3 times the RMS area-noise.

The small array locpks returns useful information for setting up an automated peak
picker. For instance, the 5 most significant peaks will be the first 5 peaks in locpks.
Use rzpkst (Page 175) to resort locpks and sigpks by location, height, or width.

Peak significances, heights, and widths are returned in the sigpks array. The heights
and widths are useful in loading the datmat matrix for rzrfit. Use rzdfil (Page 177)
for assistance in loading datmat.

6.2. RZRPIC

long rzrpic(float ydata{ |, long n2, float shape[|, long nl2,
float yout[|, float w[], float trans|],Jong *n, long *newpk,
long *istat, long iperf, double *psens, long locpks] |, long *npks,
float sigpks|], long nsig, long *nfwhm, double *peak, double *sigma)

Input arrays which must be filled:
ydata, filled between 0 and n2, length n2 + 1
NOTE: ydata will be read only, not altered.
shape, filled between 0 and nl2
NOTE: shape will be read only, not altered.
NOTE: If newpk > 1, shape will not be read.
Additional arrays to be furnished:
yout, length n
w, length n
trans, length n
locpks, length npks
sigpks, length nsig
Input variables: n2, nl2, n, newpk, istat, iperf, psens, npks, nsig
n2 is the last position of data in ydata
nl2 is the last position of data in shape
n is the size of arrays yout, w, and trans
newpk indicates whether or not shape is a new peakshape.
istat is a flag for Normal vs. Poisson noise.
iperf is a flag for High-Performance/High-Res/2nd-Order/Quiet/Quick-Pick.
psens is the threshold peak sensitivity in S/N units.
npks is the size of the locpks array.
nsig is the size of the sigpks array.
Output arrays:
yout, filled with a linear baseline
w, filled with smoothed data between 0 and n2
locpks, filled with locations of identified peaks
sigpks, filled with peak significances, heights, and widths
Output variables:
n = amount of array space used
NOTE: if n is negative, abs(n) = amount of array space
needed (but not available), Operation not successful.
newpk = n if trans was loaded successfully.
npks = number of peaks detected
nfwhm = full-width-at-half-maximum of peakshape in shape
peak = height of peakshape in shape
sigma = RMS noise in the ydata,
Function return values:

90 CHAPTER 6. RAZORPICK — RZRPIC

rzrpic = 0 if operation was successful
If rzrpic < 0, error occurred; use rzrerr (page 174) for error text,

Description of variables

ydata on inpuf is the raw data array. It should contain the raw data between data points
0 and n2. ydata will NOT be altered outside this range.

n2 is the /ast location of data in the ydata array. n2 is to be furnished as input.

shape is an input array which holds the peakshape of the narrowest spectral feature in
ydata which is of interest to the user. The relevant peakshape is located between
data points 0 and nl2 in shape. shape may be a subarray within ydata. If the
peakshape is right-side up, positive peaks will be identified by rzrpic. If the
peakshape is a negative peak, then negative peaks will be found.

nl2 is input. 1t is the index of the last data point of the peakshape in shape.
yout is an oufput array, filled between 0 and n2. yout will contain the linear baseline

used by the picker.

yout must have minimum size n. See the discussion below for n.

w is a work array with minimum length n.

On output, w contains a smoothed data file. The smoothing has been done by
rzrpic.

trans is an array of size n which will be used to house the Fourier transform of the
peakshape. The amount of space used in trans is calculated in rzprep. See the
discussion below for n.

On input, trans is either empty or filled, depending on the parameter newpk.
Whenever newpk = 1, it is assumed that the contents of shape have been altered,
and trans is newly loaded by rzrpic. When newpk > 1, it is expected that trans
has not been changed since the last time it was filled. See the discussion below for
newpk.

n is input as the amount of space furnished in the yout, w, and trans arrays.

The function rzsizn will calculate n, the minimum amount of space needed. The
required size of n is determined by n2 and by the width of the peak in the shape
array. Obtain the minimum required n with this call:

n = rzsizn(n2,shape,nl2)

On output, n is the amount of space used for the Fourier transforms in the yout,
w, and trans arrays. If n is negative on output, the amount of space furnished

6.2. RZRPIC 91

was inadequate, and no processing has taken place. If n is returned negative, then
abs(n) is the amount of space needed in the above arrays.

The space required for the Fourier transform is always calculated in rzprep, de-
scribed in Chapter 11, When newpk = 1, rzprep calculates the required size of the
Fourier transform as the smallest power of two larger than (n2+1+3*nfwhm). You
may wish to calculate n in an alternate fashion. See Chapter 11.

NOTE: When rzrpic returns after successful processing, it fills both newpk and n
with the transform size. If you with to process additional data with the same peak-
shape, you need not change either newpk or n, provided that (a) your peakshapes
do not change, and (b) your input ydata sizes (n2+1) do not increase.

newpk on input is an integer flag set which should be initially set to 1. It informs
the peakshape processor that a new peakshape is present in shape. The processor
measures certain parameters of the new peakshape, and then fills the trans array
with the Fourier transform of a properly shifted and scaled peakshape. When the
peakshape processor finishes successfully, it will outpur newpk = n, where n is the
actual space used in trans.

The peakshape processor uses that valuable commodity, CPU time, for a Fourier
transform. On input, the programmer can circumvent the peakshape processor with
newpk > /. Whenever rzrpic is called with newpk > 1, ensure that:

(a) The user wants to use the previous peakshape for the current processing, and
trans is not changed.

(b) The size of the array needed to transform the new data set is no larger than the
n used previously. If this second criterium is violated, the output value of rzrpic
will be rzrpic = -2,

istat is an input flag which governs the statistics used by the function. Set istat = 1 if
the noise is Normal. Set istat = 2 if the noise is Poisson.

iperf is an input flag which governs the performance mode of the function. Set iperf =
1 to get the High-Performance Bayesian picker. iperf = 2 gives a High-Resolution
Bayesian picker. iperf = 3 brings up the 2nd-Order High-Performance Bayesian
picker. iperf = 3 is the Quict Picker. Set iperf = -1 to get a Quick Pick. See the
discussion under ‘Processing notes’ on page 88.

psens is an input S/N threshold variable that directs the peak picker. The peak picker
assigns each peak a significance in units of the RMS noise. rzrpic returns peaks
whose significances exceed the value psens. When psens=0.0, all possible peaks
are found. When psens = 3.0, all peaks with heights > 3.0 RMS noise (i.e. S/N >
3.0) are returned. When psens = -3.0, all peaks with areas > 3.0 RMS area-noise
are returned. Peaks which are at least 3 to 5 times the RMS noise are meaningful
(psens = 3 10 5).

92 CHAPTER 6. RAZORPICK — RZRPIC

locpks is an output integer array containing the peak locations, 1.e., locpks[0] = data
point number of the first peak detected. locpks need be no larger than the maximum
number of peaks expected. locpks and npks may be used as input to rzrfit.

npks is input as the size of array locpks.

npks is output as the number of peaks located by the search. Thus, the array locpks
will be filled with meaningful numbers between locpks[0] and locpks[npks-1].

sigpks is an output array containing the peak significance assigned by rzrpic. The
significance 1s in units of the RMS noise in the data set. The output arrays locpks
and sigpks are sorted by significance. sigpks[0] > sigpks[1], etc.

The length of the sigpks array should be 3*npks = three times the maximum number
of peaks expected. This will provide room to report the peak significances, peak
heights and peak widths.

The contents of the sigpks array will be sigpks[0] = significance assigned to the
peak found at position locpks[0], etc..., sigpks[npks] = height assigned to the peak
found at position locpks[0], etc..., sigpks{npks*2] = width assigned to the peak
found at position locpks[0], etc.

nsig is input as the size of array locpks.

The minimum length of the sigpks array is nsig = npks. This provides enough
room to return peaks significances in sigpks.

To obtain peak heights and peak widths in sigpks, as well as peak significances,
set nsig = 3*npks = three times the maximum number of peaks expected.

nfwhm 1s output as the number of data points between the half-maxima of the peakshape
feature in shape. nfwhm is computed internally.

peak is output as the height of the peakshape in the array shape.

sigma is output as the standard deviation (root-mean-square) of the noise which was
found in ydata.

6.3. EXAMPLE USING RZRPIC 93

6.3 Example using rzrpic

HANDLE is set up to use rzrpic to pick peaks from a spectrum, ask you a few questions,
and then pass the chosen peaks into rzrfit. We used the file SPEC2, which is an ICP
spectrum of iron. The human eye says that the left peak is double, and the peak picker
easily found it. We suggest that the programmer display the peaks on the screen, and ask
the user to edit the choices.

HANDLE doesn’t have a graphical interface, so you will have to use the picture below
to select peaks from its choices. Using HANDLE, you can’t select exactly the peaks you
want, only the first nn from a list which is presented. We accepted all five. The results
were then passed to rzrfit, described in the next chapter.

Spectrum file: SPEC2
Peakshape file: PEAK2

Using HANDLE:

RAZOR LIBRARY for Spectral Analysis -¢ There is only one best way!
Maximum Likelihood (ML), Maximum Entropy (ME) , and Bayesian processing.
ESM=EntropySMooth. Smooths Normal (thermal/gaussian) noise. ME
PSM=PoissonSMooth. Smooths Poisson (counting) noise. ML,
NSM=NormalSMooth. Smooths Normal noise. ML.

DIV=RazorDivide. Calculates transmission spectra. ML.
ASH=RazorASharp. Enhances resclution. ML.

DEC=RazorDeconvolve. Maximum Entropy deconvelution. ME/Bayesian.
LUC=RazorLucy. Clagssic ML deconvolution. ML.
DIF=RazorDerivative. Derivatives Oth-nth., Bayesian.
PIC=RazorPick. Finds peak positiong for FIT. ML/Bayesian.
FIT=RazorFit. Fits model peaks to data. ML.

BAS=RazorBase. Finds baseline. ME/Bayesian.

QBA=RazorQuickBase. Findgs baseline.

EDG=RazorEdge. Fits baseline to lower edge of data.
NOI=RazorNoise. Finds noise spectrum, ML.

GEN=Generates gsynthetic peakshape.

SAV=Save regult, QUI=Quit.

Choose an operation (3 uppercase characters): PIC

Enter name of spectrum: SPEC2
Enter name of peakshape: PEAK2

Enter -1 for Quick-Pick

Enter 1 for High-Performance picker

Enter 2 for High-Resolution picker

Enter 3 for 2nd-Crder High-Performance picker

94 CHAPIER 6. RAZORPICK — RZRPIC

Enter 4 for Quiet-Pick (High Res. Good for very narrow peaks.)
Select picker [2]: 2

Enter peak threshold (# of standard deviations of noise)
Enter 3 if unsure: 3

Enter N for Normal noise; P for Poisson noise [N}: N

Entering RZRPIC. Please wait for processing...
Estimated RMS noise: 3.4088
Peaks detected: 5
Using Peak detection threshold: 3.0
Peak HEIGHT Significances:
24.22 18.41. 14.58 9.62 5.04
Number of peaks(as sorted) accepted for FIT: 5
Select:
Print (S)ignificances (L)ocations (H)eights, (W)idths, (E)verything
(R)esort. (T)uneup heights. (A)ccept. (M)enu.

PIC = RexorPick: Peak Detection Threshold= .3000G8E+81
Display option ix: H (S=Signif,H-Height)

[1Z35-1952 SPEC2

9%.57
B87.01

4

unes

N

I 69.89

T

8 61.33
=2.7?
44.21
- 35.65°
Z7.99

18.53

9.9?
1.967

-l 1 1 i L L

1,000 190.3 2060.8 300.7 4600.6 500.5 600.4 700.3 BH99.2 909.1
X INITS

Chapter 7

RazorFit — rzrfit

7.1 Accurate Peak Areas, with Confidence Limits

RazorFit is a peak-fitting algorithm. It fits a model consisting of a sum of peaks of
various shapes, and a baseline, to the given data set. This is the preferred method when
accurate areas are required. RazorFit is a Maximum Likelihood technique for Normal
noise statistics.

RazorFit has abilities not found in other peak fitting functions:

o Lets you fit real data peaks. You may capture a data peak from any file, or from
your current data, and then use the shape of your Captured DataPeak as a template
for fitting peaks in your data. When you fit your real data peaks with shapes that
really match, you obtain more accurate areas. Only RazorFit can do this!

o Processes an arbitrarily large number of peaks in large data arrays, by automatically
arranging the peaks in ‘bunches’, and processing the bunches sequentially. Bunch
processing is much faster than all-at-once processing, It is a successful tactic for
situations where peak-fitting algorithms often fail: namely, on data files with large
numbers of peaks. Only RazorFit can do this!

e Allows ‘linking’ peaks together in a master/slave relationship. For example, the
user may specify that slave-peak-2 is always found a constant distance away from
master-peak-1, or that slave-peak-8a is always 1/2 the height of master-peak-7, while
slave-peak-8b is always twice the height and 14 times the width of master-peak-7.
The master/slave relationship may be established for only one parameter, or for any
combination of parameters, of any two peaks. A single master peak may be linked
to any number of slave peaks through position offsets, height ratios, width ratios,
or other parameter ratios. Linking peaks in this manner is especially valuable for
x-ray spectroscopy. Only RazorFit can do this!

95

96 CHAPTER 7. RAZORFIT — RZRFIT

¢ Understands Poisson (counting) statistics, and will correctly minimize the chisq
statistic for Poisson noise, even if the user has rescaled the data. Only RazorFit
can do this!

¢ Admits a wide variety of peak shapes, including asymmetric shapes, and user-
supplied peakshapes. Note that use of the proper peak types, and proper baselines,
is the key to obtaining accurate areas for al/ fitting algorithms.

s Allows any number of parameters (i.e., peak positions) to remain fixed, as is ap-
propriate if their values are known from other considerations.

e Provides accurate areas, positions and widths, with corresponding confidence limits,
of each component peak.

7.2 razrfit

rzrfit fits parameterized model peaks to a spectrum. The model function(s), and number
of peaks, must be specified by the user. Initial parameter estimates must be furnished,
these are refined by iteration using the Levenberg-Marquardt algorithm.

A maximum of six free parameters for each model peak are permitted by rzrfit. If
you have an analytical expression for a model peak shape that you wish to use for fitting
your data, you may write your own peakshape function. See rzrser02.c for instructions
for the writing of, and exampies of, model peakshape functions.

Use RazorPick to give a starting estimate of the number and positions of all peaks,
including hidden components. This automatic peak-picker frees the user or programmer
from the tedious task of selecting starting parameters for the peaks which form the model.

7.2. RZRFIT 97
f /

long rzrfit(float ydata|], long n2, long m, float datapeak]], long nl2, long mi,

float yout|], float vnoise[], float baslin[], float w{], long *n, long *ifast,

long *istat, float datmat[][40], float covar|], float hess{], long iwork]|],

float work[], long mmax)

Input arrays which must be filled:

ydata, filled between-0 and n2, length n2+1 7

datapeak, optionally filled between 0 and nl2 o p
datapeak length (nx2+1) = n2+1 if filled, else = 1
If running in fast mode (ifast=1), datapeak MUST be filled.
If using Bunch processing (Page 101), datapeak MUST be filled.
If any peak has type = 0, datapeak MUST be filled.
NOTE: datapeak will be read only, not altered.

vnoise, filled with noise variance between 0 and n2 when istat = -1,
If noise is Normal or Poisson, istat = 1 or 2, vnoise may have length 1.
For Normal noise, istat = 1, vnoise[0] MUST be filled with
either the noise variance, or 0.0. For Poisson noise, istat = 2,
vnoise[0] MUST be filled with either the data scale factor, or 0.0
— see discussions below for istat and vnoise

baslin, optionally filled between 0 and n2,
baslin length = n2+1 if filled, else = 1
If the baseline has type = 200, baslin MUST be filled.

datmat, a matrix, filled as discussed on page 100

Additional arrays to be furnished:

yout, length > n, if ifast = 1 or nbunch > 0. (See p. 101 for nbunch.)
length = n2, if ifast = 0 and nbunch=0.

w, length > n, if ifast = 1 or nbunch > 0.
length = 1, if ifast = 0 and nbunch=0.

covar, length > [mmax*mmax]

hess, length > [mmax*mmax]

iwork, length > 6¥*mmax nﬁg
work, length > 9*mmax oo r
Input variables which must be filled; .~ "

n2, m (=1), ni2, mi (-1), n, ifast, istat, mmax
mmax is the maximum number of parameters needed to calculate the model.
mmax = 6*npks is a safe choice for All-at-once processing.
mmax = 6*nbunch is a safe choice for Bunch processing.
Bunch processing is discussed on Page 101.
Output arrays:
yout, filled between 0 and n2
datmat, filled with peak parameters and standard errors
Function return values:

7

98 CHAPTER 7. RAZORFIT — RZRFIT

rzrfit = O if there are no errors
i rzrfit < 0, error occurred
Use rzrerr {page 174) to obtain error text

Description of variables

vdata is the input array, which is to be fit between 0 and n2.
n2 is the last location of data to be fit in the ydata array. n2 is furnished as input.

m is the number of rows of data to be fit in the ydata array (matrix). m is furnished as
input. This parameter will allow for 2-dimensional fits in the future. For now, use
m =1,

I

Watapeak is an input array which holds the peakshape of the narrowest spectral feature

in ydata which is of interest to the user. The relevant peakshape is located between
data points (and nl2 in datapeak.

The datapeak array is used in the fast mode, when ifast = 1, and also used for
Captured DataPeaks, when type = 0. If there are no peaks with type = 0, and if
rzrfit is being used in the standard mode, datapeak will not be used, and then it
may be a dummy array of size 1.

ALSO SEE THE DISCUSSION BELOW FOR ifast.
ALSO SEE THE DISCUSSION ON PAGE 102 FOR type.
ALSO SEE THE DISCUSSION ON PAGE 101 FOR bunchflag,
nl2 is input and the index of the last data point of the peakshape in datapeak. We

recommend that nl2+1 be at least 6«xnfwhm, and that the peak be approximately
centered in the (0,nl2) interval.

nl2 is used in the fast mode, when ifast = 1, and also used for Captured DataPeaks,
when type = 0.

ml is the number of rows in the datapeak array (matrix). ml is furnished as input. This
parameter will allow for more than one datapeak to be used in the future. For now,
use ml = 1.

yout is the ousput fitted model, the sum of the chosen model peak shapes.

vnoise is an array with length = n2+1 if istat = -1, else length = 1.

When istat = -1, then on input, vnoise is the variance noise spectrum. NEW: To fit
selected regions within a file, set vnoise[i] = noise-variance in the desired regions,
and vnoise[i] = 0.0 elsewhere.

7.2, RZRFIT 99

When istat = 1, then on input, vnoise[0] is the noise variance if you wish to specify
a value, else set vnoise[0] = 0.0 to signal rzrfit to calculate the noise variance.

When istat = 2, then on inmput, vnoise[0] is the data scale factor if you wish to
specify a value, else set vnoise[0] = 0.0 to signal rzrfit to calculate the scale factor.

NOTE: The scale factor is the value by which you would multiply your data to
obtain true counts. For example, suppose your data is meant to represent number
of photons recetved at your counter. If you count for 10 seconds, and then divide
the number of counts by 10 to express your data as counts/sec, you would need to
multiply your data by a scale factor of 10 to transform it back to true counts. Since
Poisson noise statistics require that the data be expressed in units of counts, (not
counts/sec, not averaged counts/scan, etc.), the scale factor is important. If you do
not know the scale factor of your data, set vnoise[0] = 0.0, and rzrfit will do the
scaling for you.

baslin is an array with length = n2+1 if the baseline type = 200, eise length = 1.
When type = 200, then on inpus, baslin must be filled with the baseline spectrum.
ALSQO SEE THE DISCUSSION BELOW FOR type.

w is a work array of length n. w is used in the fast mode, when ifast = 1, and in the
bunch mode, when nbunch > 0. When ifast = 0 and nbunch = 0, then w may be
a dummy array of length = 1. (Bunch processing is discussed on Page 101).

n is input as the amount of space firnished in the yout, and w arrays.

The function rzsizn will calculate n, the minimum amount of space needed. The
required size of n 1s determined by n2 and by the width of the peak in the datapeak
array. Obtain the minimum required n with this call:

n = rzsizn(n2,datapeak,nl2)

ifast is an input flag which controls the processing mode. When ifast = 0, rzrfit uses the
standard Levenberg-Marquardt processing method. When ifast = 1, a (faster) modi-
fied Levenberg-Marquardt mode is used for 60 — 90% of the iteration sequence. The
standard Levenberg-Marquardt 1s always used for the final (2 or more) iterations.

When ifast = 0, rzrfit will fill the output array yout with the best-fitting model
after each iteration. When ifast = 1, yout is only filled during the final cleanup
step, when the covaniance matrix and standard errors are also calculated.

When ifast = 0, rzrfit estimates the RMS noise using a running mean on the data.
When ifast = 1, rzrfit uses the array w and the peakshape datapeak to get a better
estimate of the RMS noise. Thus it is better to use ifast = 1 if possible, because
both the RMS noise and the chi-squared values will be better. Use ifast = ¢ when
your problem is reluctant to converge.

100 CHAPTER 7. RAZORFIT — RZRFIT

istat is an input flag which describes the noise statistics. Set istat = 1 when the noise
statistics are Normal, and the RMS noise, or the noise variance, is the same value
everywhere in the interval (0,n2). Set istat =2 when the noise statistics are Poisson.
Set istat = -1 if you wish to input your own noise variances in the array vnoise.

datmat is the parameter input and output matrix. See below.

covar is an array which will be used to calculate the covariance matrix for the parameters.
The array length must be > [mmax*mmax].

covar is oulput as the covariance matrix of the fit.
hess is a work array, of minimum length [mmax*mmax].
iwork is an integer work array, of mimnimum length 6*mmax.
work is a float work array, of minimum length 9*mmax.

mmax is input. It is the maximum number of parameters needed to describe the model.
Most peaks, and most baselines, require 3 or 4 parameters each. rezrfit allows
you to define your own peaks and baselines with as many as 6 parameters each.
However, unless you are using your own peakshape functions, you will be safe if
you set mmax = 6*npks for All-at-once processing, and mmax = 6*nbunch for
Bunch-mode processing.

The parameters which must be entered into the data matrix datmat[npks+2][{40], are
defined below.

datmat[npks+2][40]
An input/output matrix of peak parameters
First row is a control vector.
Last row i$ a control vector.
Other rows of datmat cach contain parameters for one peak.
All quantities are input as floar numbers,

Input parameters for first row of datmat:

datmat[0] = (npks, nbunch, bunchflag, 0, 0, 0, 0, 0, 0, 0, 0, xstart, xstep, ...)
Output parameters for first row of datmat:

datmat[0] = (npks, reserved, bunchflag, iter, chisq, reserved, cnvg, reserved, re-
served, jl1=first peak of current bunch, j2=last peak of current bunch, xstart, xstep,
reserved....)

7.2. RZRFIT 101

npks is the input number of peaks in the model, expressed as a floating point number.

(If you are using this library with a 16-bit compiler on a PC, you are limited to
npks < 30. Yes, segments bite again.)

nbunch is input as the maximum number of peaks to be used in each bunch, for bunch

processing. (If you are using this library with a 16-bit compiler on a PC, you are
limited to nbunch < 30.) nbunch should be set to the maximum number of peaks
in any region where the peaks are heavily overlapped. (You will not obtain good
results if you ask rzrfit to break a region of 10 heavily overlapped peaks into 2
bunches of 5 peaks each.) However, when choosing nbunch, remember that smaller
is faster, a lot faster!

