The dispersion phenomena of Albite from Alp Rischuna, Switzerland.

 (With Plate VII, fig. 4.)By S. Kôzu,
Of the Tôhoku Imperial University, Sendai, Japan.
[Read March 16, 1915.]

Dispersion of the three principal refractive indices.

THE refractive indices of this mineral for different wave-lengths were determined by the Abbe-Pulfrich total-reflectometer. The dispersion of the glass hemisphere of the instrument was determined by the aid of a highly polished glass prism, the dispersion of the latter being found by the method of minimum deviation. In order to obtain light of definite wave-length Hilger's wave-length spectrometer was used with a Nernst lamp or an electric arc as the source of illumination.
The three principal refractive indices for sodium-light- $a_{\mathrm{Na}}, \beta_{\mathrm{Na}}, \gamma_{\mathrm{Na}}$ were determined in the usual way, and I carefully noted the azimuths in the plate along which the corresponding critical angles were measured. These same azimuths then served for measuring the corresponding critical angles for all other wave-lengths, because in albite the dispersion of the elasticity-axes is very small and may be neglected so far as this method is concerned.

The critical angles and corresponding refractive indices for sodiumlight, given in table I, were determined on seven different dates (ranging from November 1914 to January 1915). Adopting the arithmetic means, we have:-

$$
\begin{aligned}
& a_{\mathrm{Na}}=1.5289 \\
& \beta_{\mathrm{Na}}=1.5330 \\
& \gamma_{\mathrm{Na}}=1.5392 .
\end{aligned}
$$

The optic axial angle computed from the above values is:-

$$
2 \mathrm{~V}_{\gamma}=78^{\circ} 30.5^{\prime}
$$

By direct observation :- $2 \mathrm{~V}_{\gamma}=78^{\circ} 39.0^{\prime}$.

Table I.

Observed critical angles and the corresponding Refractive Indices for sodium-light.
(Temperature $18^{\circ}-20^{\circ} \mathrm{C}$.)

	θ_{α}	a	θ_{β}	β	θ_{γ}	γ
1	$53^{\circ} 59^{\prime} 25^{\prime \prime}$	1.5289	$54^{\circ} 12^{\prime} 5^{\prime \prime}$	1.5330	$54^{\circ} 31^{\prime} 7^{\prime \prime}$	1.5391
2	535915	1.5289	541218	1.5331	543151	1-5394
3	53590	$1 \cdot 5288$	541215	1.5331	543138	1.5393
4	53597	1-5289	$5412 \quad 2$	$1 \cdot 5330$	543131	$1 \cdot 5393$
5	5359	$1 \cdot 5289$	541213	1.5331	543131	$1 \cdot 5393$
6	53597	1.5289	541151	$1 \cdot 5330$	543115	$1 \cdot 5392$
7	535910	1.5289	$54 \quad 121$	1.5330	543120	1.5392
Mean	$5359 \quad 9$	1-5289	$5412 \quad 6$	1.5330	543129	1.5392

The critical angles for other wave-lengths were measured on two different days, and the values are given under I and II of table II.

Table $1 I$.

Observed critical angles.
(Temperature $17^{\circ}-20^{\circ} \mathrm{C}$.)

λ in $\mu \mu$	θ_{a}		θ_{β}		θ_{γ}	
	I	II	I	II	I	II
455.5	$52^{\circ} 40^{\prime} 50^{\prime \prime}$		$52^{\circ} 54^{\prime} 15^{\prime \prime}$		$53^{\circ} 12^{\prime} 37^{\prime \prime}$	
486	58641	$53^{\circ}{ }^{\prime} 6^{\prime} 5^{\prime \prime}$	531926	$53^{\circ} 19{ }^{\prime} 33^{\prime \prime}$	533822	$53^{\circ} 38^{\prime} 29^{\prime \prime}$
508.5	532122	582134	533430	533441	53537	535315
527	533244	533221	53454	$5345 \quad 5$	5448	5454
535	583637	583627	534854	534934	$54 \quad 826$	5483
554	534534	534516	53587	53582	541737	54171
589 (Na)	53599		54126		543129	
610	$54 \quad 711$	$54 \quad 643$	541949	541934	543919	$54 \dddot{88} 35$
644	541645	541616	542934	542946	54490	$5448 \quad 1$
671	542332	542252	543556	54367	545523	545443
700	542941		5442		$55 \quad 119$...

The two series of observations agree very closely; the greatest differences in the values of θ_{γ} occurring for the wave-lengths of 610,644 , and $671 \mu \mu$, and in the values of θ_{α} for $610 \mu \mu$. These differences do not, however, exceed one minute, which corresponds to a variation in the refractive index of about 0.0003 . The arithmetic mean of each pair in
the two sets of critical angles was employed in the calculation of the corresponding refractive index. The mean critical angles and their variation from those for sodium-light are given in table III; and the refractive indices and birefringencies computed from them in table IV.

Table IIT.
Observed critical angles (means of I and II).

