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w 1. V A R I O U S  authors have discussed the problem how to deter- 
V m i n e  the position of the optic axes of a biaxial crystal when 

the extinction-angles on n different faces have been observed. I t  has 
been proved that a unique solution is possible when ~ ~ 1, 2, or 4, 
~ccording as the crystal is orthorhombic, monoclinic, or triclinic. I t  is 
assumed (~nd will be assumed in this paper) that the n faces have 
general positious. The result is uot true, if one or more of the faces 
has a specialized position. For instance, the extinction-angle ou a face 
of an orthorhombic crystal which is parallel to an axis of symmetry will 
obviously not suffice to determine the position of the optic axes. 

Moreover, graphical methods have been given to determine the positions 
of the optic axes from measurements of the extinction-angles. These 
graphical methods depend for the mo~t part on processes of trial and 
error, using the stereographic net or some such device ; while the theo- 
retical investigations involve the use of rather complicated formulae. ~ 
I propose in this paper to reconsider the problem, basix~g the investigation 
on well-known geometrical results, and giving those graphical con- 
structions which require only the theoretically simplest apparatus for 
their performance. 

w 2. Suppose the poles of the crystal-faces are drawn on a sphere with 
centre 0 and'unit  radius. Let A,/~, C, D be the poles of four clTstal- 
tkces ; and let aa ~, bb', co', dr/' be the perpendicular pairs of great circles 
through A, B, C, I) respectively which touch the extinction-directions on 
the faces with poles -4, B, C, ]9. In the ca~e of a tric]inic crystal the 
result to be proved is : Given aa', bb ~, co', dd ~ in any positions (not too 
~pecialized), there is one and only one pair of real points H, K on the 

1 l.. ~Veber, Zeits. Krist., 1921, vol. 56, pp. 1-11, 96-103; A. Johnsen~ 
Centralb]att 3Iin., 1919: pp. 8"21-825 [~Iin. Abstr., wfl. ], p.-9,22]. 
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sphere, such that  the great circles H A  and K A  are harmonic conjugates 
for a and a '  ; and so for/3, C, D. For the fundamental propex~y of the 
ends tI ,  K of the optic axes through 0 is that  aa" are the bisectors of the 
angles between I IA  and KA. 

Take 0 as origin of rectangular Cartesian co-ordinates. Let 
AX' + B~ ~ + C,  ~ + 9, F~v + 2 avX + 2 HXt~ = 0 (i) 

be the tangential equation of a cone of the second degree with vertex 0 
(the condition that  i t  should touch the plane Xx+ /z y+  vz = 0). I f  the 
planes of a and a', namely 

l~x + rn~y + n,z = O, l,% + .q ' ! /  + n, '  z = 0 (it) 
are conjugate with respect to the cone (i), 
A~,Z,' + B,.,m,' + O,~,~,,' + F ( , . , ~ / +  . ~ / ~ )  + G(~,~,' + ,./1,) 

+ H ( ~ n , n / + m / n ~ )  = 0. (iii) 

I f  the planes of each pair aa r, bb', cc', dd p are conjugate with respect 
to the cone, we have four linear 1elations such as (iii) connecting A, I3, 
{3, F,  G, H ; and thc.refole the cones of the second degree with vertex 0 
for which the planes of aa', bb', cc', dd" are all conjugate form 
a tangential pencil;  i.e. they all touch four fixed planes. Now the 
planes of each pair aa', bb', cc', dd" are conjugate with respect to OH and 
O K  considered as together forming a degenerate cone with vertex 0.  
Hence O H  is the intersection of one pair  of the four fixed planes and OK 
is the intersection of the other pair. Also the cone with tangential 
equation k 2 + t~ 2 + v ~ = 0 
belongs to the tangential pencil, for the planes of a a,~d a', etc., are 
perpendicular. Hence the cones of the tangential pencil are confocal, 
and OH, OK are a pair of focal lines. But it  is well known that 
a confocal thmily of cones has three pairs of focal lines lying one in each 
of the three symmetry-planes of the family, and that  one and only one 
pair of focal lines is real ; which establishes the require d result. 