If vou are processing in the All-at-once mode (the usual mode for all peak- fitting
algorithms devised up to this time), set nbunch=0.

bunchflag is a input initialization flag that tells rzrfit whether you want All-at-once

processing bunchflag=0, or Bunch-mode processing bunchflag = 1. If you initialize
for Bunch-mode processing, monitor this flag during the iteration sequence. rzrfit
will signal that it has finished with all peaks, all bunches, by setting bunchflag =
0.

iter is the iteration number. It MUST be set to 0 the first time rzrfit is called. Thereafter,

cnvg

rzrfit will maintain iter. The value of iter will be increased each iteration until
final convergence is reached. When rzrfit converges, it will automatically set the
value of iter to -1.0. The value iter = 0.0 is the signal that rzrfit is has converged,
and has performed a final cleanup, calculating peak areas, the standard errors of
the parameters, and the covariance matrix. If you find yourself in a situation where
rzrfit has not yet converged, and you wish to force rzrfit to perform the final
clean-up, set iter = -1.0. rzrfit will increment iter to zero when it is finished.

You should check iter after each iteration, to find out when rzrfit is finished

(iter=0). If you have set the bunchflag for Bunch-mode processing, wait for
bunchflag=0 && iter=0.

is output, the convergence number at the end of each iteration. When cnvg=5,
rzrfit has converged to an answer, and it will set iter=-1 internally for the final
clean-up pass.

chisq is output, the reduced chi-squared value at the end of the current iteration.

j1 is maintained by rzrfit. 1t indicates the first peak of the current bunch.

j2 is maintained by rzrfit. It indicates the last peak of the current bunch.

xstart, xstep are input as the x-value corresponding to the first data point in ydata, and

the x-interval between data points in ydata, xstart and xstep are not normally

102 CHAPTER 7. RAZORFIT — RZRFIT

used by rzrfit. However, there may be circumstances where they may be useful to
the programmer in the rzrserve function rzupdt, and so space has been reserved
in datmat for them. You do not need to load xstart, xstep in datmat unless you
also change rzupdt to use these parameters.

Input parameters for second (third, etc) row of datmat:

type, ¢, fixc, h, fixh, w, fixw, a, fixa, p, fixp, q, fixq, 0, 0, 0, 0, 0, master/slave, 0,
0Jowlime,highlimc,Jowlimh,highlimh, lowlimw,highlimw,lowlima,highlima,lowlimq,highlimq,
0, ...)

Output parameters for second (third, etc) row of datmat, 0
datmat[1] = (type, ¢, errc, h, errh, W, errw, a, erra, ;, errp, q, errq, area, errarea,
reserved,)

type is a number which identifies the peak type:
0. Captured DataPeak, input in the datapeak array
gauss
lorentz
weighted sum of gauss and lorentz
product of gauss and lorentz
asymmetric gauss
asymmetric lorentz
Pearson VII
8. Log Normal
9.-10. Create your own peakshape. Follow the syntax shown in the function rzpkl
of rzrser{2.for. Fill either function rzpk9 or rzpk10, and assign type number 9 or
10 to the new peak. Recompile rzrser02.for after revision.
200. baseline stored in array baslin.
201. constant {offset) baseline
202. linear baseline
203. quadratic baseline
204. exponential baseline
205.-209. Roll your own baseline. See rzrser02.for.

= e

¢ is an estimated peak center position, measured in data point numbers.
h is the estimated peak height.
w is the estimated peak width (or the third parameter — see Chapter §).

a is the estimated fourth parameter (asymmetry, mixing, width, etc. — see Chapter 8).

7.2. RZRFIT 103

p is estimated fifth parameter, if any.
q is estimated sixth parameter, if any.

fix identifies whether the parameter is to be varied during the current iteration of the fit.

fix < 0.0 for a parameter which is currently variable.

fix = 0.0 when a parameter is currently fixed (nonvariable).

fix > 0.0 and < 9.0 when a parameter is currently variable, and is also constrained
to be positive. (See function rzlims in rzrser02.for.)

fix = 9.0 when a parameter is currently variable, but is also constrained to lie
between lowlim and highlim as entered into the same row of datmat. Note that the
lowlim and highlim values in datmat are only used when fix = 9.

fix > 10.0 and < 100.0 when a parameter is currently variable, but is also con-
strained to lie within fix% of the starting value given in datmat.

fix = 100.0 is a signal that the corresponding parameter partakes in the master/slave
relationship. Do not use fix = 100.0 unless the current peak is a slave, and the
master/slave relationship has been established in the 19th column of the current
row! When fixe = 100.0, then the corresponding parameter ¢ is interpreted as the
constant-offset of this slave peak from its master. When fixh = 100.0, then the
corresponding parameter h is interpreted as the constant-ratio of slave peak-height
to master peak-height. When fixw = 100.0, then the corresponding parameter w is
interpreted as the constant-ratio of slave peak-width to master peak-width. When
fixa = 100.9, then the corresponding parameter a is interpreted as the constant-ratio
of slave peak-asymmetry to master peak-asymmetry. When fixp = 100.0, then the
corresponding parameter p is interpreted as the constant-ratio of slave parameter-p
to master parameter-p.

We also recommend setting fix = 0.0 at all unused parameter locations within
datmat. (For example, when type = 1, for a gaussian peak, only the parameters
¢, h, and w are used. However, setting fixa = 0.0, and fixp = 0.0 could save you
some grief later on, if you decide to alter the function limits in rzrserve.

area, errarea are unused on input.

master/slave An odd integer indicates a master; odd+1 indicates corresponding slave.
Thus the first master peak will contain a 1 in the master/slave column; all its slaves
will contain a 2 in the master/slave column. The second master will contain a 3 in
the master/slave column, and all its slaves will be numbered 4, etc..

Put a 0 (zero) in the master/slave column when peaks do not partake in a mas-
ter/slave relationship. Always put a zero in the master/slave column if you are
using bunch-mode processing! Bunch processing is not compatible with mas-
ter/slave processing.

104 CHAPTER 7. RAZORFIT — RZRFIT

Note that rzrfit will resort the rows when any master/slave relationships are estab-
lished. This is necessary because the processing algorithm requires that slaves be
in rows following the row of the master. YOU do not need to follow this rule in
setting up datmat, however.

The example on page 105 shows how to use HANDLE to set up the master/slave
relationship. Look at the HANFIL function in handle2.for for programmer instruc-
tions on creating master/slave relationships.

towlime, highlime are upper and lower limits placed on the values for the parameter c.
Note: lowlime, highlime are only used if fixe is set to 9. For all other values of
fixe, lowlime and highlime will be ignored.

lowlimh, highlimh, lowlimw, ... are upper and lower limits placed on the parameters h,
w, etc.

We have provided a function in handle.c named rzrfil. It is intended to assist the
programmer in filling the datmat matrix. It is well-documented in handle.c.

At the end of each iteration, datmat contains the updated values of each parameter
value, where appropriate.

Upon return from the final iteration, after convergence is achieved, each fix value is
replaced by the standard error of the corresponding parameter. The peak area, or the
area under the baseline, and its standard error, fill the last two spaces.

NOTE: If the parameter was fixed (fix = 0), then the value returned in the error position
is zero, as a reminder that the parameter was not varied. When a returned standard error
is -1, this indicates that the diagonal element of the covariance matrix was negative, and
the square root could not be taken. A negative diagonal element is an indication that the
fit has not really converged, i.e., the solution is not sitting in a minimum in parameter
space.

7.3. FIRST EXAMPLE USING RZRFIT 105

7.3 First Example using rzrfit

First, we used the rzrpic peak picker on our spectrum, exactly as shown in Chapter 6.
Then we called upon rzrfit, proceeding as shown below.

We chose to fit a model consisting of five Gaussian peaks, plus a linear baseline. Note
that once we selected our model, all the initial parameters were estimated automatically
within handle by rzrfil. Furthermore, with these good initial estimates, rzrfit converged
in 4 iterations.

Data file: SPEC2

Model chosen: 5 Gaussian peaks, plus a linear baseline. All the initial parameters
were estimated by handle and HANFIL, freeing the user from this onerous task, We
will link two of the peaks in a master/slave relationship, to show you how to set this
up. (Our master/slave link, and the choices for the parameters, is purely arbitrary).

Notice that RZRFIT resorts the rows in DATMAT. This is necessary, because
RZRFIT wants slaves to be placed in rows immediately following the row of their
master.

Using handle:

RAZOR LIBRARY for Spectral Analysis -¢ There is only one best way!
MaximumLikelihood (ML), Maximum Entropy (ME), and Bayesianprocessing.

..................
..................

Choose an operation: fit

Handle loads FIT from PIC data, sc you must
run PIC or BAS TMMEDIATELY BEFORE THIS FIT.
If you did not, type R to Restart.

Did you run PIC or BAS? [Y] vy

Bunch-processing is fagter than procegssing the peaks All-at-once.
Process the peaks in small bunches? ¥/N [N] n
Identify the type of your peaks
Type number Shape
DataPeak [default]
Gaussian
Lorentzian
Sum (Gaussian+Lorentzian)
Product {Gaussian*Lorentzian)
Asymmetric Gaussian
Asymmetric Lorentzian

AN oB WO

106 CHAPTER 7. RAZORFIT — RZRFIT

7 Pearson 7
8 Log Normal
100 1st & 2nd DataPeaks

Enter type number: 1

Will there be a baseline?: (Y] y
Available baseline types are
O = 0Offset
L = Linear
Q = Quadratic (not recommended)
E = Exponential
F = File Bageline
Select Baseline Type [L]: L

Here 1s the control vector, DATMAT (0) :
npks nbunch bnchflg iter chisg chitest cnvg
6.00 0.00 0.00 0.00 0.00 0.00 0.00
DATMAT (i), the input data matrix, starting i=1:
Row Type Cent Fix Hght Fix Wdth Fix Aparm Fix Master/Slave

2 1 450.00 -3.00 B2.58 1.00 77.44 3.00 C6.00 0.00 O
3 1 829.00 -3.00 62.74 1.00 99.3% 3.00 0.00 ¢.0C O
4 1 653.00 -3.0C 4%.69 1.0C 71.33 3.00 0.00 0.00 O
5 1 177.00 -3.00 32,81 1.00 8%.83 3.00 0.00 0.00 0
5 1 283.00 -3,00 17.19 1.060 58.75 3.00 0.00 (0.0C O
7 202 1.41 -1.00 0.00 -1.00 0.00 0.00 0.00 0.00 O

Do you wish to link peaks? [N]: vy

A group of Linked peaks must refer to a Master peak.
Enter Master peak ROW: (N for none) : 2

List Slave peaks by ROW: (N for none): 4

Slave in ROW: 4. For each parameter,

either enter the gslaving value, or enter 'N’ if Not-sgslaved.
Position: Enter fixed offset of slave peak: 200
Amplitude: Enter slave/master amp ratio: .65
Width: Enter slave/master width ratio: 1
Asymmetry: Enter slave/master asym ratio: n

List Slave peaks by ROW: (N for none): n

Here is the control vector, DATMAT (0) :
npks nbunch bnchflg iter chisg chitest cnvg
6.00 0.00 0.00C 0.00 0.00 0.00 0.00
DATMAT {i), the input data matrix, starting i=1:

7.3. FIRST FXAMPLE USING RZRFIT 107

Row Type Cent Fix Hght Fix Wdth Fix Aparm Fix Master/Slave
1 450.00 -3.00 82.58 1.00 77.44 3.00 0©0.00 0.0C 1

1 829.00 -3.00 62.74 1.00 99.3% 3.00 0.00 0.0C0 O

1 200.00 10C.00 0.65100.00 1.0010C.00 0.00 0.00 2

1 177.006 -3.00 32.81 1.00 89.83 3.00 0.00 0.00 0

1 283.00 -3.00 17.12 .00 58.75 3.00 0.00 0.00 O

02 1.412 -1.,0¢ 0.00 -1.00 0.00 O.0QC 0.00 0.00 O

~S1 Yy U W N

Do you wish to link peaks? [N]: n

The default {and most usual) type is Normal noise.
Enter N for Normal noise; P for Poiggson noise [Nl: n
Enter Normal noise variance. Enter 0 if unknown: 0
Select F or 8, Fast or Standard mode: [F] £
Entering RZRFIT with iter=0. Wait for setup...
Procesging peaks 1 to 6 of 6. Noisge variance=11.61%9
Reduced chisg=23.57 at iter 1

........

Reduced chisg=3.063 at iter 14
Reduced chisg=3.063 at iter 0

OUTPUT DATA MATRIX
Pk Type Cent Err Hght Err Wdth Err Aparm Err Area Err

11 187.07 3.1 32.33 1.1 82.27 6.2 0.00 0.0 2831.31233.°9
21 26%9.08 5.1 16.56 1.5 67.68 S.0 0.00 0.0 1193.27182.6
31 445.39 ¢.4 78.51 0.7 %2.82 1.1 0.00 0.0 7856.15115.3
4 1 649,39 0.0 51.68 0.0 82.82 0.0 0.00 0.0 5106.50 0.0
5 1 822.74 0.6 65.09 1.0 83.59 1.6 0.00 0.0 5792.17143.3
6202 14.5% 0.6 0.00 0.0 0.00 0.0 0.00 0.015320.28767.4

Press jEnter¢ to see datmat in user coordinates ..

QUTPUT DATA MATRIX in user coordinates
Pk Type Cent Err Hght Err Wdth Err Aparm Err Area Err
11 188.07 3.1 32,33 1.1 82.27 6.2 0.00 0.0 2831.31223.°9
Reduced chisqg (whole file) =3.06288
Variance = 0.1162E02
Processed with istat=1 (1=Normal noise statistics, 2=Poisson)
RESULT MAY BE SAVED TO A FILE

108 CHAPTER 7. RAZORFIT — RZRFIT

Press ENTER to return t£o menu.

9%5 .45
6. 77
" u7m.10
165.42

i UL

| 1.060 190.9 200.0 300.7 400.6 560.5 600.4 790.3 809.2 999.1
X INITS

7.4. SECOND EXAMPLE USING RZRPIC AND RZRFIT 109

7.4 Second Example using rzrpic and rzrfit

rzrfit lets you fit real data shapes to your data. We will illustrate this using radiochro-
matography flow-cell peaks.

FLOWCAL is a real data peak, which we have smoothed. It was obtained during a
radiochromatography run. The detector was counting scintillations in a flow cell.

FLOWDATA is simulated data. We added together four peaks just like FLOWCAL,
Three of the peaks have maximum counts of 10; one has a maximum count of 20. We also
added a small background count. Then we put the appropriate counting noise (Poisson)
on the simulated data. FLOWDATA is the result.

We will run rzrpic on the data, and accept the biggest 8 peaks, pretending that we
do not know how many peaks are really there. The results will show the 4 peaks which
arc really there, and their heights will be correct within 2 standard deviations. The 4
nuisance peaks which we will accept will show up as much smaller; two of them will be
consistent with peak heights = 0.

Data file: FLOWDATA
Captured DataPeak: FLOWCAL

Using HANDLE:

RAZOR LIBRARY for Spectral Analysis -¢ There isonlyonebest way!
Maximum Likelihood (ML), Maximum Entropy (ME)}, and Bayesianprocessing.

..............

Choose an operation: pic

Enter name of spectrum (Try SPEC2) : flowdata
Enter name of peakshape (Try PEAKZ): flowcal

Enter -1 for Quick-Pick

Enter 1 for High-Performance picker

Enter 2 for High-Resolution picker

Enter 3 for 2nd-Order High-Performance picker

Enter 4 for Quiet Pick {(High Res. Good for very narrow peaks)
Select picker [2]: 2

Enter peak threshold (number of standard deviations of ncise)
Enter 3 if unsure: -3

Enter N for Normal noise; P for Poisscn noise [Nl: p

Entering RZRPIC. Flease wait for processing...

Peaks found by RZRPIC.

110 CHAPTER 7. RAZORFIT — RZRFIT

Estimated RMS noise: 2.89173
Number Peaks detected: 7
Using Peak Detection Threshold: -3

Peak AREA Significances:
19.87 15.31 11.88 5.41 4.43 3.%4 3.61

Number peaks (as sorted) accepted for FIT: 7

Select:
Print (8)ignificances, (L)ccations, (H)eights, (W)idths, (E)verything.

(R)esort. (T)uneup heights. {(A)ccept. (M)enu.
m

Press ENTER to return to menu.

1211992 FLIWDATA

.42
».@

i
uxzs

N
1 28.67

T
s X%.08
21.50
17.92
14.33
10.75
?.162

3.583

- | Fromieme | BT

1.853 3.543 5.233 6.923 B6.613 10.30 11.99 13.68 15.37 17.86
X UNITS

7.4. SECOND EXAMPLE USING RZRPIC AND RZRFIT 111

RAZOR LIBRARY for Spectral Analysis -¢ There is only cne best way!
MaximumLikelihood (ML), Maximum Entropy (ME), and Bayesianprocessing.

Choose an operation: fit

Handle loads FIT from PIC data, so you must
run PIC or BAS IMMEDIATELY BEFORE THIS FIT,
If you did not, type R to Restart.
Did you run PIC or BAS? [Y] vy
Bunch-procegsingis faster thanprocessing the peaksAll-at-once.
Process the peaks in small bunches? Y/N [N} n
Identify the type of your peaks

Type number Shape
DataPeak [default]
Gaussian
Lorentzian
Sum (Gaussian+lLorentzian)
Product {Gaussian*Lorentzian)
Agymmetric Gaussian
Agymmetric Lorentzian
Pearson 7
Log Nermal

100 1st & 2nd DataPeaks

Enter type number: 0
Preserve or Vary the DataPeak width? P/V [P]: p
Preserve or Vary the DataPeak asymmetry? B/V [P]: p

1oy Uk O

[0 ¢]

Will there be a baseline?: [Y] vy
Available baseline types are
O = Offset
L = Linear
Q = Quadratic (not recommended)
E = Exponential
F = File Bageline
Select Baseline Type [L]: o

Here is the control vector, DATMAT (0}
npxs nbunch bnchflg iter chisg chitest cnvg
g8.00 ©0.00 0.00 0.00 ©0.00 ©0.00 0.00
DATMAT (i), the input data matrix, starting i=1:

112 CHAPTER 7. RAZORFIT — RZRFIT

Row Type Cent Fix Hght Fix Wdth Fix Aparm Fix Master/Slave

2 0 777,00 -3.00 5.44 1.00 71.8%5 0.00 0.00 0.00 ©
3 0 116.90 -3.00 8.05 1.00 65.87 0.00 0.00 90.00 0
4 0 236.00 -3.00 10.66 1.00 67.59 0.00 0.00 0.00 0
5 0 9853.060 -3.00 1.08 1.00 69.00 0.00 0.00 0.00 0
6 0 506.00 -3.00 0.91 1.00 €4.65%5 0.00 0.00 0.00 O
7 O 420.00 -3.00 1.58 1.00 44.65 0.00 0.00 0.C0 ©
8 0 300.00 -3.00 2.77 1.00 58.63 0.00 0.00 0.00 0
g 201 0.00 -1.00 0.00 0.00 0O0.00 O0.00 0.00 0.00 O

Do you wish to link peaks? [N]: n

The default (and most usual) type is Normal noise.
Enter N for Normal noise; P for Poisson noise [N]: p
Enter Poigson scaling factor. Enter 0 if unknown: 0
Select F or S, Fast or Standard mode: [F] £

Entering RZRFIT with iter=0. Wait for setup...
Processing peaks 1 to 8 ¢of 8. Noise variance=0.602189
Reduced chisg=3.481 at iter 1

Reduced chisg=1.674 at iter 2

Reduced chisg=0.,549 at iter 15
Reduced chisg=0.546 at iter 16
Reduced chisg=0.546 at iter 17
Reduced chisg=0.546 at iter 0

OUTPUT DATA MATRIX
Pk Type Cent Err Hght Err Wdth Err Aparm Err Area Err

1 0 775.27 0.7 8.46 0.2 148.00 0.0 0.08 0.0 12%1.24 32.1
2 0 1l6.85 0.8 ©9.05 0.2 148.00 0.0 0.08 0.0 1386.86 36.6
3 0 236.56 0.6 20.88 0.6 148.00 0.0 0.08 0.0 3188.05 84.7
4 0-1014.00 0.0 0.00 0.0 148.00 0.0 0.08 0.0 .01 0.0
5 0-1014.00 0.0 ¢.00 0.0 148.00 0.0 ©0.08 0.0 0.25 0.0
6 0-1014.00 0.0 0.00 0.0 148.00 0.0 0.08 0.0 0.21 0.0
7 0 254.98 1.8 8.10 0.5 148.00 0.0 0.08 0.0 1237.12 76.1

1

8 201 0.55 0.1 0.00 0.0 0.00 0.0 0.00 0.0 556.57 54.
Press jEnter¢ to see datmat in user coordinates ...

QUTPUT DATA MATRIX in user coordinates
Pk Type Cent Err Hght Err Wdth Err Aparm Err Area Err
10 14.77 0.0 B8.46 0.2 0.00 0.0 0.08 0.0 0.00 0.0
2 0 3.80 0.0 .08 0.2 0.00 0.0 0.08 ¢©.0 0.00 0.0
3 0 5.80 0.0 20.88 0.6 (0.00 0.0 .08 0.0 0.00 0.0

7.4. SECOND EXAMPLE USING RZRPIC AND RZRFIT 113

4 0 -15.05 0.0 0.00 0.0 0.00 0.0 0.08 0.0 0.00 0.0
5 0 -1%.05 0.0 0.00 0.0 ©0.0C 0.0 0.08 0.0 0.00 0.0
6 0 -15.05 0.0 ©.00 0.0 O©0.00 0.0 0.08 0.0 0.00 0.0
70 6.77 0.0 8.10 0.5 0.00 0.0 0.08 0.0 0.00 0.0

g8 20L 0.55 0.1 ©0.00 0.0 0.00 0.0 0.00 O0.C 0.00 0.0

rReduced chisqg (whole file) =0.546
Processed with istat=2 (1l=Normal noise statistics, 2=Poisson)

RESULT MAY BE SAVED TO A FILE

Press ENTER to return to menu.

FIT = RazorFit: Reduced chisq= .536616E+88 at iter 15
Showing fitted peaks and baseline. Press ENTER to display poak paramcters.

39.42
35.83

¥

U 32.25

N

1 28.67

T

S 25.08
21.50
17.92
14.33
10.75
?2.167
3.503

1.853 3.43 5.233 6.923 8.612 16.30 11.99 13.68 15.37 17.86
X INITS

114 CHAPTER 7. RAZORFIT — RZRFIT

7.5 Third Example using rzrbas and rzrfit

rzrfit will process peaks in small ‘bunches’, allowing you to process more than 30 peaks
at a time (the DOS limit), and giving you the results a /of faster! In addition, rzrfit knows
how to use data with Poisson noise. We illustrate these features using x-ray diffraction
data.

XRAYSCAN contains x-ray diffraction peaks, measured for diffraction angles between
10 and 90 degrees. The noise in the data is somewhere between Normal and Poisson. (It
would be purely Poisson were it not for instrumental effects.) We will assume the noise
is Poisson, to illustrate some things you need to think about when dealing with Poisson
noise.

XRAYPEAK is a synthetic Gaussian peak, approximately the same width as the peaks
in XRAYSCAN.

Think about these things when attempting peak-fitting on data with Poisson noise.

o When the noise is Poisson, the RMS noise is /arger on the peaks, and smaller in the
baseline regions. rzrfit knows that Poisson noise is proportional to the square-root
of the signal, and computes a proper value of Chisq using that knowledge.

NOTE: We said proportional to, not equal to the square-root. Thus you may rescale
your Poisson data without penalty. The data in XRAYSCAN was renormalized from
counts to counts/sec. rzrfit performs peak-fitting correctly on this nornalized data.

o If you remove a baseline, or a background, from data that has Poisson noise, the
resultant background-corrected data no longer has Poisson noise.

NOTE: When you remove a baseline, the noise is no longer proportional to the
square-root of the signal. Thus you may freely multiply your Poisson data by a
constant factor, but do not subtract a background.

rzrfit allows you to define the baseline or background you want, and enter it into
the baslin array. When you do this, it will fit any peaks on top of your baseline, or
background. The Poisson-nature of the noise will be correctly handled.

