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On the deternvination of the optic axes of a crystal from
extinction-angles.

By Harorp Hirton, M.A, D.Se.
Professor of Mathematics in Bedford College (University of London).

[Read November 1, 1921.]

§ 1. ARIOUS authors have discussed the problem how to deter-
mine the position of the optic axes of a biaxial erystal when
the extinction-angles on n different faces have been observed. It has
been proved that a unique solution is possible when » =1, 2, or 4,
according as the crystal is orthorhombic, monoclinic, or triclinic. It is
assumed (and will be assumed in this paper) that the n faces have
general positions. The result is not true, if one or more of the faces
has a specialized position. For instance, the extinction-angle on a face
of an orthorhombic crystal which is parallel to an axis of symmetry will
obviously not suffice to determine the position of the optic axes.
Moreover, graphical methods have been given to determine the positions
of the optic axes from measurements of the extinction-angles. These
graphical methods depend for the most part on processes of trial and
error, using the stereographic net or some such device ;. while the theo-
retical investigations involve the use of rather complicated formulae.!
T propose in this paper to reconsider the problem, basing the investigation
on well-known geometrical results, and giving those graphical con-
structions which require omly the theorctically simplest apparatus for
their performance.

§ 2. Suppose the poles of the crystal-faces are drawn on a sphere with
centre O and unit radius. Let 4, B, C, D be the poles of four crystal-
faces; and let ad’, bb’, ¢c’, dd’ be the perpendicular pairs of great circles
through 4, B, C, D) respectively which touch the extinction-directions on
the faces with poles 4, B, C, D. In the case of a triclinic crystal the
result to be proved is: Given aa’, bb', ¢¢’, dd’ in any positions (not too
specialized), there is one and only one pair of real points I/, K on the

1 L. Weber, Zeits. Krist,, 1921, vol. 56, pp. 1-11, 96-103; A. Johnsen,
Centralblatt Min., 1919, pp. 821-825 [Min. Abstr., vol. I, p.-222].
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sphere, such that the great circles /74 and K4 are harmonic conjugates
for @ and a”; and so for B, €, D. For the fundamental property of the
ends H, K of the optic axes through O is that aa’ are the bisectors of the
angles between /74 and KA.
Take O as origin of rectangular Cartesian co-ordinates. Let
AN+ B+ Cv* 4+ 2F v+ 2GvA+2HA = 0 (1)
be the tangential equation of a cone of the second degree with vertex O
(the condition that it should touch the plane Ax+ py+ vz = 0). If the
planes of @ and «’, namely
Le+my+nz=0, l/2+my+0/2=0 (i)
are conjugate with respect to the cone (i),
AL+ Bmm + Cnp) + Flmn, +myn)) + G{n ] +2,7)
+H(@mn/ +m/n,)=0. (iii)
It the planes of cach pair aa’, b0, e¢’, dd’ are conjugate with respect
to the cone, we have four linear 1elations such as (iil) connecting A, B,
C, F, G, H; and therefore the cones of the second degree with vertex O
for which the planes of aa’, bV, ¢/, dd’ ave all conjugate form
a tangential pencil; i.e. they all touch four fixed planes. Now the
planes of eacl pair ae’, b, ¢/, dd’ are conjugate with respect to OH and
OA considered as together forming a degenerate cone with vertex O.
Hence O/ is the intersection of one pair of the four fixed planes and OK
is the intersection of the other pair. Also the cone with tangential
equation Ntpi+t=0
belongs to the tangential pencil, for the planes of « and o', etc., are
perpendicular. Hence the cones of the tangential pencil are confocal,
and 04/, OK are a pair of focal lines. But it is well known that
a confocal family of cones has three pairs of focal lines lying one in each
of the three symmetry-planes of the family, and that one and only one
pair of focal lines is real; which establishes the required result.
The modifications necessary in the case of an orthorhombic or mouo-
clinic crystal are obvious.

§ 8. We proceed now to the graphical construction of the position of
the opticaxes. We shall suppose the sphere gnomonically projected from
O on to the tangent plane at any point V' of the sphere, and that the
projections of the crystal-poles and of the extinction-directions are given.
We denote the projection of a point on the sphere by the same letter as
that used for the sphere (4 is the projection of 4, aa’ of aa’, ete.). The
problem is: Given the projections of 4, B, ... and of the extinction-
directions aa’, 0¥/, . . .; to construct the points 7/ and K.
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Since on the sphere the planes of aa” are perpendicular, on the plane
the lines aa’ are conjugate with respect to the circle with centre V and
radius 4/_(—1). Therefore the perpendicular from ¥ on a meets a and a’
on opposite sides of ¥, and 7 lies in the acute angle between a and o’ ;
and so for B, C, .. ..

We shall require the following well-known counstructions:

(1) Construct the fourth ray of a harmonic pencil when three rays are
given. (2) Construct the double rays of an involution pencil given
by two pairs of rays (or the double points of an involution range), and
the perpendienlar pair of rays. (3) Construct the common pair of two
involutions with the same vertex, when two pairs of rays in each
involution are given. (4) Construct the self-corresponding points of
two homographic ranges on a line, when three pairs of corresponding
puints are given,

The first construction requires ruler ouly; for the rest ruler-and-
compass will be required in general.

