Important Update News

The RRUFF Project is being updated to improve its interface and content. The beta version of the update is accessible to the public at RRUFF.net. New data is only being added to the beta site. Please note that it is in development, and some components are not functional. Existing RRUFF.info links will resolve to the new site after RRUFF.net is officially released.

We are grateful to NASA for the funding of this effort.

Stishovite R070183

Browse Search Results 
<< Previous |  Back to Search Results |  Next >> 
Record 2948 of 4216  

Name: Stishovite
RRUFF ID: R070183
Ideal Chemistry: SiO2
Locality: Synthetic
Source: P. Dera
Owner: RRUFF
Description: Colorless fragment
Status: The identification of this mineral is confirmed by single-crystal X-ray diffraction and chemical analysis.
Mineral Group: [ Rutile (23) ]
Quick search: [ All Stishovite samples (2) ]
CHEMISTRY 
RRUFF ID: R070183.2
Sample Description: Microprobe Fragment
Measured Chemistry: Si1.00O2
Microprobe Data File: [ Download Excel File ]
RAMAN SPECTRUM 
RRUFF ID:
Sample Description: Unoriented sample
DOWNLOADS:

  To download sample data,
  please select a specific
  orientation angle.

Direction of polarization of laser relative to fiducial mark:
X Min:    X Max:    X Sort:
BROAD SCAN WITH SPECTRAL ARTIFACTS
RRUFF ID: R070183
Wavelength:
Sample Description: Unoriented sample
Instrument settings: Thermo Almega XR 532nm @ 100% of 150mW
POWDER DIFFRACTION 
RRUFF ID: R070183.9
Sample Description: Single crystal, powder profile is calculated
Cell Refinement Output: a: 4.161(3)Å    b: 4.161(3)Å    c: 2.663(1)Å
alpha: 90°    beta: 90°    gamma: 90°   Volume: 46.09(1)Å3    Crystal System: tetragonal
  File Type Information Close
Calculated diffraction file.

  File Type Information Close
Output file from the Bruker D8 Advance instrument. Includes device headers and XY data.

X Min:    X Max:    X Sort:
REFERENCES for Stishovite

American Mineralogist Crystal Structure Database Record: [view record]

Anthony J W, Bideaux R A, Bladh K W, and Nichols M C (1990) Handbook of Mineralogy, Mineral Data Publishing, Tucson Arizona, USA, by permission of the Mineralogical Society of America. [view file]

Chao E C T, Fahey J J, Littler J, Milton D J (1962) Stishovite, SiO2, a very high pressure new mineral from Meteor Crater, Arizona, Journal of Geophysical Research, 67, 419-421

Fleischer M (1962) New mineral names, American Mineralogist, 47, 805-812   [view file]

Fleischer M (1963) New mineral names, American Mineralogist, 48, 433-437   [view file]

International Mineralogical Association (1967) Commission on new minerals and mineral names, Mineralogical Magazine, 36, 131-136   [view file]

Sinclair W, Ringwood A E (1978) Single crystal analysis of the structure of stishovite, Nature, 272, 714-715

Hill R J, Newton M D, Gibbs G V (1983) A crystal chemical study of stishovite, Journal of Solid State Chemistry, 47, 185-200

Endo S, Akai T, Akahama Y, Wakatsuki M, Nakamura T, Tomii Y, Koto K, Ito Y, Tokonami M (1986) High temperature X-ray study of single crystal stishovite synthesized with Li2WO4 as flux, Physics and Chemistry of Minerals, 13, 146-151

Hemley R J, Mao H K, Chao E C T (1986) Raman spectrum of natural and synthetic stishovite, Physics and Chemistry of Minerals, 13, 285-290

Spackman M A, Hill R J, Gibbs G V (1987) Exploration of structure and bonding in stishovite with Fourier and pseudoatom refinement methods using single crystal and powder X-ray diffraction data, Physics and Chemistry of Minerals, 14, 139-150

von Czarnowski A, Hübner K (1987) Raman and Infrared investigations of stishovite and their interpretation, Physica Status Solidi, 142, K91-K96

Ross N L, Shu J F, Hazen R M, Gasparik T (1990) High-pressure crystal chemistry of stishovite, American Mineralogist, 75, 739-747   [view file]

Swamy V, Saxena S K, Sundman B, Zhang J (1994) A thermodynamic assessment of silica phase diagram, Journal of Geophysical Research, 99, 11787-11794

Yamanaka T, Fukuda T, Tsuchiya J (2002) Bonding character of SiO2 stishovite under high pressures up to 30 GPa, Physics and Chemistry of Minerals, 29, 633-641

Ohtani E, Ozawa S, Miyahara M, Ito Y, Mikouchi T, Kimura M, Arai T, Sato K, Hiraga K (2011) Coesite and stishovite in a shocked lunar meteorite, Asuka-881757, and impact events in lunar surface, Proceedings of the National Academy of Sciences, 108, 463-466

Mashino I, Ohtani E, Hirao N, Mitsui T, Masuda R, Seto M, Sakai T, Takahashi S, Nakano S (2014) The spin state of iron in Fe3+-bearing Mg-perovskite and its crystal chemistry at high pressure, American Mineralogist, 99, 1555-1561

Kaneko S, Miyahara M, Ohtani E, Arai T, Hirao N, Sato K (2015) Discovery of stishovite in Apollo 15299 sample, American Mineralogist, 100, 1308–1311

Klier K, Spirko J A, Landskron K M (2015) Optical absorption anisotropy of high-density, wide-gap, high-hardness SiO2 polymorphs seifertite, stishovite, and coesite, American Mineralogist, 100, 120-129

Nisr C, Shim S H, Leinenweber K, Chizmeshya A (2017) Raman spectroscopy of water-rich stishovite and dense high-pressure silica up to 55 GPa, American Mineralogist, 102, 2180-2189

Fischer R A, Campbell A J, Chidester B A, Reaman D M, Thompson E C, Pigott J S, Prakapenka V B, Smith J S (2018) Equations of state and phase boundary for stishovite and CaCl2-type SiO2, American Mineralogist, 103, 792-802

Tschauner O (2019) High-pressure minerals, American Mineralogist, 104, 1701-1731

Chen H, Leinenweber K, Kunz M, Bechtel H A, Liu Z, Shim S (2020) Phase transformation of hydrous ringwoodite to the lower-mantle phases and the formation of dense hydrous silica, American Mineralogist, 105, 1342-1348

Das P K, Mohn C E, Brodholt J P, Trønnes R G (2020) High-pressure silica phase transitions: Implications for deep mantle dynamics and silica crystallization in the protocol, American Mineralogist, 105, 1014-1020