We will run rzrbas on the data, in order to find peaks and get a baseline scan to use
for background correction. We will then save the baseline into a file named XRAYBASE.

The baseline file XRAYBASE will be used to get the correct answer for Poisson noise
statistics.

Incidently, if you want to have a baseline when you use rzrfit in the ‘Bunch’ mode,
you MUST have a baseline file. Handle has been programmed so that ‘file’ is your only
choice for a baseline during Bunch-processing.

We will use the ‘Quiet-Pick’ peak picker, because the peaks in XRAYSCAN are
approximately 2 datapoints wide - too narrow for good results with any of the other
pickers except ‘Quick-Pick’. However, ‘Quick-Pick’ is unable to resolve the xray peak
components.

7.5. THIRD EXAMPLE USING RZRBAS AND RZRFIT 115

We will also resort the peaks by height, to illustrate the use of rzpkst (See page 175),
and then accept only the 75 largest peaks for FIT.

Data file: XRAYSCAN
Peakshape file: XRAYPEAK

Using HANDLE:

RAZOR LIBRARY for Spectral Analysis -¢ There igonly onebest way!
Maximum Likelihood (ML), Maximum Entropy (ME), and Bayesian processing.

Choose an operation: BAS

Enter name of spectrum {Try SPEC8) : XRAYSCAN

Enter name of peakshape (Try PEAKS) : XRAYPEAK

RZRBAS also picks peaks! Choose picker.

Enter -1 for Quick-Pick

Enter 1 for High-Performance picker

Enter 2 for High—Resolution picker

Enter 3 for 2nd-Order High-Performance picker

Enter 4 for Quiet Pick {High Res. Good for very narrow peaks)
Select picker by Number [2]: 4

Enter peak threshold (number of standard deviations of noise): 3
Enter N for Normal noise; P for Poigson noise [N]l: P

Entering RZRBAS with bgeng = 1. Wait for setup...
Estimated RMS noige; 19,86

Using Peak detection thresheld: 3.0

Peaksg detected: 94

Peak Start/stop regions:
0/ 148 148/ 251 251/ 497 497/ 818 818/ 981 ©881/1600
Current baseline sens, BSENS =1
Enter new value for BSENS (Enter 0 to quit):
BASELINE MAY BE SAVED TQO A FILE AFTER EXAMINING PEAKS.
Eit any key to examine peak parameters.

Peaks found by RZRBAS.

Estimated RMS noise: 19.86
Number Peaks detected: 94

Using Peak Detection Threshold: 3

116 CHAPTER 7. RAZORFIT — RZRFIT

Peak HEIGHT Significances:

-Number peaks (as sorted) accepted foxr FIT: 924

Select:

Print (S)ignificances, (L)ocations, (H)eights, (W)idths, (E)verything.
{(Rlesort. (T)uneup heightsg. (A)ccept. (M)enu.

R

Resort by (8)ignificances, (L)ocations, (H)eights, (W)idths? [L]

H

Peaks found by RZRBAS.

Estimated RMS noise: 19.86
Number Peaks detected: 94

Using Peak Detection Threshold: 3
Peak Heights:

Number peaks (as sorted) accepted for FIT: 920

Select:

Print (S)ignificances, (L)ocations, {(H)eights, {(W)idths, (E)verything.
(R)esort. (T)uneup heights. (A)ccept. (M}enu.

A

Peaks detected: 24

How many do you accept for FIT?

75

Peaks found by RZRBAS.
Select:
Print (S)ignificances, (L)}ocations, (H)eights, (W)idths, (E)verything.

{(Ryesort. (T)uneup heights. (A)ccept. (M)enu.
M

Presg ENTER to return to menu.
RAZOR LIBRARY for Spectral Analysis -¢ There is only one best way!
MaximumLikelihood (ML), Maximum Entropy (ME), and Bayesianprocessing.

oooooo

Choose an operation: SAV

Under what name?
XRAYBASE

7.5. THIRD EXAMPLE USING RZRBAS AND RZRFIT 117

RZRBAS has given us a set of peaks, and a baseline, for use in RZRFIT. The results
are shown below:

KRS found 99 paaks. Hit onter to see Feak parws.
Bassline may be saved after manining poaks.

B2k] —~DATAIATEAN

D X e

SEEERERIRE

?1.'-"3‘ ‘-l;ll..LJ.IJ.L.lL“,I,;;,“,

10.00 16.00 25,60 34.00 42.06 50.60 55.00 65.00 M.00 BZ.90
X INITS

RZRBAS Found 17 poaks. Hit emter to see Peak pares.
Bapeline may het savod after eamining poaks.

“BATAIORTPART

@55 |

t/ag |

2.3

58.90 59.20 60.49 61.68 62.88 64.00 65.20 66.40 67.60 65.80
X INITS

118 CHAPTER 7. RAZORFIT — RZRFIT

We proceed directly from RZRBAS into RZRFIT. Handle uses the function RZDFIL
(See page 177) to fill the datmat array with the peak locations, heights, and widths that
are always provided by RZRBAS and RZRPIC.

When running RZRFIT, you need to decide whether to run in Fast or Standard mode
(Fast can be significantly faster; Standard is a standard Levenburg- Marquardt available
anywhere). You also will specify whether to use All- at-once or Bunch-mode processing.
With > 30 peaks, under DOS, only Bunch-mode is possible. And, it’s a lot faster.

RAZCOR LIBRARY for Spectral Analysis -¢ There isonly one best way!
Maximum Likelihood (ML), Maximum Entropy (ME), and Bayesianprocessing.

..........

Choose an operaticn: FIT

Handle loads FIT from PIC data, so you must
run PIC or BAS IMMEDIATELY BEFORE THIS FIT.
If you did not, type R to Restart.

Did you run PIC or BAS? [Y] Y

Bunch-processing is faster thanprocessing the peaks All-at-once.
Process the peaks in small bunches? Y/N [N] vy
Enter maximum number of peaks in a bunch [Suggest 4 or 5]: 5
Identify the type of your peaks

Type number Shape
DataPeak [default]
Gaussian
Lorentzian
Sum(Gaussian+Lorentzian)
Product (Gaussian*Lorentzian)
Asymmetric Gaussian
Agymmetric Lorentzian
Pearson 7
Log Normal

100 lst & 2nd DataPeaks

Enter type number: 1
Will there be a baseline? [Y]: Y

Lo IR I o W 6t I S FY S B &)

Enter name of baseline file, else {Enter¢ to use PIC/BAS basln:
XRAYBASE

Here is the control vector, DATMAT(0) :
npks nbunch bnchflg iter chisq chitest cnvg
76.00 5.00 1.00 0.00 0.00 0.00 0.00
DATMAT (i), the input data matrix, starting i=1:

7.5. THIRD EXAMPLE USING RZRBAS AND RZRFIT 119

Row Type Cent Fix Hght Fix Wdth Fix Aparm Fix Master/Slave
2 1 167.00 -4.00 32.16 1.00 2.62 3.00 0.00 0.00 O
3 1 175.00 -4.00 747.51 1.00 3.56 3.00 0©0.00 0.00 O

75 1 1548.00 -4.00 30.78 1.00 3.80 3.00 0.00 0.00 O©
76 1 1588.00 -4.00 25.17 1.00 5.08 3.00 0.00 0©.CO ©
77 200 .00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 O
Do you wish to link peaks? [N]: N

The default (and most usual) type is Normal noise.

Enter N for Normal noige; P for Poisson noise [N]: P

Select F or §, Fast or Standard mode: [F] F

Entering RZRFIT with iter=0. Wait for setup...
Processgsing peaks 1 to 4. Noise variance=9.10542
Reduced chisg=1058.82 at iter 1l

..................

.................

.................

........................

OUTPUT DATA MATRIX in usger coordinates
Pk Type Cent Err Hght Err Wdth Err Aparm Err Area Err
i1 192.01 0.0 15.93 29.¢6 c.00 0.0 0.00 O©0.C 0.00 0.0
2 1 18.77 0.0 746.58 125.90 0.00 0.0 0.00 0.0 0.00 0.0
75 1 89.44 0.0 19.44 7.5 0.00 0.0 0.00 0.0 0.00 0.0
76 200 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0
Reduced chisqg (whole file) =15.896
Processed with igstat=2 (1=Normal noise statistics, 2=Poisson)
RESULT MAY BE SAVED TO A FILE

If you run a portion of XRAYSCAN using the Razor Library DEMO, your final screen

120 CHAPTER 7. RAZORFIT — RZRFIT

1

will look like the picture below.

RZRenS found 99 poaks, Hit enter to soo Peak parws.
Beseline may bo saved after exanining poaks.

T 5131953

-

@21 |
.7 &QL-”—LLL—I—L_H-L—L&H.—J
10,60 10.00 26.00 34.60 42.00 50.00 50.00 65.00 7.0 B2.00
X UMITS

FIT = RBaxorFit: Final Boduced chisgc .7IS7S7E+00
Showing fittad peaks and baseline. Fross INTER to display poak peremsriers .

o rsm BRYFIOATFART

864.8
¥
U 796.4

N
I 7.9
T

S 619.4
530.9
2.4
353.9
265.5
i77.e
88.48

S58.06 59.20 60.40 61.60 62.90 61.060 65.20 66.4¢ 67.60 68.600
X UNITS

7.6. THE RAZORFIT ALGORITHM 121

7.6 The RazorFit algorithm

In the final sections of this chapter, we will (1) present the assumptions that all peak-
fitting methods make about your data, and carefully discuss the assumptions about your
noise, or data errors, that you implicitly make when using a program like RazorFit, (2)
derive the RazorFit algorithm from the Maximum Likelihood principle, and (3) discuss
mathematical details.

7.7 The RazorFit model

When you use RazorFit, or similar peak-fitting programs, you are assuming your data can
be fit by a model. The model usually can be described with an analytical expression,
although it need not be. The important characteristic of the model is that whereas it has
M parameters whose values are not known, M is a number smaller than the number of
data points.

RazorFit uses this model for your data:

model{x) = }J:(peakj(x)) + baseline(x}),

j=1

where J is the number of peaks being fit, and each peak;(x) is synthesized using one of
the analytical expressions given in Chapter 8. The function baseline(z) is also given in
that chapter. The number of parameters M is the sum of the parameters required for each
peak, plus any baseline parameters.

RazorFit is the appropriate peak-fitting algorithm to use when your data errors are
random, and additive, (Normal noise), and also when your data errors are the result of
counting statistics (Poisson noise). Mathematically, RazorFit is appropriate when

data(x) = model{x) - error(x),

when error(z) has an equal chance of being a positive or a negative value, and when
error(z;) is uncorrelated with error(z;) for all i, j.

Visually, the assumptions about error{z) are represented in the figure below. The
figure is a histogram of the errors measured at a single position zy,

error(xy) = data{xy) — model(xy),

for a large number of measurements, on one sample, at position zy.

122 CHAPTER 7. RAZORFIT — RZRFIT

Fig 7.7.1 Histogram of errors measured at zy.
The important characteristics of the data errors which are represented by the histogram
are:

e The errors are nearly equally distributed between positive and negative values.
e Small errors are more probable than large ones. The histogram is peaked at zero.

¢ The RMS error need not be the same for all z. A histogram of errors measured at
any data point z; would have the same general shape, but not necessarily the same

width, as the one above.

If & histogram of your data errors, measured at any point in your data set, would look
similar to the one shown above, then RazorFit is an appropriate peak-fitting algorithm.
RazorFit provides solutions for data with the following types of noise statistics:

e Normal (gaussian-distributed) noise errors, with constant variance.

e Normal (gaussian-distributed) noise errors, with variance that depends on position
within the data file.

e Poisson {counting statisﬁcs) noise errors, with variance proportional to the square-
root of the signal.

7.8 RazorFit and Maximum Likelihood

Suppose you know that your data set, in the absence of noise or sampling errors, could
be described by a model, model(z). This model is known when its M parameters are
known. You have measured N data values

7.8. RAZORFIT AND MAXIMUM LIKELIHOOD 123

data(x;) = model(x;) + error{x;}), i=1,N.

The measured data set has noise, or measurement errors. Usually, the measured data
will look something like the model. This is because small values for error{z;) are usually
more likely than large errors. In any case, we would all agree that some of the possible
data sets are more probable than others.

If we knew the values of the M parameters which describe the model, and if we
knew the probability distribution function for the errors, we could immediately write the
probability for obtaining our measured data set. We would know if it were a probable or
an improbable occurrence. Clearly, we don’t know the values of these M parameters, or
we wouldn’t be using RazorFit. So we proceed as follows:

We assume that the probability distributions P{error(z,;)) for errors are known. We
then write a general probability of obtaining any given data set. For example, suppose
that the probability distributions for the errors were Normal distributions, such as

].

1 (error{x;))?

Plerror(x;)) = ————exp|—~——F——"—

((1)) V{27m)ay | 20?

The o, or the RMS error measured at the x-value z;, is allowed to be different at each

position x;. However, in assuming that we know the probability distributions, we are
stating that we know all the values o;.

When the errors at positions z; and z; are uncorrelated, then the probability, of ob-

taining the data set {data(z,), ...data(z,)} is

N

P{data(x;), ..., data(x,)) = lzrll W;ﬂ_mexp[_ (err;};(;i))]
A 1 (data(x;) — model(x;))?
B

The Maximum Likelihood philosophy is that the given data set is very ordinary, and
thus representative of all data sets. Of all possible data sets, this one isn’t unusual.
Maximum Likelihood says that we should find values for the model parameters which
maximize the probability P(data).

Maximize the probability as follows: First make the statement that since probabilities
are always > 0, maximizing {nP is the same as maximizing P.

InP(data(x;), ...) = maximum

N In N (data(x;) — model(x;))?
zl) 2 o |

=1

124 CHAPTER 7. RAZORFIT — RZRFIT

The first sum in the above equation has a constant value, and so can be ignored in the
maximization. Therefore, the equation to be solved is

= minimumn:.

N (data(x;) — model(x;))?

202

i

We have just derived one of the important results of Maximum Likelihood. When
the errors come from Normal distributions, and when the error associated with one
data point is uncorrelated with the error at any other data poeint, then the Maximum
Likelihood prescription is the same as the least-squares prescription.

RazorFit finds the best parameters for the model you specify, using the least-square cri-
terion derived from the Maximum Likelihood principle for data with Normally distributed
errors.

Unless you take the trouble to input a noise variance vector, RazorFit makes the
simplifying assumption that ¢; is the same for all data points. RazorFit calculates a mean
value o2, the variance of the noise, according to

N
o = RMS? =) (data(x;) — smoothdata(x;))?/N.

i=1

where smoothdata(z;) is the result of the Maximum Likelihood smoothing procedure,
ESmooth, performed within RazorFit. (RazorFit uses the width of your narrowest peak
as the smoothing width.) Thus RazorFit uses ;> = ¢* for all i.

7.9 Downhill to a minimum

RazorFit uses the Levenberg-Marquardt method! to find the minimum value of Chisquare.
Within RazorFit, Chisquare is calculated as

Yiv, ((data(x;) — model(x;))/RMS)?
N-M)

Reduced_Chisquare =

N is the number of data points, and M is the number of model parameters which are al-
lowed to vary. RMS is the noise obtained from your noise variance vector, or is calculated
by RazorFit according to whether you specify normal or Poisson noise.

This statistic, the Reduced chisquare, is the more familiar chisquare, divided by the
number of degrees of freedom, N — M. When the measurement errors come from Normal
distribution, and when the model is correct, the reduced chisquare statistic will come from

a distribution which has a mean value of 1, and a width of /2/(N — M).

'An excellent reference on modeling data, and on the Levenberg-Marquardt method of fitting nonlinear
models, is the book Numerical Recipes, The Art of Scientific Computing, by W. H. Press, B. P. Flannery,
S.A. Teukolsky, and W, T, Vetterling, Cambridge University Press, 1988.

7.9. DOWNHILL TO A MINIMUM 125

Chisquare can be thought of as a surface in M-dimensional space, where M is the
number of variables which are being determined. When you begin the program, and
whenever you fix or unfix any of the parameters of your model, RazorFit adjusts the
dimensions of the space it is working in. (Some peakfitting programs don’t readjust the
dimensions of the space when you fix parameters.) Fit knows its current position in that
space, from the current values of the M parameters which are allowed to vary, and so
can calculate the height of the reduced chisquare surface at that point. All RazorFit does
is this: sit at the position given by the initial parameter settings, look around, find the
downhill direction, and ooze down into the nearest minimum.

While RazorFit finds a minimum, this minimum is not necessarily the global minimum.
If you have chosen the correct model, and if your measurement errors are random, with
zero mean, then you should expect that the global minimum of the Reduced Chisquare
surface will have a value

Reduced_Chisquare = 1 &+ (m)

When RazorFit finds a minimum, it calculates the Reduced Chisquare at that position. If
the value is close to 1, it reports Solution has converged. If the Chisquare associated
with the found minimum is > 2, it states Solution has found minimum. We can think
of several reasons the Chisquare value associated with the minimum may be too large:

¢ The model may not be appropnate.

Your starting parameters may have led RazorFit into the wrong minimum.
e Your measurement errors may not be random, with zero mean.

e Your measurement errors may come from some distribution other than a Normal or
a Poisson distribution.

Possibly your measurement errors are a lot larger in one region of your data set than
in other regions.

If RazorFit tells you it has found a minimum, but Reduced Chisquare is > 1, we
suggest you check this list, and decide why the reduced chisquare value was so large.
If either of the first two reasons is the fault, you need to make changes in the starting
conditions. If the fault lies with the properties of your errors, remember this: RazorFit is
a very good least-square fitting procedure. At the desired minimum, a reduced chisquare
value of 1 is expected only if the measurement errors are Normally- distributed. For
other noise distributions, the least-square fit will give you good parameter values, but the
confidence limits will not be correct.

126 CHAPTER 7. RAZORFIT — RZRFIT

7.10 Confidence Limits

RazorFit reports the final values of the M parameters you are fitting, and also gives you
confidence limits for the parameter values. How are these confidence limits computed,
and under what conditions should you regard them as the truth?

The confidence limits reported by RazorFit are calculated by taking the square root
of the diagonal elements of the covariance matrix. The covariance matrix is the inverse
of the Hessian matrix, which has components

i N 1 Omodel(x;) dmodel(x;
Hessiany = > 3 a (x1) 3a (1) .
el 5 k

i=1
The a;, a; are the model parameters which are being estimated.

The confidence limits reported by RazorFit are the actual standard errors of the parame-
ter estimation if your measurement errors are Normally- distributed, and if a linearization
of the model equations are a pretty good estimate of the true model in a small region
around the minimum. For other error distributions, the reported confidence limits are not
the true standard errors, but may be reported as ‘square root of the diagonal elements of
the formal covariance matrix’,

7.11 Limitations of RazorFit

We hope our discussion in this chapter has helped you to think about the assumptions
you are making when you decide to fit a model to your data. You need to assess the ap-
propriateness of the model, and carefully choose your initial values. If your measurement
errors are random, independent, with zero mean, and if the RMS error is constant across
your data set, you will get good values for your model parameters.

RazorFit makes no compromises. At times your RMS noise fluctuations are indepen-
dent of position, i.e. that the mean noise is the same on the left end of the screen as on
the right. In other cases, this assumption is not correct. If you have such a case, you
should generate a noise vector, containing the variances appropriate to each data point,
and use this vector to fill VNOISE, (See Chapter 10.1).

The modeling algorithm used by RazorFit, the Levenberg-Marquardt algorithm, is
used by nearly every nonlinear peakfitting program. The limitations of the RazorFit
(Levenberg-Marquardt) algorithm are shared by most peakfitting programs you will ever
encounter. The algorithm is tailored for data sets with random, Normally- distributed noise
or measurement errors. Most measurement noise comes from a statistical distribution
which is not Normal. However, even when your measurement errors are not Normally-
distributed, if they look somewhat like Figure 7.7.1, the RazorFit algorithm is still a good
one to use.

Chapter 8

Peakshape Catalog

A catalog of peakshapes follows. For each peak type, the analytical expression used to
synthesize the peakshape is given, in terms of the peak parameters which are optimized
by rzrfit. The formulas used to calculate the total areas are also given. Total peak areas
are calculated for the entire interval (-oc,+c0).

127

128 CHAPTER 8. PEAKSHAPE CATALOG

8.1 Captured DataPeak

Type 0 — Captured DataPeaks are real data peakshapes which have been captured out

of your data, or from a calibration run, or maybe from some other data file. Choose
a peak whose general shape matches the shapes of peaks in the data you wish to
fit. Put the Captured DataPeak in the datapeak array of rzrfit.

rzrfit will then create a DataPeak Family, with peaks that are wider, narrower,
taller, shorter, etc. In other words, rzrfit will vary the center position C, height H,
width W, and asymmetry parameter A, while maintaining the same general shape
as your Captured DataPeak.

You are in control of the asymmetry of your Family of DataPeaks. You may let rzrfit
change the asymmetry parameter for a best fit, or require that all your DataPeaks
keep the initial asymmetry.

Whenever you select DataPeak as the shape for one of your peaks, rzrfit will look
to the Family of DataPeaks to give you a best-fit in exactly the same way it would
use the Gaussian family if you had selected the Gaussian standard analytic shape.

rzrfit uses the industry-standard Levenberg-Marquardt method for fitting Data-
Peaks, exactly as it uses that method for fitting Gaussians, Lorentzians, etc. The
only difference is; Now you can use real data shapes. You are not limited to
analytic peak shapes!

The DataPeak parameters C, H, W, and A are optimized by rzrfit.

SR . AN

w3

Fig 8.1 Capture a real data peak from a GC run.
Use Captured DataPeak to deconvolve peak overlaps.
rzrfit reports peak centers (elution times), heights, widths, areas, + standard errors.

8.2. GAUSSIAN 129

8.2 Gaussian

Type 1 — Gaussian peakshapes are synthesized from the equation

— 2
peak(x) = HexP{_(TS’{ﬁ%W]’

where C 1is the center position of the peak, H is the peak height, and W is the full-
width at half-maximum (fwhm). The three parameters C, H, and W are optimized
by rzrfit. Total areas are /7W H/1.665.

FH

iRl

Fig 8.2 Gaussian and Lorentzian (with higher wings).

8.3 Lorentzian
Type 2 — Lorentzian peakshapes are synthesized from the equation

1
1+4(x - C)2/wW2’

peak(x)=H

where C' is the center position of the peak, H is the peak height, and W is the full-
width at half-maximum (fwhm). The three parameters C, H, and W are optimized
by rzrfit. Total areas are 7W H/2.

8.4 Sum Gaussian + Lorentzian

Type 3 — Sum Gaussian+Lorentzian peakshapes are synthesized from the equation

130 CHAPTER 8. PEAKSHAPE CATALOG

(X B C)2 1
WD - HA(I +4(x — C)2/W?)

peak(x) = H(1 — A)({exp[-

where C is the center position of the peak, H is the peak height, and W is the
full-width at half-maximum (fwhm), and A is the Lorentz fraction (A = 1 for 100%
Lorentzian). The four parameters C, H, W, and A are optimized by rzrfit. Total
areas are WH(/7(1 — A)/1.665+ TA/2).

Fig 8.3 Sum(G+L) (with higher wings) and Product{GxL).

8.5 Product GaussianxLorentzian

Type 4 — Product GaussianxLorentzian peakshapes are synthesized from the equation

(x-C)? 1
(W/1.665)2D * (1 + 4(x — C)2/A2)’

peak(x) = H(exp|-

where C' is the center position of the peak, H is the peak height, W is the Gaussian
width (fwhm) and A is the Lorentzian width (fwhm). The four parameters C, H,
W, and A are optimized by rzrfit. Total peak areas are calculated by summing the
peaks to the edges E_ of the data set, and approximating each of the unseen wing
areas with the formula H A%exp[—1.665E2 , /W7]/4.

