Greigite R120103

Browse Search Results 
<< Previous |  Back to Search Results |  Next >> 
Record 1714 of 4216  


Name: Greigite
RRUFF ID: R120103
Ideal Chemistry: Fe2+Fe3+2S4
Locality: Alacrán mine, Pampa Larga district, Tiara Maria, Copiapó, Chile
Source: Bob Jenkins
Owner: RRUFF
Description: Druse of metallic, bronze-colored octahedra
Status: The identification of this mineral has been confirmed only by single crystal X-ray diffraction.
Mineral Group: [ Spinel (66) ]
RAMAN SPECTRUM 
RRUFF ID:
Sample Description: Unknown Orientation
DOWNLOADS:

  To download sample data,
  please select a specific
  orientation angle.

Direction of polarization of laser relative to fiducial mark:
X Min:    X Max:    X Sort:
BROAD SCAN WITH SPECTRAL ARTIFACTS
RRUFF ID: R120103
Wavelength:
Sample Description: Unknown Orientation
Instrument settings: Thermo Almega XR 532nm @ 100% of 150mW
POWDER DIFFRACTION 
RRUFF ID: R120103
Sample Description: Single crystal, powder profile is calculated
Cell Refinement Output: a: 9.883(3)Å    b: 9.883(3)Å    c: 9.883(3)Å
alpha: 90°    beta: 90°    gamma: 90°   Volume: 965.3(2)Å3    Crystal System: cubic
  File Type Information Close
Calculated diffraction file.

  File Type Information Close
Output file from the Bruker D8 Advance instrument. Includes device headers and XY data.

X Min:    X Max:    X Sort:
REFERENCES for Greigite

American Mineralogist Crystal Structure Database Record: [view record]

Anthony J W, Bideaux R A, Bladh K W, and Nichols M C (1990) Handbook of Mineralogy, Mineral Data Publishing, Tucson Arizona, USA, by permission of the Mineralogical Society of America. [view file]

Skinner B J, Erd R C, Grimaldi F S (1964) Greigite, the thio-spinel of iron; a new mineral, American Mineralogist, 49, 543-555   [view file]

Fleischer M (1969) New mineral names, American Mineralogist, 54, 326-330   [view file]

International Mineralogical Association (1982) International Mineralogical Association: Commission on new minerals and mineral names, Mineralogical Magazine, 46, 513-514   [view file]

Krupp R E (1994) Phase relations and phase transformations between the low-temperature iron sulfides mackinawite, greigite, and smythite, European Journal of Mineralogy, 6, 265-278

Frankel R B, Bazylinski D A (2003) Biologically induced mineralization by bacteria, Reviews in Mineralogy and Geochemistry, 54, 95-114

Kasama T, Pósfai M, Chong R, Finlayson A P, Buseck P R, Frankel R B, Dunin-Borkowwski R E (2006) Magnetic properties, microstructure, composition, and morphology of greigite nanocrystals in magnetotactic bacteria from electron holography and tomography, American Mineralogist, 91, 1216-1229   [view file]

Gibbs G V, Cox D F, Rosso K M, Ross N L, Downs R T, Spackman M A (2007) Theoretical electron density distribution for Fe- and Cu-sulfide Earth materials: A connection between bond length, bond critical point properties, local energy densities, and bonded interactions, Journal of Physical Chemistry B, 111, 1923-1931   [view file]

Pattrick R A D, Coker V S, Akhtar M, Malik M A, Lewis E, Haigh S, O'Brien P, Shafer P C, Laan G V D (2017) Magnetic spectroscopy of nanoparticulate greigite, Fe3S4, Mineralogical Magazine, 81, 857-872

Lin M-Y, Chen Y-H, Lee J-J, Sheu H-S (2018) Reaction pathways of iron-sulfide mineral formation: an in situ X-ray diffraction study, European Journal of Mineralogy, 30, 77-84

Bosi F, Biagioni C, Pasero M (2019) Nomenclature and classification of the spinel supergroup, European Journal of Mineralogy, 31, 183-192   [view file]