The modifications necessary in the case of an orthorhombic or mono- 
clinic crystal are obvious. 

w 3. We proceed now to the graphical comtruction of the position of 
the optic axes. We shall suppose the sphere gnomouically projected frmu 
0 on to the tangent plane at any point V of the sphere, and that the 
projections of the crystal-poles and of the extinction-directions are given. 
We denote the projection of a point oll the sphere by the same letter as 
that  used for the sphere (,4 is the projection of A, aa' of aa', etc.). The 
problem is :  Given the projections of A, B, . . .  and of the extinction- 
directions aa t, bb', . . . ; to construct the points H and K. 
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Since on the sI)here the planes of aa" are perpendicular, on tile plane 
the lines aa" are conjugate with respect to the circle with centre V and 
radius ~/(-- 15. Therefore the perpendicular from V on a meets a and a" 
on opposite sides of V, and V lies in the acute angle between a and a r ; 
aL~dso forB, C , . . . .  

We shall require the following well-known constructions : 
(15 Collstruct the fourth ray of a harmonic pencil when three rays are 

given. (2 5 Construct the double rays of an involution pencil given 
by two pairs of rays (or the double points of an involution range), and 
the perpendicular p~dr of rays. (3) Construct the common pair of two 
involutions with the same vertex, when two pairs of rays in each 
involution are given. (4 5 Construct the self-corresponding points of 
two homographic ranges ou a line, when three pairs of corresponding 
points are given. 

The first construction requires ruler only; t'or the rest ruler-and- 
compass will be required in general. 

O~THonuo~nIc CI~'sTA~,. 

w 4. T,~l~e OV as an axis of symmetry of the crystal, and let the other 
symmetry-axes of the crystal through O meet the plane of projection in 
U and tV (at infinity 5. Let a and a '  meet VW, IVU, U V in aa", fll ~', 
7V r, fl/3 t being at infiMty. A figure shows at once that, since V is in the 
acute angle between a and a p, two of the three involutions (an t, I'll/'), 
(tiff', WUS, (77', UV5 are overlapping and one non-overlapping. Then 
H and K are the double .points of the non-overlapping involution, and 
can be constructed with ruler-and-compass. 

Hence one extinction-diredtion suffices for the unique determination of 
the optic axes. 

~[ONOCLINIC CB.YSTA],. 

w 5. Take OV as the axis of symmetry of tlle trysted. By the 
symmetly H and K must be at infinity, or else V must bisect HK. 

Let 1 J and p' be the lines through V parallel to a and a', and let q and 
q' be the lines through V parallel to b and b'. Since V lies in the acute 
angle between ad, A lies in the acute angle between P2"; and so for B. 
There are two cases to consider. 

(1) I f  H and K are at infinity, VH and VK are evidently the double 
rays of the involution determined by T1 j and qq'; and H and K are 
col~structed by ruler-and-compass. 

(2) If  V bisects HK, HA" is a common diameter of the hyperbola 
thi-ough A with T and T ~ as asymptotes and of the hyperbola through/3 
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with q and q' as asymptotes. For  two lines through A, which are 
harmonic conjugates with respect to a and a' ,  are parallel to conjugate 
diameters of the first hyperbo]a, and therefore meet this hyperbola again 
at the ends of a diameter ; and so for the second hyperbola. 