8.6 Asymmetric Gaussian

Type 5 — Asymmetric Gaussian peakshapes are synthesized from the equation

8.7. ASYMMETRIC LORENTZIAN 131

_ 2
x-C) < C,

peak(x) = HexP[_(ZW(l — A)/1.665)2’X <

(x-C)?
W+ A)16657 X2

peak(x) = Hexp|—

where C is the center position of the peak, H is the peak height, W 1s the full-width
at half-maximum (fwhm), and A is the asymmetry. The four parameters C, H, W,
and A are optimized by rzrfit. Total areas are given by /7(W + A)H/1.665.

8.7 Asymmetric Lorentzian

Type 6 — Asymmetric Lorentzian peakshapes are synthesized from the equation

1

peak(x) = My o Wi — A

<G,

1

peak(x) = Hy— 4(x - C)Z/(W(1+A))

27XZC)

where C is the center position of the peak, ff is the peak height, W is the full-width
at half-maximum (fwhm), and A is the asymmetry. The four parameters C, H, W,
and A are optimized by rzrfit. Total arcas are given by nH(W + A)/2.

8.8 Symmetric and Asymmetric Pearson7

Type 7 — Pearson7 (Pearson VII) peakshapes are often used as approximations to the
Voigt shape. The Pearson7 shape can look like a Gaussian, a Lorentzian, or anything
in between. In addition it can be used to fit supra-Lorentzian shapes (very wide
wings) and supra-(raussian shapes (very narrow wings).

Razor Library gives you both a symmetric and an asymmetric Pearson7. Symmetric
Pearson7 shapes are synthesized from the equation

1
(1 +4(x — C)2(21/a — 1)/ W2)a’

peak(x)=H

where C is the center position of the peak, H is the peak height, and W is the
full-width at half-maximum (fwhm). A is a parameter which governs the shape. A

132

CHAPTER 8. PEAKSHAPE CATALOG

can take any value between 0.5 and co. When A=1, the Pearson7 peak is a pure
Lorentzian shape. When A — oo, the Pearson7 becomes Gaussian. In practice, the
Pearson7 shape is close to Gaussian for A > 10.

Asymmetric Pearson7 shapes are synthesized from the equations

1
peak(x) = H(l ¥ 4(x — C)2(2VAGTP) _ 1)/W2)A(1+P)’X <G,

1

penkl) = M- opreas 1y waaa e

x > C,

where ' is the center position of the peak, H is the peak height, and W is the
full-width at half-maximum (fwhm). A(1 + P) governs the shape. A can take any
value between 0.5 and co. P can take any value between -2000 and 2000,

The parameters C, H, W, A, and (optionally) P, are optimized by FIT.

If a symmetric Pearson7 is desired, set the parameter # = 0, and set fizp = 0.
(See page 103).

8 — Log Normal peakshapes' are synthesized from the equation

(In(1 +E{(x — C)))?
D

l,x > C-1/E,

peak{x) =0,x < C-1/E,

where C' is the center position of the peak, and H is the peak height. £ and D
are functions of W, the full-width at half-maximum, and A, the asymmetry factor.
D = (lnA)?/In2. E = (A? - 1)/AW. The four parameters C, H, W, and A are
optimized by FIT. Total areas are Hv/DreP/*/E.

8.9 Log Normal
Type
peak(x) = Hexp[-
'D.

5377

F. Metzler, C. M. Harris, R. I. Johnson, D. B. Siano, J. A. Thomson, (1973), Biochemistry {2,

8.9. LOG NORMAL 133

Fig 8.4 Log Normal and AsymLrnz (with higher wings).

134 CHAPTER 8. PEAKSHAPE CATALOG

8.10 Baseline types

Type 200 — User baseline, from rzrbas or rzrgba, or a background scan, saved in a
file. User baselines are entered into rzrfit through the array baslin.

Type 201 — Offset baselines are described by the equation

baseline(x) = Bo.

Type 202 — Linear baselines are described by the equation

baseline(x} = B + Bx.

Type 203 — Quadratic baselines are described by the equation

baseline(x) = By + B1x + Bax?.

Type 204 — Exponential baselines are described by the equation

baseline(x) = Bg[1 + Byexp{—B,x)).

The constants By, By, and B, are optimized by rzrfit.

NOTE: We do not advise using either quadratic or exponential baselines, unless
you are sure of your peak types, and also absolutely sure that this is the appropriate
baseline to use. Both quadratic and exponential baselines lead to terrible conver-
gence problems when combined with anything other than a few isolated Gaussian
peaks.

Chapter 9

Baselines —
rzrbas/rzrqba/rzredg/rzrcut

9.1 Baseline Fitting and Removal

Baseline fitting often feels like the black hole of spectral analysis. If the baseline 1s
wrong, peak areas will be wrong — and the errors can be large indeed! This may the
hardest problem in the book.

We have no magic bullet. We have tried to apply Maximum Likelihood and Bayesian
principles to the problem, but so far we have failed to create 2 Maximum-anything baseline
removal method.

RazorBase is the closest we have come to providing a principled baseline function, It
is pretty good! And it is pretty slow. We were thinking of the impatient spectroscopists
in the world (only ourselves?) when we went on to create RazorQuickBase. Perhaps we
should have looked at our own notice board instead, where we keep the message “If you
can’t find time to do it right, when will you find time to do it over?”

While we continue to seek the holy grail of baseline functions, please try out our
current efforts and let us know the lay of the land.

9.1.1 RazorBase

Our best effort is embodied in rzrbas, which works as follows:

o Identify the peaks in the data, using the high-performance Maximum Likelihood/Bayesian
peak-picker rzrpic.

o Use the results of rzresm to give Maximum Entropy- smoothed segments in the
off-peak regions.

o Connect the smooth baseline segments with a straight line under the peaks.

135

136 CHAPTER 9. BASELINES — RZRBAS/RZRQBA/RZREDG/RZRCUT

¢ Check that none of the straight line connections intercept the data at a level higher
than the measured RMS noise. Use multipie straight line segments if necessary.

rzrbas is presented in Section 9.2, page 139.

9.1.2 RazorQuickBase and RézorEdge

RazorQuickBase (rzrgba) uses a ‘quickpick’ algorithm to estimate the positions of peaks
in the data, and then proceeds in the same manner as rzrbas. It is not as reliable at finding
small peaks, but it brings results an order of magnitude faster. rzrgba is presented in
Section 9.4, page 147.

RazorEdge (rzredg) attempts to match the baseline to the lower edge of the data. It
is very fast, and often works on data which do not yield well to other baseline functions.
rzredg is presented in Section 9.6, page 152.

9.2. RZRBAS 137

9.2 rzrbas

rzrbas estimates the baseline for a spectrum by identifying the peaks. The function rzrpic
is used in its high- performance mode for peak identification. Thus rzrbas requires all
the same input as rzrpic, and more,

Required user input:

e Data set containing peaks.

o Select a peakshape which represents the peaks in the data set. The peakshape choice
is not very critical for this algorithm.

e When the selected peakshape is positive, rzrbas will search for positive peaks;
when the peakshape is negative, negative peaks in the data will be identified.

Processing notes:

o rzrbas finds peaks which have the declared peakshape in the data, using the same
algorithm used by rzrpic. rzrbas will search for negative peaks if the peakshape
presented in shape is a negative peak.

e rzrbas assigns significances to the peaks in signal/moise units. Both height/noise
and area/noise significances are available. The heights and areas are calculated
from the heights and widths estimated using the shape of the 2nd derivative curve.
Significances, heights, and widths are returned in the sigpks array.

Programming notes:
e Set jstat = | if the noise is Normal. Set istat = 2 if the noise is Poisson.

o Set psens = 3 to find all the peaks with heights > 3 times the RMS noise, i.e. all
peaks with signal/noise ratios > 3. Set psens = -3 to find all the peaks with areas
> 3 times the RMS area-noise.

o bsens controls the sensitivity of the peak vs. baseline allocation. It is not an
arbitrary parameter, but is based upon the expected RMS fluctuations at different
spatial frequencies in Normal noise. In theory, it should have worked as reliably
and effectively as psens.

In practice, we have had to adjust bsens for different types of data. In retrospect,
we should have known it would happen. Real baselines do not have anything
approaching a Normal distribution of spatial frequencies!

Start with bsens = 1, and adjust it until the value is right for your type of data.
Larger values of bsens move the baseline/peak junctions in toward the peak centers,
allocating more points to the baseline segments.

138

CHAPTER 9. BASELINES -— RZRBAS/RZRQBA/RZREDG/RZRCUT

rzrbas will perform the adjustment for a new value of bsens very quickly. It does
not need to go back through the peak- picker for this adjustment. Try out rzrbas
in the demonstration program HandleG to see this in action.

The small arrays locpks and sigpks return useful information. See the discussion
for rzrpic.

The small array ibase returns useful information about peak start/stop regions.
ibase[0] contains the start index of the first peak; ibase[nibase/2] contains the
stop index of the first peak. And so on for up to nibase/2 (start,stop) pairs. ibase
is filled with the value -1 (an illegal index value) where it is not being used for
(start,stop) pairs.

9.2. RZRBAS

long rzrbas(float ydata[], long n2, float shape|], long nl2, float yout|],
float w|], float v[], float trans[],long *n, long *newpk, long *newbas,
long *istat, double *psens, double *bsens, long locpks| |, long *npks,
float sigpks|], long nsig, long ibase[], long nibase, long *nfwhm,
double *peak, double *sigma)

Input arrays which must be filled:
ydata, filled between 0 and n2, length n2 + 1
shape, filled between 0 and ni2
NOTE: shape will be read only, not altered.
NOTE: If newpk > 1, shape will not be read.
Additional arrays to be fumished:
yout, length n
w, length n
v, length n
trans, length n
locpks, length npks
sigpks, length nsig
ibas, length nibas
Input variables: n2, nl2, n, newpk, newbas, istat, npks, nsig, psens, bsens, nibas
n2 is the last position of data in ydata
nl2 is the last position of data in shape
n is the size of arrays ydata, yout, w, v, and trans
newpk indicates whether or not shape is a new peakshape.
newbas 1s an initialization flag for rzrbas.
istat 1s a flag for Normal vs. Poisson noise.
npks is the size of the locpks array.
nsig is the size of the sigpks array.
psens is the threshold peak sensitivity in S/N units.
bsens is the threshold baseline sensitivity in S/N units.
nibase is the size of the ibas array.
Qutput arrays:
yout, filled with baseline
w, filled with smoothed data between 0 and n2
locpks, filled between (¢ and npks-1
sigpks, filled between 0 and 3*npks-1
ibas, filled between 0 and nibas-1
Output variables:
n = amount of array space used
NOTE: if n is negative, abs(n} = amount of array space
needed (but not available). Operation not successful.
newpk = n if trans was loaded successfully.

136

140 CHAPTER 9. BASELINES — RZRBAS/RZRQBA/RZREDG/RZRCUT

npks = number of peaks detected
nfwhm = full-width-at-half-maximum of peakshape in shape
peak = height of peakshape in shape
sigma = RMS noise in the ydata.
Function return values:
rzrbas = O if operation was successful
If rzrbas < 0, error occurred
Use rzrerr (page 174) to obtain error text

Description of variables

yvdata on input is the raw data array. It should contain the raw data between data points
0 and n2. ydata will NOT be altered outside this range.

n2 is the last location of data in the ydata array. n2 is to be furnished as input.

shape is an input array which holds the peakshape of the narrowest spectral feature in
ydata which is of interest to the user. The relevant peakshape is located between
data points 0 and nl2 in shape. If the peakshape is right-side up, positive peaks
will be identified by rzrbas. If the peakshape is a negative peak, then negative
peaks will be found.

nl2 is input and the index of the last data point of the peakshape in shape.

yout is the output baseline. The baseline will be found between data points 0 and n2,
and should be ignored outside this range.
yout must have a minimum size equal to the smallest power of two larger than
(n2+1+3*nfwhm). See the discussion below for n.

w is a work array of length at least n.
On output, w contains a smoothed data file. The smoothing has been done by
rzrbas.

v is a work array of length at least n.

trans is an array of size n which will be used to house the Fourier transform of the
peakshape. The amount of space used in trans is calculated in rzprep. See the
discussion below for n.

trans is cither empty or filled, depending on the parameter newpk. Whenever
newpk = 1, it is assumed that the contents of shape have been altered, and trans
is properly loaded by rzrbas. When newpk > 1, it is expected that trans has not
been changed since the last time it was filled. See the discussion below for newpk.

9.2. RZRBAS 141

n is input as the amount of space furnished in the yout, w, v, and trans arrays.

The function rzsizn will calculate n, the minimum amount of space needed. The
required size of n is determined by n2 and by the width of the peak in the shape
array. Obtain the minimum required n with this call:

n = rzsizn(n2,shape,nl2)

On output, n is the amount of space used for the Fourier transforms in the yout,
w, v, and trans arrays. If n is negative on output, the amount of space furnished
was inadeguate, and no processing has taken place. If n is returned negative, then
abs(n) is the amount of space needed in the above arrays.

The space required for the Fourier transform is always calculated in rzprep, de-
scribed in Chapter 11. When newpk = 1, rzprep calculates the required size of the
Fourier transform as the smallest power of two larger than (n2+1+3*nfwhm). You
may wish to calculate n in an alternate fashion. See Chapter 1.

NOTE: When rzrbas returns after successful processing, it fills both newpk and n
with the transform size. If you with to process additional data with the same peak-
shape, you need not change either newpk or n, provided that (a) your peakshapes
do not change, and (b) your input ydata sizes (n2+1) do not increase.

newpk on input is an integer flag set which should be initially set to 1. It informs
the peakshape processor that a new peakshape i1s present in shape. The processor
measures certain parameters of the new peakshape, and then fills the trans array
with the Fourier transform of a properly shifted and scaled peakshape. When the
peakshape processor finishes successfully, it will output newpk = n, where n is the
actual space used in trans.

The peakshape processor uses that valuable commodity, CPU time, for a Fourier
transform. On input, the programmer can circumvent the peakshape processor with
newpk > 1. Whenever rzrbas is called with newpk > 1, ensure that:

(a) The user wants to use the previous peakshape for the current processing, and
trans is not changed.

(b) The size of the array needed to transform the new data set is no larger than the
n used previously. If this second criterium is violated, the output value of rzrbas
will be rzrbas = -2,

istat is an input flag which governs the statistics used by the function. Set istat = 1 if
the noise is Normal. Set istat = 2 if the noise is Poisson.

psens is an input S/N threshold variable that directs the peak picker. The peak picker
assigns each peak a significance in units of the RMS noise. rzrbas returns peaks
whose significances exceed the value psens. When psens=0.0, all possible peaks
are found. When psens = 3.0, all peaks with heights > 3.0 RMS noise (i.e. S/N >
3.0) are returned. When psens = -3.0, all peaks with areas > 3.0 RMS area-noise

142 CHAPTER 9. BASELINES — RZRBAS/RZRQBA/RZREDG/RZRCUT

are returned. Peaks which are at least 3 to 5 times the RMS noise are meaningful
(psens = 3 to 5).

bsens controls the sensitivity of the peak vs. baseline allocation. Start with bsens = 1,
and adjust it until the value is right for your type of data. Larger values of bsens
move the baseline/peak junctions in toward the peak centers, allocating more points
to the baseline segments.

rzrbas will perform the adjustment for a new value of bsens very quickly. It does
not need to go back through the peak- picker for this adjustment. Try out rzrbas
in the demonstration program HandleG to see this in action.

newbas is an input initialization flag and also a picker-selection flag. newbas works
inside rzrbas in exactly the same way as iperf works for rzrpic. Set newbas = 1 to
get the High-Performance Bayesian pickker, newbas = 2 to get the High Resolution
picker, newbas= 3 to get the 2nd-Order Asym picker, and Newbas = 4 for the
Quiet Picker. Set newbas = -1 for the Quick Pick.

locpks is an output integer array containing the peak locations, i.e., locpks(0) = data
point number of the first peak detected. locpks need be no larger than the maximum
number of peaks expected. locpks and npks may be used as input to rzrfil.

npks 1s input as the size of array loepks.

npks is output as the number of peaks located by the search. Thus, the array locpks
will be filled with meaningful numbers between locpks(0) and locpks(npks-1).

sigpks is an output array containing the peak significance assigned by rzrbas. The
significance is in units of the RMS noise in the data set. The output arrays locpks
and sigpks are sorted by significance. sigpks(0) > sigpks(1), etc.

The length of the sigpks array should be 3*npks = three times the maximum number
of peaks expected. This will provide room to report the peak significances, peak
heights and peak widths.

The contents of the sigpks array will be sigpks(0) = significance assigned to the
peak found at data point number locpks(0), sigpks(*npks) = height assigned to the
peak found at data point number locpks(0), sigpks(*npks*2) = width assigned to
the peak found at data point number locpks(0),.

nsig is input as the size of array locpks.

The minimum length of the sigpks array is nsig = npks. This provides enough
room to return peaks significances in sigpks.

To obtain peak heights and peak widths in sigpks, as well as peak significances,
set nsig = 3*npks = three times the maximum number of peaks expected.

9.2, RZRBAS 143

ibase 1s filled on oufput with peak start/stop regions. ibase[0] contains the start index
of the first peak; ibase[nibase/2] confains the stop index of the first peak. And so
on for up to nibase/2 (start,stop) pairs. ibase is filled with the value -1 (an illegal
index value) where it is not being used for (start,stop) pairs,

nibase is inpuf as the size of the array ibase. nibase must be twice as big as the number
of peak regions expected. If ibase is too small to contain a list of all the (start,stop)
peak regions in the data, the final baseline presented in yout will be in error.

nfwhm is output as the number of data points between the half-maxima of the peakshape
feature in shape. nfwhm is computed internally.

peak is output as the height of the peakshape in the array shape,

sigma is output as the standard deviation (root- mean-square) of the noise which was
found in ydata.

144 CHAPTER 9. BASELINES — RZRBAS/RZRQBA/RZREDG/RZRCUT

9.3 Example using rzrbas

SPECS is a Raman spectrum of ethyl acetate. The noise statistics are Poisson.

Spectrum file: SPEC8
Peakshape file: PEAKS

Using HANDLE:

RAZOR LIBRARY for Spectral Analysis -¢ There is only one best way!
MaximumLikelihood (ML}, Maximum Entropy (ME), and Bayesian processing.
ESM=EntropySMooth. Smooths Normal (thermal/gaussian) noise. ME
PSM=PoigsonSMooth. Smooths Poisson {counting) noise. ML.
NSM=NormalSMooth. Smooths Normal noise. ML,

DIV=RazorDivide. Calculates transmission spectra. ML.
ASH=RazorASharp. Enhanceg resclution. ML.

DEC=RazorDeconvolve. Maximum Entropy deconvolution. ME/Bayesian.
LUC=RazorLucy. Classic ML deconvolution. ML.
DIF=RazorDerivative. Derivatives Oth-nth. Bayesian.
PIC=RazorPick. Finds peak positions for FIT. ML/Bayesian.
FIT=RazorFit. Fits model peaks to data. ML.

BAS=RazorBase. Finds baseline. ME/Bayesian.

QBA=RazorQuickBase. Finds baseline,

EDG=RazorEdge. Fits bageline to lower edge of data.
NOI=RazorNolse. Finds noige spectrum. ML.

GEN=Generates synthetic peakshape.

SAV=Save result, QUI=Quit.

Choose an operation (3 uppercase characters) : BAS

Enter name of spectrum (Try SPEC8) : SPECS
Enter name of peakshape {Try PEAKS8) : PEAKS

RZRBAS also picks peaks! Choose picker.

Enter -1 for Quick-Pick

Enter 1 for High-Performance picker

Enter 2 for High-Resolution picker

Enter 3 for 2nd-Order High-Performance picker

Enter 4 for Quiet-Pick (High Res. Good for very narrow peaks.)
Select picker by Number [(2]: 2

Enter peak threshold (# of standard deviations of ncise}:
(i.e., Enter 3 for peaks with HEIGHTS ¢ 3 RMS noige)
{Enter -2 for peaks with AREAS ¢ 2 RMS Area-noise)

Enter 3 if unsure: 3

9.3. EXAMPLE USING RZRBAS 145

Enter N for Normal noise; P for Poisson noise [NI: N

Entering RZRBAS with bsens=1.0 Wait for setup...
Estimated RMS noise: 77.96

Using Peak detection threshold: 3.0

Number Peaks detected: 21

Peak Start/Stop regions:
0/ 115 115/ 324

Current baseline sens, BSENS=1.0
Enter new value for BSENS (Enter 0 to quit): O

BASELINE MAY BE SAVED TO A FILE AFTER EXAMINING PEAKS.
Hit any key to examine peak parameters.

Peaks found by RZRBAS
Estimated RMS noise: 77.96
Number Peaks detected: 21
Using Peak detection threshold: 3.00000
Peak HIEGHT Significances:

85.82 58.24

Select:
Print (S)ignificances, (L)ocations, (H)eights, (W)idths, (E)verything.
(Ryesort. (T)uneup heights. (A)ccept. (M)enu. M

(1255 e

L 4

SEEENEEEEENE

1250 1574 198 222.2 Z54.6 287.0 319.4 351.8 34.2 416.6
X IMITS

146 CHAPTER 9. BASELINES — RZRBAS/RZRQBA/RZREDG/RZRCUT

9.4 rzrgba

rzrgba estimates the baseline for a spectrum by identifying the peaks, smoothing the off-
peak segments, and joining the smoothed segments with straight lines under the peaks.
The difference between rzrgba and rzrbas is that rzrqba does not use a Maximum
Likelihood/Bayesian 2nd derivative in its peak picker, and does not use Maximum Entropy
to smooth the off-peak baseline segments. .

Required user input:

¢ Data set containing peaks.

¢ Select a peakshape which represents the peaks in the data set. The peakshape choice
is not very critical for this algorithm.

e When the selected peakshape is positive, rzrgba will assume positive peaks; when
the peakshape is negative, it will assume negative peaks.

Programming notes:

e bsens controls the sensitivity of the peak vs. baseline allocation. It is not an
arbitrary parameter, but is based upon the expected RMS fluctuations at different
spatial frequencies in Normal noise. In theory, it should have worked as reliably
and effectively as psens. -

In practice, we have had to adjust bsens for different types of data. In retrospect,
we should have known it would happen. Real baselines do not have anything
approaching a Normal distribution of spatial frequencies!

Start with bsens = 1, and adjust it until the value is right for your type of data.
Larger values of bsens move the baseline/peak junctions in toward the peak centers,
allocating more points to the baseline segments.

rzrgba will ‘perform the adjustment for a new value of bsens very quickly. It does
not need to go back through the peak- picker for this adjustment. Try out rzrgba
in the demonstration program HandleG to see this in action.

e The array ibase returns useful information about peak start/stop regions. ibase[0]
contains the start index of the first peak; ibase[nibase/2] contains the stop index
of the first peak. And so on for up to nibase/2 (start,stop) pairs. ibase is filled
with the value -1 (an illegal index value) where it is not being used for (start,stop)
pairs.

