|
|
Name: Bridgmanite RRUFF ID: R210006 Ideal Chemistry: MgSiO3 Locality: Synthesized at at 20-25 GPa and 1600-1700 °C Source: Jurgen Konzett TP-MA-6 Owner: RRUFF Description: Greyish grains, associated majorite (R210005). Status: The identification of this mineral is confirmed by single-crystal X-ray diffraction and chemical analysis. |
Mineral Group: [ Perovskite (44) ] |
CHEMISTRY | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
|
POWDER DIFFRACTION | |||||
---|---|---|---|---|---|
RRUFF ID: | R210006 | ||||
Sample Description: | Single crystal, powder profile is calculated | ||||
Cell Refinement Output: |
a: 4.816(6)Å b: 4.954(6)Å c: 6.938(7)Å alpha: 90° beta: 90° gamma: 90° Volume: 165.5(5)Å3 Crystal System: orthorhombic |
||||
DOWNLOADS:
|
|
REFERENCES for Bridgmanite | |
---|---|
American Mineralogist Crystal Structure Database Record: [view record] |
|
Hummer D R, Fei Y (2012) Synthesis and crystal chemistry of Fe3+-bearing (Mg,Fe3+)(Si,Fe3+)O3 perovskite, American Mineralogist, 97, 1915-1921 [view file] |
|
Mashino I, Ohtani E, Hirao N, Mitsui T, Masuda R, Seto M, Sakai T, Takahashi S, Nakano S (2014) The spin state of iron in Fe3+-bearing Mg-perovskite and its crystal chemistry at high pressure, American Mineralogist, 99, 1555-1561 |
|
Tschauner O, Ma C, Beckett J R, Prescher C, Prakapenka V B, Rossman G R (2014) Discovery of bridgmanite, the most abundant mineral in Earth, in a shocked meteorite, Science, 346, 1100-1102 |
|
Williams P A, Hatert F, Pasero M, Mills S J (2014) IMA Commission on new minerals, nomenclature and classification (CNMNC) Newsletter 21. New minerals and nomenclature modifications approved in 2014, Mineralogical Magazine, 78, 797-804 [view file] |
|
Dorfman S M, Badro J, Rueff J P, Chow P, Xiao Y, Gillet P (2015) Composition dependence of spin transition in (Mg,Fe)SiO3 bridgmanite, American Mineralogist, 100, 2246-2253 |
|
Bindi L, Tamarova A, Bobrov A V, Sirotkina E A, Tschauner O, Walter M J, Irifune T (2016) Incorporation of high amounts of Na in ringwoodite: Possible implications for transport of alkali into lower mantle, American Mineralogist, 101, 483-486 |
|
Boujibar A, Bolfan-Casanova N, Andrault D, Bouhifd M A, Trcera N (2016) Incorporation of Fe2+ and Fe3+ in bridgmanite during magma ocean crystallization, American Mineralogist, 101, 1560-1570 |
|
Bindi L, Sirotkina E, Bobrov A V, Walter M J, Pushcharovsvsky D, Irifune T (2017) Bridgmanite-like crystal structure in the novel Ti-rich phase synthesized at transition zone condition, 102, 227-231 |
|
Ishii T, Sinmyo R, Komabayashi T. Ballaran T B, Kawazoe T, Miyajima N, Hirose K, Katsura T (2017) Synthesis and crystal structure of LiNbO3-type Mg3Al2Si3O12: A possible indicator of shock conditions of meteorites, American Mineralogist, 102, 1947-1952 |
|
Kaminsky F V, Lin J (2017) Iron partitioning in natural lower-mantle minerals: Toward a chemically heterogeneous lower mantle, American Mineralogist, 102, 824-832 |
|
Mao Z, Wang F, Lin J, Fu S, Yang J, Wu X, Okuchi T, Tomioka N, Prakapenka V B, Xiao Y, Chow P (2017) Equation of state and hyperfine parameters of high-spin bridgmanite in the Earth’s lower mantle by synchrotron X-ray diffraction and Mössbauer spectroscopy, American Mineralogist, 102, 357-368 |
|
Mitchell R H, Welch M D, Chakhmouradian A R (2017) Nomenclature of the perovskite supergroup: A hierarchical system of classification based on crystal structure and composition, Mineralogical Magazine, 81, 411-461 [view file] |
|
Sinmyo R, McCammon C, Dubrovinsky L (2017) The spin state of Fe3+ in lower mantle bridgmanite, American Mineralogist, 102, 1263-1269 |
|
Tschauner O (2019) High-pressure minerals, American Mineralogist, 104, 1701-1731 |
|
Dorfman S M, Potapkin V, Lv M, Greenberg E, Kupenko I, Chumakov A I, Bi W, Alp E E, Liu J, Magrez A, Dutton S E, Cava R J, McCammon C A, Gillet P (2020) Effects of composition and pressure on electronic states in iron of bridgmanite, American Mineralogist, 105, 1030-1039 |
|
|