Now i t  is readily proved by amdysis tha t  the two common diameters 
of any two concentric conics belong to the involution pencil determined 
by the two pairs of asymptotes;  also tha t  in this case the common 
diameters are perpendicular,  using the fact that a and a', b and b' are 
conjugate with respect to a circle with centre I ~. The ]ine I lK  is th(,re- 
tbrc constructed as one of a pair  of perpendicular  rays belonging to 
the involution determined by i~ and 1/, q and q'. An intersection H of 
either of these perpendicular rays with the first hyperhol~ is constructed 
by u~e of the fact that  the product of the pe~lgendiculars from H on 
lo aad p '  is the same as the product of the perpendiculars from A.~ 

Now suppose the involubion determined by p / / a n d  qq' to he non-over- 
lapping. Then in case (1) I[ and K are real. I n  case (2) I[ and K are 
unreal. For  it is immediately obvious from a figure that,  if two con- 
centric hyperbolas, whose asymptotes form a non-overlappi,~g involution 
and which lie each in the acute angle between its asymptotes, meet in 
real poiuts at all, their  common diameters cam Jot he perpendicular.  

Now suppose the involution deterlnined by 2~J' a~(l qq' to l)e over- 
lapping, rn  case (1) II and I( are unreal. In  case (2) a figure shows 
that  two concentric hyperbolas whose asymptotes form an overlapping 
involution meet in two and only two real points at the ends of 
a diameter. 

Hence the position of the optic axes of a monoclinic crystal can be 
determined fi'om the extinction-directions on two faces. The solution is 
unique, and can be obtained by ruler-and-compass constructions. 

TItlCLII~IC CI~YSTAL. 

w 6. Suppose that  the projections of fi)ur face-poles A, ]1, C, D and of 
their  extinction-directions aa', bb', cc', dd" are given. Then by w 2 the 
point-pair  I t ,  K is determined as a degenerate member of the tangential  

i The approximate posiLions of the two hyperbola% and therefore of H and K, 
are obvious at once when A~ B~ p~ p'~ q, q' are drawn. I t  may be preferable in 
practice to draw the portions of each hyperbola near H, K by freehand, and find 
where they meet. The first hyperbola is easily drawn by getting the point 
where it meets any transversal through A ; using the facb tha~ the parts inter- 
cepted on any line between a hyperbola and its asymptotes are equal. 
Similarly for the secoud hyperbola. 
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pencil of eonlcs for all of which aa r, bb p, cc', dd p are conjugate pairs of 
lines; I l K  being a side of the common self-conjugate triangle of the 
conies. '/'here are three such pairs J i l l  (only one being real), and there- 
fore their determination involves the solution of a cubic equation. 
Hence a ruler-and-compass construction for t l ,  I f  is out of the question, 
and it remains to consider what other comparatively shnple constructions 
are possible. 

The simplest solution theoretically will be obtained, if we assume that 
not only are ruler-and-compass available, but that it is possible to draw 
the real common tangents (or points) of two conies for each of which five 
real points or tangents are given. 

The conics for which aa', bb', cc', dd" are conjugate have not real 
common tangents, so we cannot obtain their real commo,l self-co,~jugate 
triangle by finding the intersections of these common tangents. But 
sil~ce there is a known ruler-and-compass construction for finding .any 
number of tangents to a celtic with tive given pairs of conjugate lines, 
we may assume that five conics of the tangential pencil are obtainable 
(i.t.. five range,its or points of each constructed). Now the polars of any 
fixed point with respect to the five conics are obtainable by ruler-and- 
compass. The conic touching' these five lines touches the sides of the 
common self-conjugate triangle of the tangential pencil. Taking two 
positions of the fixed point, we get two real conics touching the sides of 
the common self-conjugate triangle. 

w 7. The above graphical method is solely of theoretical interest. The 
following method is far more practical, and is also interesting, though it 
is not theoretically so simple as that of w 6, since it involves the drawing 
of two cubic curves. 

The locus of a pair of poil,ts P 1  ~" such that A P  and A P "  are harmonic 
conjugates for a and a', B P  and BP t for b and b', CI'  and C_P" for c and 
c', is a cubic curve on which P and P '  are a ' conjugate pair of points ' ; 
namely the Jacobian of the three line-pairs aa t, bb', cc': 

The cubic can be drawn with a high degree of accuracy, if a sufficient 
number of pot,Its on the curve is obtained. 