9.4. RZRQBA 147

long rzrgba(float ydata|], long n2, float shape][|, long nl2,

float yout[], float w|], float v[], long *newbas,

double *bsens, long ibase[], long nibase, long *nfwhm, double *peak, double
*sigma)

Input arrays which must be filled:
vdata, filled between 0 and n2, length n2 + 1
NOTE: ydata will be read only, not altered.
shape, filled between ¢ and nl2
NOTE: shape will be read only, not altered.
Additional arrays to be furnished:
yout, length n
w, length n
v, length n
ibas, length nibas
Input variables: n2, nl2, newbas, bsens, nibas
n2 is the last position of data in ydata
n2+1 is the size of arrays ydata, yout, w, and v
nl2 is the last position of data in shape
newbas is an initialization flag for rzrgba.
bsens is the threshold baseline sensitivity in S/N units.
nibase is the size of the ibas array.
Output arrays:
yout, filled with baseline
ibas, filled between 0 and nibas-1
Qutput variables:
nfwhm = full-width-at-half-maximum of peakshape in shape
peak = height of peakshape in shape
sigma = RMS noise in the ydata.
Function return values:
rzrqba = (if operation was successful
If rzrqba < 0, error occurred
Use rzrerr (page 174) to obtain error text

Description of variables

ydata on input is the raw data array. It should contain the raw data between data points
0 and n2. ydata will NOT be altered outside this range.

n2 1s the last location of data in the ydata array. n2 is to be furnished as input.

shape is an input array which holds the peakshape of the narrowest spectral feature in
ydata which is of interest to the user. The relevant peakshape is located between

148 CHAPTER 9. BASELINES — RZRBAS/RZRQBA/RZREDG/RZRCUT

data points 0 and nl2 in shape. If the peakshape is right-side up, positive peaks will
be assumed by rzrgba. If the peakshape is a negative peak, then negative peaks
will be assumed. '

nl2 is input and the index of the last data point of the peakshape in shape.

yout is the output baseline. The baseline will be found between data points 0 and n2.
yout must have a size equal to (n2+1).

w is a work array of length = n2+1.
v is a work array of length = n2+1.

newbas is an input initialization flag, 1t should be set = 1 for the initial call. rzrgba
will maintain newbas after that.

bsens controls the sensitivity of the peak vs. baseline allocation. Start with bsens = 1,
and adjust it until the value is right for your type of data. Larger values of bsens
move the baseline/peak junctions in toward the peak centers, allocating more points
to the baseline segments.

rzrqgba will perform the adjustment for a new value of bsens very quickly. It does
not need to go back through the peak- picker for this adjustment. Try out rzrgba
in the demonstration program HandleG to see this in action.

ibase is filled on output with peak start/stop regions. ibase{0] contains the start index
of the first peak; ibase[nibase/2] contains the stop index of the first peak. And so
on for up to nibase/2 (start,stop) pairs. ibase is filled with the value -1 (an illegal
index value) where it is not being used for (start,stop) pairs.

nibase is input as the size of the array ibase. nibase must be twice as big as the number
of peak regions expected. If ibase is too small to contain a list of all the (start,stop)
peak regions in the data, the final baseline presented in yout will be in error.

nfwhm is output as the number of data points between the half-maxima of the peakshape
feature in shape. nfwhm is computed internally.

peak is output as the height of the peakshape in the array shape.

sigma is output as the standard deviation (root- mean-square) of the noise which was
found in ydata.

9.5. EXAMPLE USING RZRQBA 149

9.5 Example using rzrgba

SPECS is a Raman spectrum of ethyl acetate. The noise statistics are Poisson.

Spectrum file: SPECS
Peakshape file: PEAKS

Using HANDLE:

RAZOR LIBRARY for Spectral Analysis -¢ There is only one best way!
Maximum Likelihood (ML), MaximumEntropy (ME), and Bayesian processing.
ESM=EntropySMooth. Smooths Normal (thermal/gaussian) ncise. ME
PSM=PoissonSMooth. Smooths Poisson (counting) noise. ML.
NSM=NormalSMooth. Smooths Normal noise. ML.

DIV=RazorDivide. Calculates transmission spectra. ML.
ASH=RazorASharp. Enhances resolution. ML.

DEC=RazorDeconvolve. Maximum Entropy deconvolution. ME/Bayesian.
LUC=RazorLucy. Classic ML deconvolution. ML.
DIF=RazorDerivative. Derivatives Oth-nth. Bayesian.
PIC=RazorPick. Pinds peak positions for FIT. ML/Bayesian.
FIT=RazorFit. Fits model peaks to data. ML,

BAS=RazorBase. Finds baseline. ME/Bayesian.

QBA=RazorQuickBase, Finds baseline.

EDG=RazorEdge. Fits baseline to lower edge of data.
NCI=RazorNecise. Finds noise spectrum. ML.

GEN=Generates synthetic peakshape.

SAV=8ave result, QUI=Quit.

Choose an cperation (3 uppercase characters) : QBA

Enter name of gpectrum: SPECS
Enter name of peakshape: PEAKS

Enter RZRQBA with bsens = 1. Wait for getup..
The FWHM of the peakshape ig 9
The RMS noise in the data is 122.992
Peak Start/stop regions:

5/112 112/281 282/286 286/305 308/309
Current baseline sens, BSENS = 1
Enter new value for BSENS (Enter 0 to quit):

Pregs ENTER Lo return to menu.

150 CHAPTER 9. BASELINES — RZRBAS/RZRQBA/RZREDG/RZRCUT

Bapeline sense iz .100000E+61;+~ keys to change

3

Entering FZAQB with BSENS=1. Uait for proceszing..
7288 |

-

[Sy ¥

SITRIIEY

| bl | 1 1 1 1 1

125.0 157.4 189.8 Z22.2 Z54.6 287.0 319.4 351.8 1.2 416.6
X LNITS

9.6, RZREDG 151

9.6 rzredg

rzredg tries to find a baseline that cuts underneath all the data, but does not push up into
the peaks.
Required user input:

e Data set containing peaks.

¢ Select a peakshape which is at least as wide as the widest peaks in the data set.
The peakshape choice is not very critical for this algorithm.

Programming notes:

e nbsens controls the sensitivity of the baseline allocation.

In practice, we have found it conveneint to be able to adjust nbsens for different
types of data. Start with nbsens = 5, and adjust it until the value is right for your
type of data. Larger values of nhsens move the baseline upward and into the peaks.

152 CHAPTER 9. BASELINES — RZRBAS/RZRQBA/RZREDG/RZRCUT

long rzredg(float y[], long n2, float shape|], long nl2, float x|],
float w[], float z[], long bnsens, long *nfwhm

Input arrays which must be filled:
ydata, filled between 1 and n2, length n2
NOTE: ydata will be read only, not aitered.
shape, filled between 1 and nl2
NOTE: shape will be read only, not altered.
Additional arrays to be furnished:
yout, length n2
w, length n2
v, length n2
Input variables: n2, nl2, nbsens
n2 is the last position of data in ydata
n2 is the size of arrays ydata, yout, w, and v
nl2 is the last position of data in shape
nbsens is the baseline sensitivity
Output arrays:
yout, filled with baseline
Output variables:
nfwhm = full-width-at-half-maximum of peakshape in shape
Function return values:
rzredg = O if operation was successful
If rzredg < 0, error occurred
Use rzrerr (page 174) to obtain error text

Description of variables

ydata on input is the raw data array. 1t should contain the raw data between data points
1 and n2. ydata will NOT be altered outside this range.

n2 is the Jast location of data in the ydata array. n2 is to be fumished as input.

shape is an input array which holds the peakshape of the narrowest spectral feature in
ydata which is of interest to the user. The relevant peakshape is located between
data points 1 and nl2 in shape.

nl2 is input and the index of the last data point of the peakshape in shape.

yout is the output baseline. The baseline will be found between data points 1 and n2.
yout must have a size equal to (n2).

w is a work array of length = n2.

9.6. RZREDG 153

v is a work array of length = n2.

nbsens controls the sensitivity of the baseline allocation. Start with nbsens = 5, and
adjust it until the value is right for your type of data. Larger values of nbsens move
the baseline up and into the peak centers.

nfwhm 1s output as the number of data points between the half-maxima of the peakshape
feature 1n shape. nfwhm is computed internally.

154 CHAPTER 9. BASELINES -— RZRBAS/RZRQBA/RZREDG/RZRCUT

9.7 rzrcut

rzrcut produces a cubic spline fit to spectral point pairs selected by the user; it is one of
the better ways to fit a smooth curve undemeath spectra, since it is quite free from the
inappropriate oscillations which characterize polynomial baseline algorithms.

Required user input:

e A list of x,y data pairs through which the spline curve will pass.
Programming notes:

¢ The input arrays a and b, which contain the user’s x,y pairs, must be sorted in
ascending order of x-values.

9.7. RZRCUT ' 155

long rzrcut(float yout[], long n2,
float af], float b[], float c[|, float d]], long npts,
double derl, double derr)

Required input arrays:
a = an array of chosen abcissa points, length npts
b = the corresponding ordinate array, length npts
Additional arrays to be furnished:
yout, length > n2+1
¢, length npts
d, length npts
Input variables: n2, npts, derl, derr
n2 is the last position of data in yout.
npts is the length of the a, b, ¢, d arrays.
derl, derr = derivatives of input data, at the left and
right endpoints, = derivatives at 0 and n2.
NOTE: If derl, derr > .99E30, then the ‘nataral’ spline,
with the 2nd deriv=0 at both boundaries is used.
(If you are unsure about what to do, use derl, derr=1.0E30).
Output arrays:
yout, filled between 0 and n2
Function return values:
rzreut = 0, 1f operation was successful
If rzreut < 0, error occurred
Use rzrerr (page 174) to obtain error text

Description of variables
yout is an output array, containing the spline fit data, between 0 and n2.
n2 is an input value, indicating the last location to be filled in the yout array.

a, b are inpur data arrays of size npts, containing the selected abcissa and ordinate point
pair values through which the fit must pass.

¢, d are work arrays of the same size as a and b.
npts is input, the size of the arrays a, b, ¢, and d.

derl, derr are input values. They are the derivatives of the spline fit at the left and right
boundaries (a(0),a(npts-1)). If derl, derr > 1.E30 then the ‘natural’ derivative at
these points is assumed.

156 CHAPTER 9. BASELINES — RZRBAS/RZRQBA/RZREDG/RZRCUT

Chapter 10

RazorNoise — rzrnoi

Noise Estimation

RazorNoise estimates the noise vector of a data file, using a Maximum Likelihood
smoothing method. The output can be useful in finding a noise variance vector (vnoise)
for an input to RazorFit. If the noise is larger at the ends of a file, or if it is bigger at the
positions of the peaks, one should use that knowledge in the type of model fitting done by
RazorFit. In order to get vnoise from the RazorNoise output, one should (a) average the
values over nnn adjacent data points, where nnn is large enough to obtain a meaningful
average (nnn = 10*nfwhm is a good place to start), and then (b) square the result.

10.1 rzrnoi

The required user input for rzrnoi is:

¢ Data array.

e Peakshapes - either true or estimated. It is not critical that the user choose an exact
peakshape for rzrnoi. When all the peaks in the data are not the same, the user
should select a smooth peakshape characteristic of the narrowest feature of interest
in the data.

Programmer notes:

e rzrnoi requires 3 full-sized arrays, ydata, yout, and trans.

+ ydata will not be altered by rzprep outside the data region 0 - n2.

157

158 CHAPTER 10. RAZORNOISE - RZRNOI

long rzrnoi(float ydata[|, long n2, float shape]], long nl2,
float yout[], float trans|], long *n, long *newpk,
long *nfwhm, double *sigma)

Input arrays which must be filled:
ydata, filled between 0 and n2, length n2+1
shape, filled between n0 and nl2
NOTE: shape will be read only, not altered.
NOTE: If newpk > 1, shape will not be read.
Additional arrays to be furnished:
yout, length n
trans, length n
Input variables: n2, nl2, n, newpk
n2 is the index of the last data value in ydata
nl2 is the index of the last data value in shape
n is the size of arrays ydata, yout and trans
newpk indicates whether or not shape is a new peakshape
Output arrays:
yout, filled between 0 and n2
Output variables:
n = amount of array space used
NOTE: if n is returned negative, abs(n) = amount of array space
needed (but not available). Operation not successful.
newpk = n if trans was successfully loaded
nfwhm = full-width-at-half-maximum of peakshape
sigma = RMS noise in ydata
Function return values:
rzrnoi = 0 if successful
If rzrnoi < 0, error occurred
Use rzrerr (page 174) to obtain error text

Description of variables

ydata on input is the raw data array. It should contain the raw data between data points
0 and n2. ydata will not be altered outside this range.
ydata must have a minimum size equal to the smallest power of two larger than
(n2+1+3*nfwhm). See the discussion below for n.

n2 is the /ast location of data in the ydata array. n2 is to be furnished as input.

shape is an input array which holds the peakshape of the narrowest spectral feature in
ydata which is of interest to the user. The relevant peakshape is located between

10.1. RZRNOI 159

data points 0 and nl2 in shape. The minimum size of shape is nl2+1. nl2 must
always be less than n.

nl2 is input and the index of the last data point of the peakshape in shape. We recommend
that nl2+1 be at least 6%nfwhm, and that the peak be approximately centered in the
0.nl2 interval.

yout is the output smoothed data array. It will be smoothed between data points § and
n2, and should be ignored outside this range.

yout must have a minimum size equal to the smallest power of two larger than
(n2+1+3*nfwhm). See the discussion below for n.

trans is an array of size n which will be used to house the Fourier transform of the
peakshape. The amount of space used in trans is calculated in rzprep. See the
discussion below for n.

trans is either empty or filled, depending on the parameter newpk. Whenever
newpk = 1, it is assumed that the contents of shape have been altered, and trans
is properly loaded by rzrnoi. When newpk > 1, it is expected that trans has not
been changed since the last time it was filled. See the discussion below for newpk,

n is input as the amount of space furnished in the yout, and trans arrays.

The function rzsizn will calculate n, the minimum amount of space needed. The
required size of n is determined by n2 and by the width of the peak in the shape
array. Obtain the minimum required n with this call:

n = rzsizn(n2,shape,nl2)

On output, n is the amount of space used for the Fourier transforms in the yout,
and trans arrays. If n is negative on output, the amount of space furnished was
inadequate, and no processing has taken place. If n is returned negative, then abs(n})
is the amount of space needed in the above arrays.

The space required for the Fourier transform is always calculated in rzprep, de-
scribed in Chapter 11. When newpk = 1, rzprep calculates the required size of the
Fourier transform as the smallest power of two larger than (n2-+1+3*nfwhm). You
may wish to calculate n in an alternate fashion. See Chapter 11.

NOTE: When rzrnei returns after successful processing, it fills both newpk and n
with the transform size. If you with to process additional data with the same peak-
shape, you need not change either newpk or n, provided that (a) your peakshapes
do not change, and (b) your input ydata sizes (n2+1) do not increase.

newpk on imput is an integer flag set which should be initially set to 1. It informs
the peakshape processor that a new peakshape is present in shape. The processor
measures certain parameters of the new peakshape, and then fills the trans array

160 CHAPTER 10. RAZORNOISE — RZRNOI

with the Fourier transform of a properly shifted and scaled peakshape. When the
peakshape processor finishes successfully, it will oufput newpk = n, where n is the
actual space used in trans.

The peakshape processor uses that valuable commodity, CPU time, for a Fourier
transform. On input, the programmer can circumvent the peakshape processor with
newpk > /. Whenever rzrnoi is called with newpk > 1, ensure that:

(a) The user wants to use the previous peakshape for the current processing, and
trans is not changed.

(b) The size of the array needed to transform the new data set is no larger than the
n used previously. If this second criterium is violated, the output value of rzrnoi
will be rzrnoi = -2.

nfwhm is output as the number of data points between the half-maxima of the peakshape
feature in shape.

sigma is oufput as the standard deviation (root- mean-square) of the noise which has
been removed by the smoothing process.

10.2. EXAMPLE USING RZRNOI 161

10.2 Example using rzrnoi

SPEC7 is an EELS spectrum of magnesium oxide. The noise appears to be Poisson,
judging from the noise vector produced by rzrnoi.

Data file: SPEC7

Peakshape file: PEAK7?

Using HANDLE:

RAZOR LIBRARY for Spectral Analysis -¢ There is only one best way!
MaximumLikelihood (ML), Maximum Entropy (ME) , and Bayesian processing.
ESM=EntropySMooth. Smooths Normal (thermal/gaussian) noise. ME
PSM=PoissonSMooth. Smooths Poigson (counting) noise. ML.
NSM=NormalSMooth. Smooths Normal noise. ML.

DIV=RazorDivide. Calculates transmission spectra. ML.
ASH=RazorASharp. Enhances resolution. ML.

DEC=RazorDeconvolve. Maximum Entropy deconvolution. ME/Bayegian.
LUC=RazorLucy. Classic ML deconvelution. ML.
DIF=RazorDerivative. Derivatives Oth-nth. Bayesian.
PIC=RazorPick. Finds peak positions for FIT. ML/Bayesian.
FIT=RazorFit. Fits model peaks to data. ML.

BAS=RazorBase. Finds baseline. ME/Bayesian.
QBA=RazorQuickBase. Finds baseline.

EDG=RazorEdge. Fits baseline to lower edge of data.
NCI=RazorNoise. Finds nocise spectrum. ML.

GEN=Generates synthetic peakshape.

SAV=Save result, QUI=Quit.

Choose an operation (3 uppercase characters) : NOI

Enter name of spectrum: SPEC7

Enter name of peakshape: PEAK7

Entering RZRNOI. Please wailt for porcessing...

The noise array has been computed and may be saved.

Mean values of the noise variance and standard deviations are:
Variance=9220.1 Standard Deviation= 96.02

162 CHAPTER 10. RAZORNOISE — RZRNOI

28782
26411
.
u 24041
N
1 2167
T
S 19309
16929
19559
12188
9818
Ky 2 T4
Se7?
206 1 1 1 1 _
10086 75,50 159.0 Z24.5 293¢ 3735 4B.¢ 5225 597.90 6M1.5
X INITS

MO{ = RazmrMoise: Moan nolse variance and standard deviation are:
Uariance= .918677E+04: Standard Deviation= .95B47GE.g2

A AR — 7

11397 1 i I] ! I ; f]

1.000 7550 159.6 2245 295.0 3I73.5 448.6 5225 597.0 671.5
X UNITS

Chapter 11

Service Functions

We have provided source code for many functions, including those which we think you
may wish to modify. The most important ones deal with time and headaches. You will
save a lot of time if you equip yourself with the fastest Fourier transform you can find.
You will avoid headaches if you use (a) rzsizn (Page 172) to get the correct array sizes,
(b) rzrxpk (Page 179) to remove a baseline from, and optionally smooth, your datapeak
or peak shape, and (c) rzrerr (Page 174) to find out what went wrong.

Many additional little service functions are given in source code in rzrserve, so that
you may use them if the need arises. All of the functions in rzrserve are used by
the principal functions of Razor, so do not modify the calls or functions, except for
changes as discussed below,

11.1 Fourier transforms — for speed

Most of the Razor principal functions require a Fast Fourier Transform (FFT). The function
rzrft provides this service for the Razor Library.

All of the principal functions except rzrqba, rzredg and rzreut call rzrft(float
*a,Jong n,long iflag) where a is the real n-point array to be transformed, and iflag =
+1 for a forward transform and -1 for an inverse transform. The transform is for real
data, and is packed; that is, the last real point is assumed to be found in the imaginary
space of the first word. Normalization of the FFT must be carried out during the inverse,
not forward, transformation.

You may substitute rzrft with any other FFT function that meets the above criteria
for syntax and normalization. We recommend that you obtain the fastest FFT you can
find. We give an example of an alternate rzrft below. It is the one you will want if you
are using the Microway FFT programmed by Doug Rife.

163

164 CHAPTER 11. SERVICE FUNCTIONS

11.2 Transform padding — rzprep

FFTs require that one pay attention to details such as padding out data arrrays until they
occeupy a designated size. The Razor Library assumes power-of-two transforms. rzprep
is the function used for calculating the size of the array which will be used, and for filling
it. We have had many discussions among ourselves about which filling method to use. At
various times in the past 30 years, we have used straight-line fills, cosine fills, and flip-
fills. At present, we agree (pretty well anyway) that a spline-fill is a fair compromise.
The spline-fill uses a minimum amount of space, while avoiding infinite derivatives.

We recognize that some users may wish to use different padding and fill. One alternate
is the flip-fill method, which we have already coded for you. Flip- fill uses array sizes
which are the next power-of-2 greater than twice the data array. The data set is sliced in
half, folded outward past the two end points, and then duplicated. The two ends of the
folded-out data set are joined together with a flat line. If you wish to use flip-fill, just
follow the directions below for replacing the spline fill with flip-fiil.

/* AR EE R R AR EREL LR R RS RAAREERSEREEAERSSSE RN A SRR R EREEEE SRR LS EREEREEEEEESEEERESE

rzprep{y,nfwhm,nl,n2,n, frac, newpk)

rzprep is used by rzresm, rzrpsm, rzrpic, rzrash, rzrdiv, & rzrnoi.
It prepares the data in array vy for the fft.

*
®
*
*
*
* summary of input :

* nfwhm is width of peakshape

* nl = starting position of data in array y

* n2 = last point of data in array y

* n = maximum available array gizes (for y, trans, etc.)

* frac = not used for input

* newpk=1 if this is a new problem (reload trans array from shape)

* newpk=size of trans if thigisacontinuingprobliem {trans is loaded)
*
*
*
*
*
*
*

first rzprepcalculatesasizenforthe fft (gsize basedondatanl,n2)
suggested ways to calulaten

n=n2-nl+l+nfwhm*3 (minimum!)

n=(Mn2-nl+1)*2 (maximum!)

then rzprep rounds n up to the next power-of-2
*
* Cagse A. whennewpower-of-2 larger than array sizes (=input valueofn),
* gets n = - power-0f-2 calculated for fft
* no action takenony
* return(-1)

11.2. TRANSFORM PADDING — RZPREP 165

* & ok % % % F o A % % ok F ok ok A F ok ok A X % F kA % K K Gk % * % Ak ¥ % ok H * F % * ¥

Case B. when new power-cf-2 is j= array sizes:

1f input newpk=1,
prepares y for fft in an array of sizen
using either a £1ip-fill or a cos-£fill method
flip-£fill uses more space, but is more robust for
very noisy data sets
cog-fill uges less space, and is implemented here

{if you wigh to use £1lip-£fill, comment out the cog-£fill code
(in the subroutine, and un-comment £lip-fill code.)

output n = power-of-2 used for fft
return{0)

if input newpk¢l,
this is a sign that trans is already loaded.
rzprep assumes that current value of newpk is size of trans,
and rzprep will attempt to load y
for a transform with that gsame size.
however, if new data needs bigger transgform size,
no action takenony
return(-2)
if ¢ld transform size is satisfactory,
v 1s prepared for £fft
return{0}

if input newpk=0,
This value for newpk is no longer used to indicate that the
shape and trans arrays are unchanged.
Instead of entering newpk=0, leave newpk alone to
indicate trans should not be reloaded from shape.

Else, set newpk=1 for reloading.

Summary of output:

n=size used for fft

(n is negative if arrays not big enough)

frac=fraction of prepared array y which contains noise
newpk=unchanged by rzprep if y is succesgsfully prepared

rzprep = 0 when y is succeggfully prepared for ££ft

166 CHAPTER 11. SERVICE FUNCTIONS

= -1 when array sizes {input n} not big enough for desired fft.
(You need to do 1 thing: provide bigger arrays.
Look at -n returned. Allocate arrays this big,
then change -nton.)
= -2 when desired £ft will be bigger than current size of trans.
(You need to do 2 things:
1. Set newpk=1, to reload trans from shape.
2. Look at -n returned. Allocate arrays this size,
then change -n ton.)
= -3 when incoming newpk=0. Thig f£lag is no longer used.

NOTE: When rzprepi¢0, the value is passed directly back to the
programmer as the return value of the routines
rzresgm,rzrpsm,rzrpic,rzrash, rzrdiv, & rzrnei.