λ in $\mu \mu$	θ_{a}	$\Delta \theta_{\alpha}$	θ_{β}	$\Delta \theta_{\beta}$	θ_{Y}	$\Delta \theta_{\gamma}$
$455 \cdot 5$	$59^{\circ} 40^{\prime} 50^{\prime \prime}$	$1^{\circ} 18^{\prime} 19^{\prime \prime}$	$52^{\circ} 54^{\prime} 15^{\prime \prime}$	$1^{\circ} 17^{\prime} 51^{\prime \prime}$	$53^{\circ} 12^{\prime} 37^{\prime \prime}$	$1^{\circ} 18^{\prime} 52^{\prime \prime}$
486	$53 \quad 623$	5246	531929	5237	533831	5258
508.5	532123	3741	583436	3730	535311	3818
527	538233	2636	534515	271	$54 \quad 4 \begin{array}{lll}54\end{array}$	2725
535	533632	2237	534912	2254	$\begin{array}{llll}54 & 815\end{array}$	2314
554	534525	1344	5358.5	143	541716	1413
589	53599	00	54126	00	543129	0 0
610	54656	747	541943	737	$5439 \quad 2$	733
644	541631	1722	542940	1734	544836	177
671	542312	243	$5436 \quad 2$	2356	5455	2334
700	542941	3032	54427	30	54119	2950

Table IV.
Refractive Indices and Birefringencies. (Temperature $17^{\circ}-20^{\circ} \mathrm{C}$.)

λ in $\mu \mu$	α	β	γ	$\gamma-a$	$\gamma-\beta$	$\beta-a$
455.5	1.5373	1.5419	1.5481	0.0108	0.0062	0.0046
486	1.5347	1.5391	1.5455	0.0108	0.0064	0.0044
508.5	1.5331	1.5374	1.5485	0.0104	0.0061	0.0043
527	1.5321	1.5362	1.5424	0.0103	0.0062	0.0041
535	1.5315	1.0357	1.5419	0.0104	0.0062	0.0042
554	1.5305	1.5346	1.5408	0.0103	0.0063	0.0041
589	1.5289	1.5330	1.5392	0.0103	0.0062	0.0041
610	1.5283	1.5324	1.5385	0.0102	0.0061	0.0041
644	1.5268	1.5310	1.5370	0.0102	0.0060	0.0042
671	1.5260	1.5301	1.5360	0.0100	0.0009	0.0041
700	1.5254	1.5294	1.5354	0.0100	0.0060	0.0040

The above refractive indices are plotted in Plate VII, fig. 4, in which the abscissae give the wave-lengths in $\mu \mu$ units, and the ordinates give the corresponding refractive indices of the mineral and the liquid, the latter being the curve passing through black dots. It will be noticed that the dispersions of β and γ are very slightly greater than that of a, the two former being almost equal, though there seems to be a tendency for the
dispersion of γ to be the greater. The numerical values of the refractive indices obtained by the method are not, however, accurate enough for much dependence to be placed on the details of the dispersion. Table IV shows also that the dispersion of the principal birefringencies increases as the wave-length diminishes, although, again, no great dependence can be placed on the particular numbers.

Dispersion of the optic axial angle.

The optic axial angle was measured by the universal goniometer modified by Mr. A. Hutchinson, the dispersion of the liquid in which the mineral was immersed being determined by the total-reflectometer. The crystal-section was nearly parallel to the pinacoid (010); and to avoid the error arising from the obliquity of the section to the acute bisectrix, the section was immersed in a liquid-a mixtare of cedarwood oil, methylene iodide, and monobromonaphthalene-whose refractive index was adjusted so as to be equal to $\boldsymbol{\beta}_{\mathrm{Na}}$ of the crystal. Owing to the difference of the dispersions of the liquid and the crystal and to the difference in the inclination of the optic axes, A and B, to the crystal face, small errors enter into the observed angles $2 H$. These and their corrected values, 2 V , in determining which the values found for the dispersions of the liquid and of β have been used, are given in table V. The changes in the optic axial angle with the wave-lengths are shown in the curves of Plate VII, fig. 4, marked 2 H and 2 V respectively.

Table V.
Dispersion of the optic axial angle.
(Temperature $16 \cdot 2^{\circ}-17 \cdot 2^{\circ} \mathrm{C}$.)

λ in $\mu \mu$	$2 \mathrm{H}(=\mathrm{A} \wedge \mathrm{B})$	2 V	Liquid	β
485	$78^{\circ} 21 \cdot 0^{\prime}$	$78^{\circ} 46 \cdot 1$	1.5460	1.5391
508.5	78 26.0	$78 \quad 43 \cdot 3$	1.5422	1.5374
535	$78 \quad 33 \cdot 0$	$78 \quad 43 \cdot 2$	1.5386	$1 \cdot 5357$
589 (Na)	78 39.0	$78 \quad 39 \cdot 0$	1.5330	1.5330
644	$78 \quad 40 \cdot 7$	$78 \quad 32 \cdot 2$	$1 \cdot 5287$	1.5310
671	$78 \quad 42.2$	$78 \quad 31.3$	1.5271	1.5301

The present study was carried out in the Mineralogical Laboratory of the University of Cambridge. I desire to offer my sincere thanks to Professor W. J. Lewis and Mr. A. Hutchinson for their kind help. They very kindly allowed me to make free use of any instruments and mineral specimens in the laboratory.