Now in general an indefinite such ,mmber of points is obtainable with 
ruler only. 

First of all, let the harmonic conjugate of AB for b at,d.b r, and the 
harmonic conjugate of A6' for c and c' meet at A'. Then A and A' are 

i See Hilto,,'s 'Plane Algebraic Curves,' 1920, ch. xv. The method of con- 
structing the cubic will be intelligible without a knowledge of the theory of 
cubic curves, if the proofs of some of the statements are taken for granted. 
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a coiljugate pair on the cubic, the tangent at A being the harmonic 
conjugate of AA ~ for a and a'. Similarly for B and C. 

Next let the harmonic conjugate of BC for b and b p, and the harmonic 
conjugate of /3C for c and c p meet at A 1, and let the harmonic cot,jugate 
of AA i t b r a a n d a ' m e e t  /~Ca tA, ' .  Then A l and  A 1' are a conjugate 
pair on the cubic. Similarly for B and C. 

We have thus six pairs of conjugate points AA', BB', CC p, A,A1 ~, B, B1 ~, 
C1C1' , and the tangents at A, B, C. Since nine points determille a cubic 
and we have already fifteen (counting a tangent and its point of contact 
as two points), it will probably be easy to trace the cubic even now. 
However, more points are at once found using the fact that, if PP~, QQ~ 
are any two conjugate pairs of points on the cubic, so are the intersections 
of PQ and .P~Q', PQ~ alJd P'Q. Taking any two pairs of conjugate 
points once found as PP',  QQ', we get in general an infinite number of 
conjugate pairs of points on the cubic by ruler only. 

Again, take any fixed pair of lines Tp p through A ba,'monieally cou- 
jugate with respect to (~a ~. Take any point s on T t and let the harmonic 
conjugates of EB for bb ~ and of EC for cc r meet p in S and $1 respectively. 
Then as E varies, S and $1 trace out two homographic ranges on T ; and 
constructing their self-corresponding points we get the remaining inter- 
sections of p with thc cubic. Their construction requires ruler-and- 
compass, or ruler only, if to is the line joining A to any poilit of the cubic 
already fouud. 

Construct a cubic similarly starting with A, B, D i,,stead of A, B, C. 
The two cubics mcet in A,/~, C 1 and in three pairs of conjugate points. 
The lines joining erich pair are the sides of the common self-conjugate 
triangle of w 6. Only one pair is real, and this pair is the pair of points 
111(, which was requi,'ed. 

w 8. Suppose finally that we have found the positions of IIK, that OV 
bisects the angle HOK whose magnitude is 2a, and that we have pro- 
jected gnomonically on to the tangent plane at L I f  we now replace 
the gnomonic projection by its orthogonal projection on the plane 
through the perpendicular bisector of H K  making an angle a with the 
plane of the original gnomonie projection , the angle betwecn any two 
lines through H (or K) is equ;d to that between the original arcs on the 
sphere.' The conics for which aa', l~b r, co', dd' are all conjugate become 
now conics with H and K as real loci, and aa r are the bisectors of the 
angles between HA and IV.A, as on the sphere. 

I We leave the simple geometric proof to The reader. 
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This method of mappiug the sl)here seems very convenient for exhibit- 
ing the optical properties of the crystal. I t  is also very convenient when 
thc constants of the crystal have becn obtained by measurcments on the 
two-circle goniometer of the angles between the zones which pass through 
two face-poles 11, K (not the optic axes) and the angles between the i~ces 
in the zone IlK, as suggested by Fedorov. This method of mapping has 
also been suggested by Klingatsch 1 as convenient for the celestial sphere 
in astronomy; H and K being, for instance, the zenith and celestial 
north pole. 

1 A. Klingatsch, Sitzungsber. Akad. Wiss. Wien~ 5Iath.-naturw. Kl., 1914, 
vol. 123, Abt. I I  a, p. 745. 