 F * ¥ ok ok ¥ x ¥ ¥ F A+ A A

*

khkhkAhkhkhkhhhkhkhkhkhhhkdhkhkhrrkhdhhhRhhkhkhkhhdhhhkhhkhkhkhdhhhhkhhhkhkdhkhkhkhhhhkhdhdhosdhhhhdhdhhhdkiddti

/* rzprep uses Razor Library functions
TZPOWL
*/
#pragma comment (exestr, ” (¢) Copyright 1991-96 Spectrum Square Associates, Inc *
long rzprep{float y[}, long nfwhm, long nl, long n2, long *n,
double *frac, long *newpk)

long i, nhold;

long m;

double arg;

long nwidth;

double gsleout, gslin;

float z[3];

flecat a[3];

flecat b[3];

flecat ul3];

*frac =1.0;

nhold = *n;

/* BEGIN code for cos-£ill and for spline-fill PART 1/2
* This is the code for a cos-£fill. If youusgse thig £ill method,
* replace part 1 of the flip-fill code in this function
* with the code shown here:
*/
*1 =n2 -nl +1 +nfwhm#*3;
/* END code for cos-fill and spline~fill PART 1/2

11.2. TRANSFORM PADDING — RZPREP 167

*/

/* BEGIN code for £1ip-£il11 PART 1/2

* Thig is the code for a £1ip-£ill. If you use this flll method,
* replace part 1 of the cos-fill code in this function

* with the code shown here:

*/
/*
*n=(n2-nl+1)*2;
*/
/* END code for £lip-£i1l PART 1/2
*/

if(*n j=n2)

*n=n2+1; /*do this because not allowed to move data withiny */
m=1;
rzpowr (n, &m};

if({*n;=0) /* trouble from rzpowr */
return({ -1) ;

if(*n ¢ nhold)- /* arrays aren’t big enough for the job */
-kn = ..‘kn;
return(-1) ;
if(*newpk ¢ 1)- /* trans is loaded. Need to keep same gize. */
if (*n ¢ *newpk) -
*n = ._'kn;
returnf{ -2);

t

*n = *newpk;

1

/* BEGIN code for cos-fill PART 2/2
* Thig is the code for a cos-£ill. If youuse thig £ill method,
* replace part 2 of the f1lip-fill code in this function
* with the code shown here:
*/
/*
arg = 3.1415%8/ (*n-n2+nl-1};
for (1 =n2+1; i | *n; i++) -
y[i] =y[n2] + (y[nl] -y [n2])*(1.0 - cos(arg* (i-n2) })/2;

168 CHAPTER 11. SERVICE FUNCTIONS

1]
for (i =90; ijnl; i++)-

y[il =y[n2] + {y[nl]l-y[n2])*(1.0 - cos{arg* (i+*n-n2)))/2;
*frac = (double} (n2 - nl1 + 1)/ (double) *n;

*/

/* END code for cos-£fill PART 2/2

*/

/* BEGIN code for spline-£ill PART 2/2
* Thig ig the code foraspline-£ill. If youuse this f£ill method,
* replacepart 2o0f thecos-fillorflip-fill codeinthis function
with the code shown here:
*/
*frac = (double) (n2-nl+1) / {double) *n;
nwidth = MAX{ (nfwhm/2), 3);

z{0] = n2;

z[2] =nl + *n;

2[1] = (z[0] + z[2])/2.0F;
slout =0.0;

slin=0.0;

af0] = 0.0F;

al[l] = 0.0F;

for (i=0; i; nwidth; i++)-
alol +=y[n2 -1]1;
glout += yn2 - i - nwidth];
alll +=y[nl +1i];
gslin += y[nl + i + nwidth];
slout = a{0] - slout;
slin=glin - allj;
glout /= (double)nwidth*nwidth;
glin /= (double}nwidth*nwidth;
al[0] /= (float)nwidth;
al2] =afll/(float)nwidth;
alll = (al0] +al2])/2.0F;
rzgpbs(z,a, 3, slout, slin, b, u);
for{i=n2+1; 1 *n; i++)-
rzspbt{ z, a, b, 3, {double)i, &arg);
yv[i] = {(float)arg;

n

for{i=*n;ij=*n+nl - 1; i++ }-

11.2. TRANSFORM PADDING -~ RZPREP 169

rzspbt(z, a, b, 3, (double)i, &arg);
yv[i - *n] = (float)arg;

/* END code for spline-£ill PART 2/2
*/

/* BEGIN code for £1ip-fill PART 2/2
* This is the code for a £flip-£i11. If you use this £ill method,
* replace part 2 of the cos-£ill code in this functien
* with the code shown here:
*/
/*
*frac = (double) (n2-nl+1)*2/ (double} *n;
neent = (n2 +nl)/2;
for{i=0; 1 ini; i++)-
yI[i]l = yIlncent] ;

n

for{i=mn2+1; i *n; i++)-
v[i] = y[ncent];

for{i=1;1i=((n2-nl1+1)/2); i++)-
if({nl-431i) ¢=0)-

yv[nl -i] =yinl +i];
else-

yl*n +nl - 1i] =y[nl +i];
if((n2+1i) j= (*n-1))-

yv[n2 +1i] =yn2 - 1i];
else-

yl[i-*n+n2)] =y[n2-1];

*/
/* END ccde for £1lip-fill PART 2/2
*/

return(G) ;

/-k LR AR S SRR AR RS SRS ERAEEEESLEREEERLEEESELEREEREASEEREEEEEEETEEEESE R SR

/* (A EE RS LA S ELERASESEREARELEE ST ESEE RS R EELESEREXEESEREERTEZTRREREEETER EE R LN

170 CHAPTER 11. SERVICE FUNCTIONS

11.3 rzparm

If your peakshapes are symmetric, you should use this function as given in rzrserve.c,
without further ado. However, when one has asymmetric peakshapes, the question of how
to identify the center becomes important. Is the center at the highest point, or at the center
of mass? rzparm in rzrserve.c uses a center-of- mass criterium for setting the center
(fiducial point) of the peakshapes. J

An alternate way to calculate the fiducial point is shown in the form of rzparm given
below. If you plan to use this alternate form, be sure that your peakshapes are smooth. A
highest-point criterium is easily undermined by noise.

/'k X EE R TS E LSS SRR ES RS SR A RS SRR AR RS RS R RS R EELEEEAEER SRR EEREEEEEEEREEELSEEERESE S

void rzparm(float shape(], long *nc, long *nh,double *pkhite, long *nfwhmn,
long *minwid, long nll, long ni2, long newpk)

* rzparm(shape,nc,nh, height, nfwhm, minwid,nll,nl2, newpk) *
*

when newpk ¢ 1,no action by rzparm, *

assume parms have already been calculated *
*

when newpk = 1: *

a NEW peakshape is presented in array shape, *

shape is filled between data points nll and nl2 *
*

rzparm calculates center-of-mass of peak = nc *

highest point in peak = nh *

full-width-at-half-max = nfwhm *

2* (minimum half-width) = minwid *

(minwid = nfwhm for symmetric shapes)} *

* height of peak = pkhite *

* *

* % % ok B ¥ ¥ % ¥ A * ¥ %

* fiducial point nc = center of mags of peak *

* uger may wish to calculate nc in alternate fashion *

I ZEE X T RS EE S S RIS LSS AR SRS E A A A ER SRS SRR SRS S EES R EES R LR RS TS EEREEEESEEREEEREEY
/* rzparm uses Razor Library functions

rzamin

rzacon

rzanor

*/

#pragma comment (exestr,” (¢) Copyright 1991-92 Spectrum Square Assoclates, Ir
void rzparm (float shape], long *nc, long *nh, double *pkhite, long *nfwhm,

11.3. RZPARM

long *minwid, longnll, long nl2, long newpk)
long i, 11, 12, negpos;
float half, halfarea, height, ebase, adjust, yvalue;
double shmin, shmax, shsum;

double done;

if(newpk ¢1) return;

done =1.0;

rzamin{ shape, &shmin, nll,nl2 };

rzamax (shape, &shmax, nll,nl2);

negpos = 1;

half = shape[nll] + shape[nl2] - (flcat) (shmin*2);
half = (float) fabs({ (double)half };

halfarea = (float) (shmax*2) - shape[nll] - shape[nl2];

halfarea = (float) fabs({double)halfarea);
if{ half ¢ halfarea) -

negpos = -1;

rzmcon{ shape, -done, nll, nl2);

shmin = - shmax;

rzasum{ shape, &shsum, nll,nl2);

ebage = shape [nll] + shape[nll + 1] + shape[nll + 2] ;
ebase += shape[nl2 - 2] + shape[nl2 - 1] + ghape[nl2];
ebase /= 6.0F;

half = ebase* (n12 - nll + 1) ;

if{ shsum ¢ half) -

adjust = 1.0F;

else-

adjust = 0.0F;

n

shsum = shsum - half*adjust;

halfarea = {float} {shsum/2) ;
half = 0.0F;
height = 0.0F;

for{i=nll; i j=nl2; i++)-
yvalue = shape[i] - ebase*adjust;

171

172 CHAPTER 11. SERVICE FUNCTIONS

if (yvalue ¢= height) -
height = yvalue;
*nh = 1;
i
half += yvalue;
i1f(half ; halfarea)
*nc =1+ 1;

/* SCMETIMES NC IS TOO BIG - WHEN THERE IS LOTS OF NQISE, AND
* WHEN THE BASELINE IS CURVED */
if({ *nc ==nl2 + 1)
*r1c = *nh;
1=nll;
11 = 1i;
yvalue = height/2.0F + ebase*adjust;
while(shape [i] ;= yvalue &% i { nl2) -
11 =1;
i+=1;
n

i=*nh+1;

12 =1;

while(shapeli] ¢ yvalue) -
1z = 1i;
i+=1;
"

*minwid = MIN((*nc - 11), (12 - *ngc))*2;
*nfwhm = MAX ((12 -11}, 1);
*pkhite = height * negpos;

if (negpos == -1)
rzmcon {shape, -done, nll, ni2);
return;

/* A RS AR SRR R SRR R AR SRR EEEEE R R AR SRR L R SR EREEEEEEEEEEEE RS ELEERELEREEEEEREETESSEEX]

11.4 rzsizn tells array sizes.

/* IR A RS A EEER SR SRR EREES S SRR RS R EE SRR EREEEE T AR EE S SRR L EREEEEEEEESESEEE S5 SRS A

/*

11.4. RZSIZN TELLS ARRAY SIZES. 173

long rzeizn(long n2, float shape(],long nl2) ;
long rzsizn(long, float], long) ;
The functicon rzsizn tellg size needed for arravys.
(input) n2 = last index of data, (i.e., ydata has size n2+1)
(input) shape = shape array containing peakshape
which is needed to calcuiate nfwhm
(input} nl2 = index of last data point in shape
(output} rzsizn = minimum size needed for arrays

* * * * %

o3

*

/i PR R R I R R R R R I e e A R A A A I I I R T O
#pragma comment (exestr, ” (¢) Copyright 1991-52 Spectrum Square Associates, |
long rzsizn{n2, shape, nl2)

long n2;

float shapel];

long nl2;

double height;

long n, nh, nfwhm, minwid, newpk;

newpk = 1;

rzparm{shape, &n, &nh, &height, &nfwhm, &minwid, 0, nl2, newpk) ;

/* BEGIN code for cos-fill and for spline-£fill

* This is thecode foracos-£fill. If youusethisfillmethod, replace
* the £lip-£fill code in this function with the code shown here:

*/

n=n2+1 +nfwhm*3;

/* BEGIN code for £lip-fill

* This is thecode fora flip-fill. If youuse this fill method, replace
* the cos-£fill ceode in this function with the code shown here:

*/

/*

n=(n2+1)*2;

*/

/* END code for £lip-£ill

*/

/* Addition 1/21/96 - guard against cases where nl2 ¢¢ n2! */
if{ (nl2z +1) s n)
n=ni2 +1;
nh=1;
rzpowr (&n, &nh) ;
return(n) ;

174 CHAPTER 1]. SERVICE FUNCTIONS

v /* end of function */
/***

11.5 Error messages from rzrerr.

Use the function rzrerr to print out the error text for any function which returns a value
< 0. Translate the error text into another language if needed.

/* IR AR R S EE N A EEEELEEEEEEEEEEFREEREEEREEEEEE TR R R E TR IIE I I TR I b g T T 0 ORI R e A g g T
* rzrser22.c
ISR A SRR AR AR EEEEEEEEEREEEREEEEEEEE L EEEEEEEEEEREEREEEEEE X E R R I I I I I

/* AR EE R AR AR RS SRS SR RS EEEEEEREEREEEREEEEEEEEEREEEEEEREERESESEEEEEEETESEEEER EEEXNT]

#include jstring.hg

#include "razor.h”

/* KA AR R R A A AR IE A A TR A AR AR R R A A A AR R R AR A A AL A A AR RARA A A A A AT AT RRAR A AR T AR AR AR ARk kS
#pragma comment (exestr,” (c) Copyright 1991-96 Spectrum Square Associates, Inc.’
void rzrerr (ierror, errtxt)

long ierror;

char *errtxt;

char *errlist[20] = -

"RAZOR LIBRARY 3.0 (C)1991-9¢6 Spectrum Square Associlates Inc.”,
"Array sizes are not big enough for Fourier transforms.”,
"Requested transform size ¢ previous size. Set newpk=1l.",
"Newpk must contain size of trans array.”,

"Baseline function error. (kmaxil)”,

"peak shape too narrow. Use finer data/peakshape sampling.”,

“# variables exceeds # datapolongs.”,

"# variables exceeds matrix dimensions.”,

"Error in peak type input.”,

"Peak type not yet implemented.”,

“Unable to achieve better chisqg.”,

“Unstable. Try different shapesg. Did youmiss a peak?”,
“Degenerate. Did you place two peaks too close together?”,
"Covariance matrix has negative diagonals. Suggest more iters.”,
"Peak shape too wide for this function.”,

“Too many negative data polongs. Need pogitive data.”,

"Unable to establish RMS noise value. Peakshape foc narrow?”,
#"Solution did not converge.”,

11.6. RZPKST - SORTS PEAKS FROM RZRPIC/RZRBAS 175

“Only File-based baseline {background) permitted in bunchmode.”,
"Functionerror. Contact SpectrumSquare Agssociates, IthacaNY, USA”";

1if(ierror =0)

ierror = - ierror;

1f{ iexrror ¢ 19)

ierror =19;

strepy{ errtxt, errlist[ierror]);

return;
n

/**4
/**i
* END module rzrser23 *

hhk AAE A AR AT A E R AR A A A A A AT A A A AR AT A A AR A AR A AR AR A A AR R A AT A A RRA AR AR A A A A AT A Aok i
/**i
/* end medules * /
/**i
/**i

* end of rzrgerve.cC
[EEF S EEEE S ELEREEEE R EEE S EEEEEEEEREEEEREREESEEELEREEEREEEEEEEEEEREEEE S S S SRR

11.6 rzpkst - Sorts peaks from rzrpic/rzrbas

/***
/* BEGIN module rzrser25.c

R AR LA R A S S S S SRS ELELNEEA RS SR SRR EEEREEE AL EEEELEEEEE LSRR EEEEEEEEEEESEREEEEE]
/**i
/**i
/*

voidrzpkst (longn, long locpke[], longnloc, float sigpks [], long nsig,

long iway, long itest)

* gorts arrays locpks [0, ...n-1], sigpks[0,..n-1], sigpks[nloc, ..nloc+n-1]
* IF IWAY=1, SORTS UP

* TF IWAY=-1, SORTS DCWN

* IF ITEST=1, SORTS CN LOCPKS

* IJF ITEST=2, SORTS ON SIGPKS

* TF ITEST=3, SORTS ON SIGPKS (NLOC, ...)

* IJF ITEST=4, SORTS ON SIGPKS (NLOC*2,...)

*/

/**i

176 CHAPTER 11. SERVICE FUNCTIONS

void rzpkst (longn, long locpks{],longnloc, float sigpks (], longnsig,
long iway, long itest}

long i, j, nsort;

float a, atest, b, ¢, d, octest;

nsort =n;

if{ nsort ; nsig)

nsort = nsig;

if { ngsort ¢ nloc)

nsort = nloc;

for{j=1; 3 i nsort; j++)-
a = locpks[j];

b = sigpks(j];

if (nloc+ j i nsig)

c = sigpks [nloc + j];

if (nloc*2 + j | nsig)

d = sigpksnloc*2 + j];
for{i=3j-1;41¢=0; i--)-
ategt = a;

octest = locpks([i];

1f(itest == 2) -

atest = b;

octest = sigpks{i];

"

if{ itest == 3 && nsig ¢=nloc*2) -
atest = c;

octest = sigpks[nloc + i];

"

if(itest == 4 && nsig ¢=nloc*3)-
atest =d;

octest = sigpks[nloc*2 + i];

if(iway ¢ 0 && octest = atest)

goto L_10;
if(iway | 0 && octest ¢= atest)
goto L 10,

locpks{i + 1] = locpks [i];
gigpks{i + 1] = gigpks[i];

if(nloc+1+1¢=nsig)
goto L 11;
sigpks [nloc + i + 1] = sigpks[nloc + i} ;

11.7. RZDFIL - LOADS PEAKS FROM RZRPIC/RZRBAS INTO DATMAT 177

if{nioc*2 +1+1¢:=nsig)
goto L_11;

sigpks [nloc*2 + 1 + 1] = gigpks[nloc*2 + 1] ;
L 11:

i=-1;

L _10:

locpks {i + 1] {(long) (a) ;
sigpks[i + 1] = b;
if{nloc+ 1+ 1¢=nsig)
goto L_12;

sigpks[nloc + i + 1] = ¢;
if{nloc*2 +1i+ 1 ¢=nsig)
goto L_12;

sigpks[nloc*2 + 1 + 1] =d;
L 12:

1

i
1"
return;

v /* end of function */
/‘k**‘k'k***'k‘k*****'k'k**'ﬁ:****‘k*'k'k***

11.7 rzdfil - Loads peaks from rzrpic/rzrbas into datmat

/********_";‘***'k*******************
/% ™. BECGIN module rzrser25.c o

************-*3‘********************************’*_**********************.’
/* ************\,‘#***************************1%_.*"************************‘J

“. .
/* **'k*****1\'1\'****w********************'k*j};-***'k***********************‘J

/*
voidrzpkst (longn, lon

ocpks [], long nf,l'd"c, float sigpks (], longnsig,
long iway, long itest)

* gorts arrays locpks [0, ...
IF IWAY=1, SORTS UP

IF IWAY=-1, SORTS DOWN
IF ITEST=1, SORTS ON LOCPKS
IF ITEST=2, SORTS ON SIGPKS
IF ITEST=3, SORTS ON SIGPKS (NLOC, ...)
IF ITEST=4, SORTS'ON SIGPKS (NLOC*2,...)

] ,--‘é"igpks [0,..n-1], sigpksnloc, ..nloc+n-1]

* % o ¥ o

£
.
v
¢

4

178 CHAPTER 1l1. SERVICE FUNCTIONS

*/
/* LA R R R A A A EEE RS AL EEE Y ERAEEEEEEEEEEEEEEER A EEEEEEEEELEEE RS EEEEREEEERE T X
voidl\pkst(longn long locpks [], longnloc, floats pks[],longnsig,

long 1 ay,long itest)

long i, j,a__ nsort;

float a, akest, b, ¢, d, octest;

ngort =n; /
if (nsort ¢ néig)
nsort = nsig;

if (nsort ¢ nloc)

nsort = nloc; ‘ /
fer(j=1; 9 i nsoxt; j++) -

a = locpks[3]; : /
b = sigpks[j]; /

if(nloc+ Jj 1 nsig)

¢ = gsigpks [nloc + ji;

if(nloc*2 + 3 | nsig)

d = sigpks[nloc*2 + ji;
for(i=3-1;1¢=0;1i--73-

atest = a; /
octest = locpks[il; /
if(itest ==2) -
atest = b; ,
octest = sigpks[i];

" i
if(itest == 3 && nsig ¢= nlocfz) -
atest = ¢;
octest = sigpks[nlioc + i} ; ,

/

if({ itest == 4 && neig ¢= Iﬁoc*B } -

atest = d; /£

octest = sigpks[nloc*2. G il ;

1 .

if{ iway ¢ 0 && octest i= atest)

goto Li_10;

if{ iway 7 0 && octést .= atest)

goto L_10; ,_
locpks [1 + 1] locpks (1] ; "
sigpks{i + 1] = sigpks[i];

if{nloc+1+1¢=nsig)
/

I

R
-
Rzrser2d.c k:EZl:Dr’[é’ 6/10/02

Thd R h Rtk e kv ek hdhkh e ey n bkt e ek hh i v T u ek ukhk

rzrserz24.c
LR R E O R R R g B R R R R LR R R kR bRk R R R R R R R R R o R o SRR o

A

~ #
.

copyright (c) 1991-2002 spectrum Square Associates, Inc., Ithaca NY 14850
All rights reserved.

Tkt Rk h kN E R w RS Ehde ke e ke h Rk ke ekt ke nn

#include <math.h>

S *
T

L3 " "w
#include "razor.h
A RR R R R R R R R R R R R R R R Rt R R R R R R R R R R SR R R R R S R R R R R SRR R R A

L

%

FhRhrRh R h v Rt hh ekt ek hfe ket 3

Rzdfil fills the data matrix datmat[] needed for RazorFit.
using the output of the peak-picker, plus info about
the desired peak type, and desired baseline tyEe.
NOTE: rzdfil always uses the first naccept peaks in Tocpks,

and sets all peaks to same type.

*

R IR A

Input: datmat[][40], dimensioned to datmat[naccept+2][40] if basetype=0,
else dimensioned to datmat[naccept+3][40]
Tocpks from rzrpic or rzrbas
npick = number of peaks found by rzrpic or rzrbas
sigpks from rzrpic or rzrbas
nsig = size of sigpks, as per rzrpic, rzrbas
ks.) naccept = number of peaks accepted(first naccept peaks of
ocpks..

%ok %o % o ot

nbunch = max number of peaks to be processed in each bunch.
if nbunck = 0, ALL peaks will be processed simultaneously
peaktype = type from peak catalog
ffixc, ffixh, ffixw, ffixa = fix\vary flags for center, height,
width, 4th (asymmetry)

= 0 for fixed, 1 for variable
basetype = baseline type (0 = no baseline)
= chosen from baseline catalog.
ffixb0, ffixbl, ffixb2, = fix/vary for baseline parms
= 0 for fixed, 1 for

L S L = T S

ariable.) o .)
d ymin = minimum value in data (used to set up_baseline parms)
¥ xstart, xstep = starting x-value, x-longerval, (user-coordinates)

e

of first data point in data which will be processed

*
k3
R A R R R R R ST 2 T
*/
/% void rzdfil(float datmat[][40],long locpks[],long npick, float
sigpks[],long nsig,
Tong naccept,1on% nbunch,]on% peaktype,
Tong Ffixc,1on? fixh,long ffixw,long ffixa,
10ng basetype, iong ffixb0,long ffixbl,long ffixb2,double ymin,
double xstart,double xstep) */
EXPORT32 void FAR EXPORT rzdfil(float datmat[][40],long FAR *locpks,
Tong npick,float FAR *sigpks,long nsig,
Tong naccept,1on% nbunch, on% peaktype,
Tong ffixc,Tlon fixh,long ffixw,long ffixa,
10ng basetype, long ffixb0,long ffixbl,long ffixh2,double ymin,
?ou le xstart,double xstep)
long npks, 1i;

about filling datmat

ke
W

R
*

DATMAT will have naccept+2 rows. Each row of DATMAT has 40 positions.
In DATMAT, naccept is the number of peaks, including the baseline, if

1

Rzrserz4.c 6/10/02

any

* * The FIRST ROW of DATMAT looks like this:

¥ datmat[0] [0]=npks

* datmat[0] [1]1=nbunch

datmat{0] [2]=bunch flag

* datmat[0] [3]=iter

* datmat[0] [4]=reduced chisq

¥ datmat[0][5]=chitest

datmat[0] [6]=cnvg

* datmat[0] [7]=cnvgtest

® datmat[0] [8]=USED TOQ FORCE A USER-DEFINED SCALING, IF NOT ZERO
datmat[0][9]=31, first peak of current bunch

* datmat[0] [10]=32, last peak of current bunch

* datmat[0] [11]=reserved for rzupdt (xstart)

* datmat[0] [12]=reserved for rzupdt (xstep)

* The first row of DATMAT transmits and receives program control data.
* If you wish to process the peaks all-at-once,

* on%y the first position datmat[0][0] must be filled on input.
* It ¥ou wish to process the peaks in bunches,

* fi11 datmat{0][0], datmat[0][1], datmat[0][2].

Set everything else to 0.0!
except that you are allowed to usurp datmat[0][11] and
atmat[0][12]
for your own use. One possible use is in rzupdt. Rzupdt

]

O

* set 1limits in data-point coordinates. But you can use
*/ xstart and xstep to set limits in user-coordinate.
/* Fi1ling the DATMAT control vector */
npks = naccept;
if(basetype > 0)
npks += 1;
datmat[0][0] = (F]oat)ngks; /* Number 'peaks', including baseline */
datmat[0][1] = (float)nbunch;
if(nbunch > 0){
?atmat[O][Z] = 1.0F;
elsef
datmat[0]1{2] = 0.0F;
datmat[0][3] = 0.0F; /% Iter: You MUST set iter=0 for start!!!!l */
datmat[0][4] = 0.0F; /* And set everything else to zero too. */
datmat{0] [5] = 0.0F;
datmat[0] [6] = 0.0F;
datmat[0][7] = 0.0F;
datmat[0][8] = 0.0F;
datmat[0][9] = 0.0F;
datmat[0][10] = 0.0F;
datmat[0][11] = (float)xstart; /* Fill and use as desired. */
datmat[0][12] = (float)xstep; /* Fill and use as desired. */
datmat[0][13] = 0.0F;
datmat[0][14] = 0.0F;
datmat[0]{15] = 0.0F;
datmat{0] [16] = 0.0F;
datmat[0][17] = 0.0F;
datmat[0][18] = 0.0F;
datmat[0] [19] = 0.0F;
/%
* OUTPUT: DATMAT uses the first row to keep track of what it is doing
* from one iteration to the next. 1In this way, we can return
* control to you so that you ma¥ display output each
* iteration if you wish. Most likely, you will only be
: Tongerested in the values of ITER and CHISQ.

Rzrser24.c 6/10/02

*

* SUBSEQUENT ROWS of DATMAT:
Each subsequent row of DATMAT delivers and returns data about ONE peak,
In this example program, for simplicity we assume all peaks will be of
the same type. This is certainly not necessary or even usually
esirable.

3t

on input, you will fil1 11 of the 40 positions:
type, ¢, fixc, h, fixh, w, fixw, a, fixa, p, fixp, [1, [1

on output, you will be longerested in all 40 entries:
type, ¢, errc, h, errh, w, errw, a, erra, p, errp, area, errarea

ook sk oF 3 oW O F W

%

* Modify the loading procedure to suit your needs.

b

e R bR R Akt ek ke b T ek kh btk kb h T h kv b Ak kR kbR
* -- HERE IS HOW INPUT IS CARRIED OUT --

* * TYPE The user selects the type of each peak from the list below.
wo% C C = estimated center position.)

* In this example, the center comes from RZRPIC (in LOCPKS).

* % H H = estimated height.

ook W W = estimated width,

The initial height and width of each peak is set
us1n% information from RZRPIC, stored in SIGPKS.
A= To

£

wOFA urth parameter (often an asymmetry).

% Fourth parameters are initialized after the TYPES are known.
K P P = fifth parameter.

* If you have written a peak function which has a fifth
parameter,

* then you must set initial values for P.

*

® % fixc, fixh, fixw, fixa, fixp

* fix = 0 for parameters which are fixed (not variable).

* often, you will want to constrain certain peakshape parameters
* to be positive. 1In this example, we will constrain all

shape parameters to be positive.

¥

* The rules are as follows: (see function rzupdt in rzserve.c for the
: code that enforces them).

* fix = 0 => Initial value of parameter never changes

* fix > 0 => Parameter > 0.

* fix <« 0 => Parameter may have either sign

* fix = +1 => 0.0 <= parameter <= infinity

* fix = ~1 => -inf <= parameter <= inf

* abs(fix)=2 Asymmetry parameter DATMAT(8,I) is bounded in rzupdt

by fixed Timits (0,1) or (-1,+1)
abs(fix)=3 width or position parameter (DATMAT(6,I) or

-

DATMAT(2,I)
% is bounded in rzupdt
Ld

*

of course, your sEectrum may not be the sum of only positive definite
T

® % shapes; 1if not, en be sure to set FIX=<0 for those_heights which

* * may be negative (an example is a derivative spectrum). widths (and

* * mixing coefficients for, e.g., Gauss-Lorentz sum peaks), must be

* K positive; for these, set FIX=>0.

* % If a shape parameter should NOT be altered by the program, set FIX=0.
:/ of course, you may set up your own rules by modifying rzrupdt.

/s’f

* LOADING DATMAT(*,2...NACCEPT)

* Now Toad in the parameters from RZRPIC to furnish

:/ default estimates of position, width, mixture fraction of peak:

Rzrserz24.c

6/10/02

/* must sort locpks and sigpks to load peaks in order of increasing
position (in locpks), 1f wish to process in bunch-mode

o

..'/
if(nbunch > 0)

rzpkst(naccept, locpks, npick, sigpks, nsig, 1L, 1L);

for(i = 1; 1 <= nac
datmat[i][0]
datmat[i][1]
RZRPIC */
datmat[i][2]

i

ceqt; i+t){
oat)

(f eaktype; /* peak types */
(f]oat)?ocpks[i - 1]; /* positions, from
(float) (-3.0*ffixc); /* for bounded positions

if(datmat[0][2] > 0.)
datmat[i][2] = (float) (-4.0*ffixc);

datmat[il[3] = si?pks[npick + i - 1]; /* heights */]

datmat[i][4] = (float) (1.0*ffixh); /* for positive heights */
// testing . . .
//datmat[11[4] = (float) (9.0*ffixh); /* for positive heights */

//datmat[i][23]
J/datmat[i][24]
// end testing

3
*/

datmat[i][3]/2.0;
datmat[i][31%2.0;

if(datmat[i][3] < 0.0F)

/* for negative heights

datmat[i]1[4] = (float) (-1.0*ffixh);

/* TESTING - FOR 2D CODE */

if(Tocpks[i-1] < 0.0F){
datmat[i][19] = -1.0F;
datmat[i][1] = -(float)locpks[i-1];
datmat[il[4]} = 0.0F;

el

se{
gatmat[i][19] = 1.0F;

/* END TESTING - FOR 2D CODE */

datmatl{i][5]
datmat[i][6]
>0 */
datmat[i][7]
datmat[i][8]
datmat[i][9]

datmat[i][10] = O,

datmat[i][11] =
datmat[1][12] =
datmat{i][13] =
datmat[i][14] =
datmat[i][15] =
datmat[i][16] =
datmat[i][17] =
datmat[i][18] =
datmat[1][19] =

if(peaktype ==

o

[elelaleleleldelo)e)

0

s
(
0
0
0

}?pks[npick*z + 1 -1]; /* widths */

oat) (3.0*ffixw); /* for bounded widths
.OF
.0
.0

F;
F;
0OF;

datmat[i][B% = (float)(-2.0%*ffixa);

if(peaktype

9atmat[1][7] = .5F; /* mixing parm for Gauss/Lrnz
datmat[i][8] = (fleoat)(2.0*ffixa);
if(peaktype == 4){

datmat[i][5]
datmat[i]
datmat[i]

datmat[

i

[

if(peaktype
1

datmat[i][

*:
7]
8]

]
B

71
] =

2.0F;
datmat[i][5];
(float) (3.0*ffixa);

5 1| peaktype == 6){
= 0.0F;
(float)}(-2.0%ffixa);

Rzrserz4.c 6/10/02
if(peaktype == 7){
datmat[1][7] 1.0F
datmat[1][8] (f]oat)(l O*ffixa);
datmat[i][9] 0.0F
datmat[i][10] = (f1oat)(1.0*ffixa);
1f(peaktype == 8){
datmat[1]1[7]
datmat[i][8] (F]oat)(l 0*ffixa);
if(peaktype == 9) {
datmat[1][3] 0.1F;
datmat[i][4] 1.0F;
datmat[i][5] si ?pks[np1ck*2+1 11;
datmat[i][6] (float) (3.,0*Ffixw);
datmat[i][7] pksinpick*2+i-1];

si
datmat[i][8] (f ?oat)(3 o*ffixw);))
(float)sgrt((double)(sigpks[npick*2+i-1]/(16.0%

It hnn

II e u

datmat[i][9]
3.1416%Tocpks[i-110));

datmat[i][10] = 1.0F;
datmat[i][11] = 1.0F;
datmat[i][12] = 1.0F;

1

1f(peaktype == 10 }{ _
datmat[i?[?] si?pks[np1ck*2+i-1];
datmat[i][8] float) (3.0*fFfFixw);

if(peaktype >= 100 && eakt pe < 200
datmat[i][8] = (float)(-2.0*ffixa);

1

if(basetype == 200){
datmat{npks][0] = (float)basetype;
for(1 = 1; 1 <= 19; i++)
?atmat[npks}[1] 0.0F;

}
else if(basetype >= 201 && basetype <= 204){
datmat[npks][0] = (float)basetype;
datmat[npks]fl] = (f1oat) min;
datmat[npks][Z] (f]oat)(1. O*fFfixh0);
for(i = 3; 1 <= 19; i++){
datmat[npks][i] = 0.0F;

if(basetype > 201)
datmat[npks][4] (float) (-1.0*ffixbl);
if{ basetype > 202)
datmat[npks][6] = (float)(-1.0*ffixb2);

else{
}
return;

* O AhhEhhA kLR AN TR h kAN AR AN SRR ek hhhk Ak ki w Tk NSk wkdewthhh

* END module rzrser24 *
A AR AR TR A A A T h R A A A R A S A At RS TR AT AT N A AR b Ttk hdkdhhhhithtdtd

*/

11.8. RZRXPK - REMOVES BASELINE, SMOOTHS PEAKSHAPE

gotonL 11
gigpka\nloc + i + 1] = sigpks[nloc + 1} ;
if{nlod*2 +1i +1 ¢=nsig)

goto L 11;

sigpks([nleoc*2 + i + 1] = sigpks[nloc*2 +1];
L 11: /

n /

i=-1; \ ;./f

L 10:

locpks [i + 1] (laﬁé) (a) ;
sigpks(i + 1] =b; /™
if(nloc + i+ 1 ¢=nsig)
goto L _12; 7
sigpks [nloc + :i.ft- 1] = c;""_‘
if{nloc*2 + 1 f" 1 ¢=nsig .

gotoL_12; /

sigpks [nloc*? + 1 + 1] =4;
L_12 H f_fi

' /

return; /

" /* end ofi function */

/***

11.8 rzrxpk - Removes baseline, smooths peakshape

179

rzrxpk helps in extracting a peakshape out of a data file. The baseline is automatically
removed, and both a baseline-corrected peakshape and a smoothed, baseline-corrected

peakshape are made available.

/* LA A AR AR ESERE LSRR S S S SR EEEELEREERES SRS S EEEEEEE SRR SR EESEELESS S NS EEEE TN S

/* Razor X Peak

long rzrxpk (float shape[],longnl2, flocat y[]j,flecatwl], floatx[1,longn,

double *bsens, long *nfwhm,double *sigma) ;

INPUT:

* & K F ¥ ¥ *

X,W,Y = WORK ARRAYS

SHAPE IS THE INPUT DATA, CONTAINING PEAKSHAPE
NL2 is the index cf the final point in shape(0,nl2)

EXTRACTS A PEAKSHAPE BY REMOVING BASELINE AND (OPTICNALLY) SMOOTHING

180 CHAPTER 11. SERVICE FUNCTIONS

N = is the size of the work arrays. Require N 4= NL2+1
BSENS = baseline sensitivity (Try *bsens = 1.0)

OUTPUT:
Y = XTRACTED PEAK
W = SMOOTHED~EXTRACTED PEAK
X = BASELINE
NFWHM = WIDTH OF PEAK
SIGMA = RMS NOISE IN DATA

I

* 0% ¥ % % * X X X%

>*

*/

/* dhkhkhkrhhhkhhkhkhkhkhkdhdhkhhhkhkhhddhdhkhhhhddhhkhhhhkdddhhhhhhdhhdhhhddhbhkhhdrhhrhkdbhkrrrrkd

11.9 New peakshapes

RazorFit gives you a fairly good selection of peakshapes, but we recognize that there are
many others we have left out. If you need something else, follow the templates, and fill
up the empty peakshape functions of rzrserve.c. RazorFit is set up to call them.

The peakshape functions are not particularly fast. They generate the peak models by
making a separate call for each data point. This allows RazorFit to do its calculations
without allocating many more arrays. It was a matter of trading time for space. The
faster method requires many work arrays, each the same size as the original data set. The
number of ADDITIONAL work arrays needed is equal to the number of parameters in
the model!

If your data sets are small, or if you have lots of space, we encourage you to call us.
There is always a Next Time....

WZ‘C’

13 Nov. 2003 QPeaks Documentation

QPEAKS

QPeaks was developed for finding peaks in mass spectrometry, but it can be
used for any files containing peaks. QPeaks uses Razor Library’s peak-picking
function rzrpic to find peaks in a spectrum. It also calls upon Razor’s peak-fitting
function rzrfit to find the best-fitting parameters (position, height, width) of the
identified peaks.

QPeaks is faster and more flexible to use than standard Razor Library functions.
It is faster because it processes a spectrum by sections, rather than all-at-once.
It is more flexible because it handles data from (a) spectrometers that operate at
constant peak width (Am) and (b) spectrometers that operate at constant
resolution (m/Am}. (Razor Library peak-finding functions all operate in constant
width mode).

QPeaks is easier to use than the Razor Library because all the programming
details are automatically handled behind-the-scenes within the DLL. Qpeaks
programming calls are much easier to implement than the programming calis for
Razor Library functions.

QPeaks is easily tailored for a particular spectrometer by specifying the following:

1. Peak Width or Resolution. QPeaks requires that the user identify an
approximate width for the peaks in the data. It performs in two modes: (a)
constant peak width, and (b) constant resolution or resolving power (i.e. m/Am for
mass spectrometry).

2. Signal/Noise cutoff for peak-finding.

3. Number of the rzrpic peak-picker to use. (In practice, we have found that
picker #4 seems to be the best performer for the mass spectrometry files we
have dealt with so far, and so it is usually selected at the start.).

4. Noise Statistics (Poisson or Normal/Gaussian).

5. For Normal noise, RMS Noise if known (else input zero).

6. For Poisson noise, number of scans that were averaged, if known (else input
ZEro).

7. Baseline parameter, if baseline removal is desired.
Thus one can select peaks by signal/noise ratios in either gaussian or poisson

noise environments, and tune QPeaks performance by choosing different peak
pickers.

13 Nov. 2003 QPeaks Documentation 2

Overview: RazorQPK and RazorDQPK DLLs

RazorQPK contains a single-precision implementation of Qpeaks; RazorDQPK
contains a double-precision implementation.

The purpose of the QPeak (QPK) algorithm of the RazorQPK DLL is to find peak
positions, and to perform a Levenberg-Marquardt fit of those peaks to find the
most probable (maximum likelihood) peak positions, heights, widths, and areas.
QPK also has an option to perform automated baseline finding in conjunction
with the peak finding.

QPK output includes (1) a table listing the found peaks and their parameters, and
(2) an array showing the positions and amplitudes of the found peaks, as well as
the found baseline (if requested). Other arrays are also available; see the
Qpkagpk.cpp source file.

Detail: Input
The RazorQPK DLL requires the following information for QPK processing:

¢ Xxdata, ydata arrays of length numdata, containing mass spectrometer m/z
data. RazorQPK assumes that the spectrometer data is complete (i.e. no
missing data samples, profile data).

+ spectrometer (singlet) width. The spectrometer smearing width is the full-
width at the half-power point (FWHM) of typical isolated peaks in the
spectrometer data. This width may be the same as the instrumental
resolution; it may be the natural width of peaks. Choose whichever width
matches the widths of peaks as seen in the data. Units are the same as the
units of the x_axis of the data (usually m/z).

o peak_signal2noise. Cutoff for the peak finder. (Same as psens for rzrpic.
See the Razor Library manual.)

The peak finder operates on a second derivative of the data. The finder
estimates the height and width and area of a peak from the shape of the
second derivative, using the input peak shape to assist in this task. It then
accepts or rejects the candidate peak according to the peak_signai2noise
criterion provided by the user,

When the peak_signal2noise is positive, the acceptance is based on
amplitude_ of_peak/amplitude_of_noise >= peak_signal2noise. When the
peak_signal2noise is area, the acceptance is based on

13 Nov. 2003 QPeaks Documentation 3

area_of _peak/noise_area >= abs(peak_signal2noise). The noise_area is
calculated as rms_noise*sqrt(peak_width_in_datapoints).

e picker. Same as iperf for rzrpic. See the Razor Library manual. The
RazorQPK DLL contains an additional peak picker; number (iperf=) 10.
Available Pickers: -1 Quick_Pick (single pass)

-3 Quick_Pick (2 passes, narrow+wide)
1 High_Performance
2 High_Resolution
3 2nd_Order High Performance
4 Quiet_pick
5 Narrow_Wide
10 Perfect_10
11 Gentle smooth, then Perfect_10
Most of these pickers are ‘resolving’ pickers. When they encounter a peak
that is wider than the spectrometer (singlet) width, they will attempt to resolve
the wide component into peaks of the given width. If this performance is
undesirable, choose one of the non-resolving Quick Pick (-1 or -3), or the
semi-resolving Quiet Pick (4) picker.
Most of these pickers will perform quite well even if the input spectrometer
width (singlet width) is too wide (up to a factor of 1.5x or even 2x). Most will
give too many peaks when the input spectrometer width is too narrow. Only
the Quick Pick picker will forgive you when you give it too small a value for
spectrometer width.
If your singlet width is larger than 0.5amu, none of the pickers will find
multiply-charged peaks (spaced by 0.5 amu). If you want to find doubly-
charged peaks in a spectrum that has wide (>0.5 amu) peaks, set the singlet
width to 0.5 amu, and use picker 4 or 11.

¢ Noise_statistics. If the noise statistics are normal/gaussian, or if you do not
know what the statistics are, set noise_statistics = 1. If the noise statistics are
Poisson, set noise_statistics = 2. Same as istat for rzrpic. See Razor Library
manual. Default noise_statistics = 1.

Recommendation: Usually, the noise statistics will be neither normal nor
Poisson, but something in between. Our recommendation for in-between
cases is this: If the noise on your biggest peaks is approximately the same as
the noise on your smallest peaks, choose Normal (noise_statistics = 1),
statistics, and set rms_noise =1. Then use peak_signal2noise to select all
peaks with amplitudes greater than a particular value, i.e. set
peak_signal2noise = 10 to select all peaks with amplitudes greater than 10.
If the noise on your biggest peaks is larger than the noise on your smallest
peaks, then your noise statistics are closer to Poisson. In this case, choose
Poisson (noise_statistics = 2), and initially set Poisson_scans = 1.

13 Nov. 2003 QPeaks Documentation 4

Readjust Poisson_scans to a more appropriate value if necessary, but do
not set Poisson_scans = 0.

rms_noise. The rms noise in the data (if known). If unknown, set input
rms_noise=0.0, which is a signal for the DLL to estimate the rms noise. This
parameter is only used for normal/gaussian statistics. Same as sigma for
rzrpic. See Razor Library manual.

How does Qpeaks calculate the rms_noise? Rms_noise is returned from
rzrpic. It is calculated inside rzrpic by first smoothing the data {(usually via
rzresm), and then by calculating the mean square difference between the
smoothed and raw data.

Note: If you set input rms_noise=0.0, and your peaks are not well sampled
(<3 points between half-power points), Razor may not be able to use rzresm
to smooth the data. it will have to ‘punt’ (i.e. use a box-car smoothing
algorithm). The smoothing will be too heavy-handed, the smoothed data will
lose resolution, and Qpeaks will have trouble calculating an accurate value for
rms_noise. QPeaks usually errs by returning too large a value for rms_noise
in these cases.

* Poisson_scans. The number of scans that were averaged to obtain the
current scale (in counts). If unknown, set input poisson_scans=0.0, which is
a signal for the DLL to estimate this parameter. This parameter is only used
for poisson statistics.

» Baseline_width_multiplier. The RazorQPK peak picker will automatically
define a baseiine (rzredg) under the data, before picking peaks. This usually
helps in finding peaks in mass spectrometry data. Start with a value of the
baseline_width_muiltiplier = 3. Increase this parameter if the baseline cuts too
much energy out of the peaks. Set this parameter = 0O to turn off the
automatic baseline.

What does this baseline_width_multiplier actually do? If you look at the
documentation for any of the baseline algorithms in the Razor Library manual,
you will see that the algorithm want you to tell it the width (FWHM) of the
widest peak in the data. It will then attempt to preserve any features that are
equal to, or narrower than, the widest peaks. When Qpeaks calls upon one of
the Razor Library algorithms for a baseline, it takes the singlet_width that you
gave it, multiplies that width by the baseline_width_multiplier, and sends the
resulting width into the baseline routine.

13 Nov. 2003 QPeaks Documentation 4

Readjust Poisson_scans to a more appropriate value if necessary, but do
not set Poisson_scans = 0.

rms_noise. The rms noise in the data (if known). If unknown, set input
rms_noise=0.0, which is a signal for the DLL to estimate the rms noise. This
parameter is only used for normal/gaussian statistics. Same as sigma for
rzrpic. See Razor Library manual.

How does Qpeaks calculate the rms_noise? Rms_noise is returned from
rzrpic. It is calculated inside rzrpic by first smoothing the data (usually via
rzresm), and then by calculating the mean square difference between the
smoothed and raw data.

Note: If you set input rms_noise=0.0, and your peaks are not well sampled
(<3 points between half-power points), Razor may not be able to use rzresm
to smooth the data. It will have to ‘punt’ {i.e. use a box-car smoothing
algorithm). The smoothing will be too heavy-handed, the smoothed data wili
lose resolution, and Qpeaks will have trouble calculating an accurate value for
rms_noise. QPeaks usually errs by returning too large a value for rms_noise
in these cases.

 Poisson_scans. The number of scans that were averaged to obtain the
current scale (in counts). If unknown, set input poisson_scans=0.0, which is
a signal for the DLL to estimate this parameter. This parameter is only used
for poisson statistics.

e Baseline_width_multiplier. The RazorQPK peak picker will automatically
define a baseline (rzredg) under the data, before picking peaks. This usually
helps in finding peaks in mass spectrometry data. Start with a value of the
baseline_width_multiplier = 3. Increase this parameter if the baseline cuts too
much energy out of the peaks. Set this parameter = O to turn off the
automatic baseline.

What does this baseline_width_multiplier actually do? [f you look at the
documentation for any of the baseline algorithms in the Razor Library manuat,
you will see that the algorithm want you to tell it the width (FWHM) of the
widest peak in the data. It will then attempt to preserve any features that are
equal to, or narrower than, the widest peaks. When Qpeaks calls upon one of
the Razor Library algorithms for a baseline, it takes the singlet_width that you
gave it, multiplies that width by the baseline_width_multiplier, and sends the
resulting width into the baseline routine.

13 Nov. 2003 QPezaks Documentation 3

area_of_peak/noise_area >= abs(peak_signal2noise). The noise_area is
calculated as rms_noise*sqri{(peak_width_in_datapoints).

o picker. Same as iperf for rzrpic. See the Razor Library manual. The
RazorQPK DLL contains an additional peak picker; number (iperf=) 10.
Available Pickers: -1 Quick_Pick (single pass)

-3 Quick_Pick (2 passes, narrow+wide)
1 High_Performance
2 High_Resolution
3 2nd_Order High Performance
4 Quiet_pick
5 Narrow_Wide
10 Perfect_10
11 Gentle smooth, then Perfect_10
Most of these pickers are ‘resolving’ pickers. When they encounter a peak
that is wider than the spectrometer (singlet) width, they will attempt to resoive
the wide component into peaks of the given width. If this performance is
undesirable, choose one of the nonresolving Quick Pick (-1 or -3), or the
semi-resolving Quiet Pick (4) picker.
Most of these pickers will perform quite well even if the input spectrometer
width (singlet width) is too wide (up to a factor of 1.5x or even 2x). Most will
give too many peaks when the input spectrometer width is too narrow. Only
the Quick Pick picker wili forgive you when you give it too small a value for
spectrometer width.
If your singlet width is larger than 0.5amu, none of the pickers will find
multiply-charged peaks (spaced by 0.5 amu). If you want to find doubly-
charged peaks in a spectrum that has wide (>0.5 amu) peaks, set the singlet
width to 0.5 amu, and use picker 4 or 11.

* Noise_statistics. If the noise statistics are normal/gaussian, or if you do not
know what the statistics are, set noise_statistics = 1. If the noise statistics are
Poisson, set noise_statistics = 2. Same as istat for rzrpic. See Razor Library
manual. Default noise_statistics = 1.

Recommendation: Usually, the noise statistics will be neither normal nor
Poisson, but something in between. Our recommendation for in-between
cases is this: If the noise on your biggest peaks is approximately the same as
the noise on your smallest peaks, choose Normal {noise_statistics = 1),
statistics, and set rms_noise =1. Then use peak_signal2noise to select all
peaks with amplitudes greater than a particular value, i.e. set
peak_signal2noise = 10 to select all peaks with amplitudes greater than 10.
If the noise on your biggest peaks is larger than the noise on your smallest
peaks, then your noise statistics are closer to Poisson. In this case, choose
Poisson (noise_statistics = 2), and initially set Poisson_scans = 1.

13 Nov. 2003 QPeaks Documentation 5

Detail: Output

During setup for QPK processing, the programmer will have allocated two arrays,
a workspace array, and an output array. (See QpkDirect.cpp, DgpkDirect.cpp).

The output array, which will be the same length as the input array, will contain
spikes of appropriate height at the positions of the found peaks, superimposed
on the found baseline (if requested).

A table of peak parameters is located within the workspace. This table is
described in the next section. The peak table address is (float *)(Workspace +
ghthings[69]). The peak table address is (double *)}{(Workspace + glthings[69]) in
RazorDQPK.

RazorQPK Peak Table

The RazorQPK DLL creates a table of peaks and peak parameters. This table,
stored within the WorkSpace, is complete when the processing is complete
(*percentDone = 100.0F). Instructions for accessing the table are given below.
Example source code that accesses the table and prints it to a file is given in the
files QpkD!rect.cpp and DgpkDirect.cpp.

The table has 1 row, 40 columns, for each peak. Columns are filled as follows:

1 Peak_ID Peak ID numbers are assigned sequentially.

2 Loc_Index The original index position of the peak, as chosen by rzrpic. This
position is derived by looking at the second derivative of the data.

3 Total_Height Total height = height of peak + value in baseline array at
position of peak center. RazorQPK processing automatically removes a baseline
from the data, in order to obtain better parameters for the fitted peaks. The
baseline is available in the workspace also, and may be displayed. The baseline
address is (float *)(Workspace + glthings[62]). 1).]) In RazorDQPK, the baseline
address is (double *)}(Workspace + glthings[62. The length of the baseline array
is the same as the length of the raw data array.

4 RMS/Poiscns Value of RMS noise (for Normal statistics), or number of
Poisson scans (for Poisson statistics), used in rzrpic.

[Columns 5-22 are results of peak fitting by rzrfit.]

5 m/z The center of mass of the peak, caiculated by the Maximum Likelihood
peak-fitting algorithm rzrfit. (Calculated from index_position in column 11).

6 +/-m/z Uncertainty in the peak center position. (Calculated from uncertainty
in index_position, column 12).

7 peak_height The peak height returned from rzrfit, which performs a full
Levenberg Marquardt fit.

8 +/-height Uncertainty in the peak height, calculated by rzrfit.

9 m/z_width Width of the peak. (Calculated from index_width in column 13).
10 +/-m/z_width Uncertainty in the peak width. {(Calculated from uncertainty in
index_position, column 14).

13 Nov. 2003 QPeaks Documentation 6

11 index_position Peak center, index location, as returned from rzrit.
12 +/-index_posn Uncertainty in the peak index |location, calculated by rzrfit.

The rzrfit peak-fitting procedure finds a best fit in the least-square sense for
certain peak parameters (paosition, height, width, etc.) The +/- errors quoted for
these parameters have the following meaning: If the measurement errors are
independent, and are normally distributed, then the +/- errors given above are the
1-sigma width of a normal probability distribution for the corresponding
parameter. (Columns 7-8,11-22 contain the output of rzrfit. Columns 5-6, 9-10
are derived from columns 11-14).

13 index_width Peak width, as returned from rzrfit.

14 +/-index_width Uncertainty in peak width, as returned from rzrfit.

15 rms_fit RMS difference between peak model and data in region of peak fit.

16 error_code Error code returned from rzrfit. Error code -10 indicates that the

peak fit did not formally converge within the allowed 100 iterations; parameters

must be taken with caution. Error code -13 means that the final matrix inversion
for obtaining the rms errors of the parameters was ill-conditioned, and thus the
errors are not to be trusted.

17 Area Peak area, (total counts), as returned from rzrfit. Note that even if the
spectrum is a mass spectrum, with x_units Daltons, the area units reported in
columns 17 and 18 will not be counts*Daltons. The area units for columns 17
and 18 are simply total counts.

18 +/- area Uncertainty in peak area (total counts), as returned from rzrfit.

19 Fourth parameter, as returned from rzrfit

20 +/- fourth parameter Uncertainty as returned from rzrfit.

21 Fifth parameter, as returned from rzrfit

22 +/-fifth parameter Uncertainty as returned from rzrfit.

23 First index of peak-picking segment
24 Last index of peak-picking segment.

[Columns 25-32 are outputs of the peak apex algorithm.]

25 Height of peak at apex position (derived from raw data).

26 Apex m/z position of peak (derived from raw data).

27 Apex m/z position of peak (derived from smoothed data).

28 Area (counts) of peak at apex position.

29 +/- Area (counts) of peak at apex position.

30 Start m/z for computing peak area given in column 28

31 End m/z for computing peak area given in column 28

32 RMS noise used for computing +/- area in column 29. This RMS value is
obtained from the difference between the smoothed and raw data.

33-40 Reserved Columns 33-40 are currently used in testing and debugging.

13 Nov. 2003 QPeaks Documentation 7

Updates 20 Nov 2003:
1. Upgraded documentation in section ‘Detail: Input’ for parameters
singlet_width, peak_signal2noise, baseline_width_mujltiplier, rms_noise.
2.

25 August 2003 QPKDirect Documentation 1

QPKDirect is furnished as

(a) RazorQPK.DLL, the DLL that performs peak processing of the data.

(b) QPKDirect.exe, a console program that drive the RazorQPK DLL.

(c) QPKdirect.cpp, source code for a demonstration console program that reads
an XY data file, receives input from the user, processes the data, and writes
output files. QPKDirect calls the RazorQPK DLL functions directly.

(d) MOPread.cpp, source code for functions to read/write ASClH XY data files.

(e) Razor.h, MOPread.h, rzrqpk.h, and RazorQPK. lib.

RazorQPK input requirements are:

s X and Y data arrays, containing the masses and counts from the
spectrometer.

o Peak Width or Resolution. QPeaks requires that the user identify an
approximate width for the peaks in the data. It performs in two modes: (a)
constant peak width, and (b) constant resolution or resolving power (i.e.
m/Am for mass spectrometry).

¢ Signal/Noise cutoff for peak-finding.

¢ Number of the rzrpic peak-picker to use. In practice, we have found that
picker #4, Quiet Pick, seems to be the best performer for the mass
spectrometry files we have dealt with so far, and so it is usually selected at
the start.

* Noise Statistics (Poisson or Normal/Gaussian).
¢ For Normal noise, RMS Noise if known (else input zero).

+ For Poisson noise, number of scans that were averaged, if known (else input
zero).

+ Baseline parameter, if baseline removal is desired.

e DLL control parameter: tength of time DLL is allowed to process before
returning control to calling program (delayticks).

25 August 2003 QPKDirect Documentation 2

Source code for the console program QPKDirect shows how to directly call
functions within the RazorQPK DLL. The steps for directly calling the DLL are:

1. Obtain the required input parameters listed above.

2. Call CalcArraySizes to get the required size of the workspace array, and the
required size of the output (result) array.

EXPORT32 long FAR EXPORT CalcQOpkArraySizes|
ficat *input masses, flcat *input intensities, long numdata,
flcoat *input spectrometer shape func, long numshape,
flocat singletwidth, flcat signalZncise, long iperf, long istat,
float sigma, float poiscns, flcoat basewidthmult,
unsigred long *sizewkspace, long *numoutarray) ;

3. Allocate the workspace and the output array.
4. Call InitWorkSpaceQPK to initialize the workspace.

EXPORT32 long FAR EXPORT InitWorkSpaceQpk(

flost *input masses, flcat *input intensities, icng numdata,

< *input spectrometer_shape func,long numshape,

ioat singletwidth, float signal2neise, long iperf, long istat,
ioat sigma, flocat poiscns, float basewidthmult,

fleocat *outputlIntensities, long numOutputArray);

5. Set up a loop to repeatedly call the processing function rzrqpk until the
parameter PercentDone = 100.

EXPORT32 long FAR EXPCORT rzrgpk(fleat *x, flcat *y, long imax,
fioat *shape, long numshape,

fleat *yout, long numout,

char *WorkingSpace, long size workspace,

flcat *PercentDone, long DelayTicks);

DelayTicks = number of CPU processor ticks allowed before the RazorQPK DLL yields contro! of
the processor.

The RazorQPK DLL is Windows-friendly. It processes data for the allowed
number of clock ticks, and then returns control to the calling program. When the
calling program is ready, it may send a signal to the DLL to process a little more.
This back-and-forth loop continues until the DLL sends a signal that the
processing is complete and the results are ready.

5. Recover any desired arrays or parameters from the workspace.

6. Delete the workspace.

14 Nov2003 Ithings and Fthings Documentation

Storage Arrays in the QPK workspace

Ithings Array

The Ithings array stores (long) integer variables at the beginning of the
workspace used by RazorQPK. The array has 100 locations, filled as described
below. (The parameters saved in reserved locations are not guaranteed to be
the same in all versions of RazorQPK. The parameters below that are shown in
bold type and underlined are maintained in all versions of the RazorQPK DLL.)

0

Requested humber of iterations.

e When the workspace is initialized by the function InitWorkSpaceQpk, this
location is filled with the number 1.

Peak Picker # iperf. Only -4,-3,-1.0,1,2,3,4,5,10.11,12.13 are acceptable

Reserved. Baseline type. (0=0ffset. -1=None. 2=Same shape as envelope)
Completed number of iterations.

OO~ A[WRN|=

Noise statistics istat. Only O and 1 are permitted.
Reserved. ffirst = index where x_value>adductionmass)
Reserved. Not used.
Reserved. baseline flag (0 = yes, -1=no, 1=envelope shape)
Reserved. bzero
Reserved. jmxmx
Reserved jmin
Reserved. jmax
Reserved. Ipmin = processing start index in image
Reserved. ipmax = processing end index in image
Number of peaks in peak table.

Clock ticks used.

State vector. Current subroutine
State vector. Current position within subroutine

State vector. Current | index

State vector. Current | index

State vector. Current k index

23

Reserved. Saves parameters during Station Breaks (ileft, kto)
Reserved. Saves parameters during Station Breaks (iright, kfar)
Reserved. Saves parameters during Station Breaks (left point of current

processing region)

24

Reserved. Saves parameters during Station Breaks (right point of current

processing region)

25
26
27

Reserved. imax
Reserved. gsize
Reserved. npomax

14 Nov 2003 ithings and Fthings Documentation

28
29
30
31
32
33
34
35
36

Reserved. longkmax

Reserved. kmax

Reserved. ntimag, jmin in rzkern

Reserved. jemin, jmax in rzkern

Reserved. jemax

Reserved. lekmin

Reserved. lekmax

Reserved. isamp

Maxpks fit — maximum # peaks allowed in a setup for rzrfit.

37
38
39
40
41
42
43
44
45
46
47
48
49
50

Reserved. For gpeaks2, peakshape_type.
Reserved. For gpeaks2, fix_width.

Reserved. For gpeaks2, fix_fourthparm.
Reserved. For gpeaks2, fix_fifthparm.
Reserved. For gpeaks2, tiny_peakshape type.
Reserved. For gpeaks2, group_shape_linker.
Reserved. For gpeaks2, max_groupsize.
Reserved.

Reserved.

Reserved.

Reserved.

Reserved.

Reserved.

Size of ithings.

51

Size of fthings

52
53
54
55
56
57
58
59
60
61
62

Reserved. Sizei
Reserved. Size2
Reserved. Size3
Reserved. Size4
Reserved. Sizeb5
Reserved. Size6
Reserved. Size7
Reserved. SizeB
Reserved.

Location (offset) of fthings in workspace

Location (offset) of work1 in workspace = baseline array

63

Location (offset) of work2 in workspace

64

Location (offset) of work3 in workspace = smoothed data array

65

Location (offset) of work4 in workspace

66

Location (offset) of workb in workspace

67

Location (offset) of work6 in workspace

68

Location {offset) of work? in workspace

69

Location (offset) of work8 in workspace = peak table

70
71
72
73

Reserved.
Reserved.
Reserved.
Reserved.

14 Nov 2003 Ithings and Fthings Documentation

74 Reserved.
75 Reserved.
76 Reserved.
77 Reserved.
78 Reserved.
79 Reserved.
80 Reserved.
81 Reserved.
82 Reserved.
83 Reserved.
84 Reserved.
85 Reserved.
86 Reserved.
87 Reserved.
88 Reserved.
83 Reserved. Temporary value of npks
90 Reserved.
91 Reserved.
92 Reserved.
93 Reserved.
94 Reserved.
95 Reserved.
96 Reserved.
97 Reserved.
98 Reserved.
99 Reserved.

14 Nov 2003 Ithings and Fthings Documentation 4

Fthings Array

The fthings array stores float (double) variables in the workspace used by
RazorQPK (RazorDQPK).

Fthings has 50 - 100 locations (depending on version of RazorQPK). The size of
fthings (number of locations) is stored in ithings[51]. The location of the start of
the fthings vector is stored in ithings[61].

Fthings is filled as described below. The parameters saved in reserved locations
are not guaranteed to be the same in all versions of RazorQPK. The parameters
below that are shown in bold type and underlined are maintained in all versions
of the RazorQPK DLL.

0 sigma

1 _poiscns
2 basewidthmult

3 singlet width (The units are amu if singletwidth > 0. If singletwidth <0,

then the value = Resolution or Resolving power.)

Reserved.

signal2noise

Reserved. Current sigma
Reserved. Current poiscns

Reserved.
Reserved.

Reserved.
Reserved.
Reserved.

Reserved
Reserved

specwidth = spectrometer width in bins
delo
bzero (noninteger)

isotopicwidth = isotopic width in Da

Reserved.
Reserved.
Reserved.
Reserved.
Reserved.
Reserved.
Reserved.
Reserved.
Reserved.
Reserved.
Reserved.
Reserved.
Reserved.
Reserved.
Reserved.

Max vaue in image

Mean counts in image

Saves parameters during Station Breaks
Saves parameters during Station Breaks
Saves parameters during Station Breaks
Saves parameters during Station Breaks
Saves parameters during Station Breaks
Saves parameters during Station Breaks
Saves parameters during Station Breaks
Saves parameters during Station Breaks
Saves parameters during Station Breaks
Saves parameters during Station Breaks
Saves parameters during Station Breaks
Saves parameters during Station Breaks

14 Nov 2003

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

Reserved.
Reserved.
Reserved.
Reserved.
Reserved.
Reserved.
Reserved.
Reserved.
Reserved.
Reserved.
Reserved.
Reserved.
Reserved.
Reserved.
Reserved.
Reserved.
Reserved.
Reserved.
Reserved.
Reserved.

Ithings and Fthings Documentation

For gpeaks2, min_width.

For gpeaks2, max_width.

For qpeaksz2, fourthparm.

For gpeaks2, min_fourthparm.
For gpeaks2, max_fourthparm.
For gpeaks2, fifthparm.

For gpeaks2, min_fifthparm.
For gpeaks2, max_fifthparm.
For gpeaks2, full_fit_range.

25 August 2003 QPKDemo Documentation 1

QPKDemo

QPKDemo is furnished as

(a) RazorQPK.DLL, the DLL that contains the required processing functions.
(Under special arrangement, Qpeaks can be provided for operating systems
other than Windows.)

(b) QPKdemo.cpp, source code for a demonstration console program that reads
an XY data file, receives input from the user, allocates workspace, and writes
output files.

(c) Qpkqpk.cpp, source code for the functions that call the RazorQPK DLL and
control the processing.

(d) Mopread.cpp, source code for functions to read/write ASCII XY data files.

(e) QPKdirect.cpp, source code for a demonstration console program that reads
an XY data file, receives input from the user, allocates workspace, and writes
output files. QPKdirect callis the processing functions within the RazorQPK
DLL directly, rather than using the intermediate functions of gpkgpk.cpp.

Overview: QPKDemo Processing Functions

When using QPKDemg, the programmer needs to fill the input structure, then call
the following 3 functions (which are presented as source code in qpkgpk.cpp):
These functions provide calls into the RazorQPK DLL.

o SetupNewTaskQpk, calculates size of workspace needed. Also calculates
size of output array.

(Programmer then allocates a workspace array, and an output array.)

¢ SetupWorkSpaceQpk, initializes the workspace.

o PerformTaskQpk, interacts with the RazorQPK DLL and controls the
processing loop. At the end of processing, the output array will be filled, and
a table of peak positions, heights, widths, etc. will be available within the
workspace.

25 August 2003

QPKDemo Documentation 2

The following structure, defined in the file mopdemo.h, contains the input
parameters needed by the RazorQPK DLL for QPK processing.

struct qpk_setup_struct
/f This structure combines all float and long values, and all array pointers,
i that a user (programmer) must specify for the RazorQPK peak picking engine:

{

float

float

long

long

float

float

float

singlet_width;

peak_signalZnoise;

picker;

noise_statistics;

rms_noise;

poisson_scans;

// Required.

/I Spectrometer (damage) width in data,

/1 If singlet_width is a POSITIVE number, it is

{f interpreted as a constant width in the input data.

I If singlet_width is a NEGATIVE number, it is

// interpreted as constant resclution (m/z)/(delta_m/z)

{f Required.

/1 Signal to noise criterion for picking peaks

/! Use positive peak_signailZnoise for height criteria

/1 Use negative peak_signal2noise for area criteria

/f Note: peak_signal2noise values -1 to =5 (area criteria)
/f seem to work well for mass spec data.

/{ Optional. May be set to 0.

// Same as iperf in razor manual.

/l Acceptable values =-1,0,1,2,3,4,5,10
// Recommended picker = 10.

/f If picker = 0, picker = 10 will be used.

/f Optional. May be setto 0.

/! Same as istat in razor manual.

i Acceptable values = 1 (gaussian/normal noise)

/f or 2 (poisson noise)

/f If noise_statistics = 0.0, gaussian/normal will be used.

/f Optional. May be set to 0.

/{ Rms noise (if known).

/f Used when noise_statistics = 1
{f Input 0.0 if not sure.

// Optional. May be setto 0.

/f # scans which have been averaged in current data.
/f Effectively rescales data to # counts.

/f Used when noise_statistics = 2

/f Input 0.0 if not sure.

baseline_width_muitiplier; // Used if need a rzredg baseline in the problem.

float *input_masses;
float *input_intensities;

long

num_datapoints;

/1 Adding a rzredg baseline is recommended.
/{ Recommend using multiplier 3 - 10.
/1 If this parameter is zero, a baseline will not be used.

/f pointer to spectrum masses array (required).

// pointer to spectrum intensities array (required).
/f size of xdata, ydata arrays

{f require that num_datapoints > zero.

// NOTE: The following input spectrometer shape function is

25 August 2003 QPKDemo Documentation 3

/1 not yet implemented in the RazorQPK DLL!

/1 Therefore, these inputs are ignored at present.

float *input_spectrometer_shape_func; // pointer to input spectrometer shape array
i/ (may be NULL).

long num_shapepoints; /I size of spectrometer shape function array
/1 if num_shapepoints = 0, spectrometer shape is
/1 assumed gaussian, with width = singlet_width

h

The 3 processing control functions that drive QPK processing, by calling
functions in the RazorQPK DLL, also use the following information:

o DelayTicks = number of CPU processor ticks allowed before the RazorQPK
DLL yields control of the processor. The RazorQPK DLL is windows-friendly.
It processes data for the allowed number of clock ticks, then returns control to
the calling program. When the calling program is ready, it may send a signal
to the DLL to process another round. This back-and-forth loop continues until
the DLL sends a signal that the processing is complete and the results are
ready.

+ quiet = flag that allows printf during execution.

25 August 2003 QPKDemo Documentation

Detail: Programming calls for QPeak

The steps for running Qpeaks from QPKDemo are as follows:

1.

Fill the gpeak input structure.

Get the required size of the workspace array, and the required size of the
output (result) array by calling SetupNewTaskQpk.

long SetupNewTaskQpk(struct qpk_setup_struct *qpksetptr,

unsigned long *sizeWorkSpace, long *numOutArray,
long quiet);

/f input gpksetptr

/I output sizeWorkSpace

/f output numOutArray

/! Use quiet = 0 unless debugging

Allocate the workspace and the output array.

Call SetupWorkSpaceQpk to initialize the workspace.

fong SetupWorkSpaceQpk(struct gpk_setup_struct *gpksetptr,

char *WorkSpace, unsigned long sizeWorkSpace,
float *outputYArray, long numQutArray,
lang quiet);

// input gpksetptr

// input array WorkSpace, size sizeWorkWpace
// input array outputYArray, size numQutArray
/1 Use quiet = 0 unless debugging

Run PerformTaskQpk.

long PerformTaskQpk({struct qpk_setup_struct *gpksetptr,

char "WorkSpace, long sizeWorkSpace,
float *outputYArray, long numQutArray,
long delayTicks, long *completediters,
float *percentDone, long quiet);

/l input gpksetptr
/l input array WorkSpace, size sizeWorkWpace
ff input array outputYArray, size numOutArray

i outputYArray will be filled during processing

{/ input delayTicks = time allowed for processing before control returned to caller
i delayTicks enables programmer to maintain control

i and prevent long processing delays under Windows

// output completediters
/1 output percentbDone
/{ Use quiet = 0 unless debugging

25 August 2003 QPKDemo Documentation 5

6. Recover the peak table from the workspace.

The RazorQPK workspace begins with an integer (long) array that contains
information on (a) the state of the processing and (b) the locations of alll
arrays used in the processing. The offset of the peak table from the
beginning of the workspace is stored in the 70" (lonq) integer location of the
workspace. The number of peaks in the peak table is stored in the 15" (long)
integer location of the workspace.

The following example code, from gpkqgpk.cpp, accesses the table.

// write out the final peak table
if(*percentDone == 100.0F){
/i offset of table from beginning of workspace is in glthings[69];
I number of peaks in the table = glthings[14];
gTableResults = {float *}(WorkSpace+githings[69]);
iwrite_err = tablesave("TABLEQF.DAT", gTableResults, glthings[14], OL);
printf{ "Wrote file TABLEQF.DAT # Peaks = %Id \n", githings[14]);
}

/f end write out final peaktable

7. Delete the workspace.