OrTHORHOMBIC CRYSTAT.

§ 4. Take OV as an axis of symmetry of the erystal, and let the other
symmetry-axes of the crystal through O meet the plane of projection in
U and W (at infinity). Let a and @’ meet VI, WU, UV in ad’, BF,
vy, BB’ being at infinity. A figure shows at once that, since F is in the
acute angle between « and «, two of the three involutions (ad’, VW),
(BB, WU, (yy, UV) are overlapping and one non-overlapping. Then
il and K are the double points of the non-overlapping involution, and
can be constructed with ruler-and-compass,

Hence one extinction-direétion suffices for the unique determination of
the optic axes.

MoxocriNic CRYSTAL.

§ 5. Take OV as the axis of symmetry of the crystal. By the
symmetiy H and A must be at infinity, or else 1™ must bisect /1A,

Let p and 2" be the lines through V7 parallel to @ and a’, and let ¢ and
¢’ be the lines through ¥V parallel to b and &', Since V lies in tle acute
angle between aa’, 4 lies in the acute angle between pp”; and so for B.
There are two cases to consider.

(1) If /1 and A are at infinity, VH and VA are evidently the double
rays of the involution determined by pp” and ¢¢”; and I/ and K are
constructed by ruler-and-compass.

(2) If V bisects /K, /K is a common diameter of the hyperbola
through 4 with p and p’ as asymptotes and of the hyperbola through B
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with ¢ and ¢/ as asymptotes. For two lines through 4, which are
harmonic conjugates with respect to « and a’, are parallel to conjugate
diameters of the first hyperbola, and therefore meet this hyperbola again
at the ends of a diameter; and so for the second hyperbola.

Now it is readily proved by analysis that the two common diameters
of any two concentric conics belong to the involution pencil determined
by the two pairs of asymptotes; also that in this case the common
diameters are perpendicular, using the fact that a and o', b and 3" are
conjugate with respect to a circle with centre V. The line //X is there-
fore constructed as one of a pair of perpendicular rays belonging to
the involution determined by p and p’, ¢ and ¢/.  An intersection X of
either of these perpendicular rays with the first hyperbola is constructed
by use of the fact that the product of the perpendiculars from I7 on
2 and p” is the same as the produet of the perpendiculars from A.!

Now suppose the involution determined by pp” and ¢¢” to he non-over-
lapping. Then in case (1) // and A are veal. In case (2) I/ and X are
unreal. For it is immediately obvious from a figure that, if two con-
centric hyperbolas, whose asymptotes form a non-overlapping involution
and which lie each in the acute angle between its asymptotes, meet in
real poiuts at all, their common diameters canuot be perpendicular.

Now suppose the involution determined by pp” and ¢g” to be over-
lapping. In case (1) # and K are unveal. In case (2) a figure shows
that two concentric hyperbolas whose asymptotes form an overlapping
involution meet in two and only two real points at the ends of
a diameter.

Hence the position of the optic axes of a monoclinic crystal can be
determined from the extinction-directions on two faces. The solution is
unique, and can be obtained by ruler-and-compass constructions.

TricriNi¢ CRYSTAL.

§ 6. Suppose that the projections of four face-poles A, 73, (', ) and of
their extinction-directions aa’, bb’, ¢¢’, dd’ ave given. Then by § 2 the
point-pair 7, K is determined as a degenerate member of the tangential

1 The approximate positions of the two hyperbolas, and therefore of H and X,
are obvious at once when 4, B, p, 7, ¢, ¢’ are drawn. It may be preferable in
practice to draw the portions of each hyperbola near H, X by frechand, and find
where they meet. The first hyperbola is easily drawn by getting the point
where it meets any transversal through 4 ; using the fact that the parts inter-
cepted on any line between a hyperbola and its asymptotes are equal.
Similarly for the second hyperbola.
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pencil of conies for all of which ad’, b, ¢/, dd’ are conjugate pairs of
lines; K being a side of the common self-conjugate triangle of the
conics. There are three sucl pairs //X (only one being real), and there-
fore their determination involves the solution of a cubic equation.
Hence a ruler-and-compass construction for #, X is out of the question,
and it remains to consider what other comparatively simple constructions
are possible.

The simplest solution theoretically will be obtained, if we assume that
not only are ruler-and-compass available, but that it is possible to draw
the real common tangents (or points) of two conies for each of which five
real points or tangents are given.

The conics for which aa’, B, c¢’, dd’ ave conjugate have not rea/
common tangents, so we cannot obtain their real common self-conjugate
triangle by finding the intersections of these common tangents. But
since there is a known ruler-and-compass construction for finding -any
number of tangents to a counic with five given pairs of conjugate lines,
we may assume that five conics of the tangential pencil are obtainable
(i.e. five tangents or points of each constructed). Now the polars of any
fixed point with respect to the five conics are obtainable by ruler-and- .
compass. The conic touching these five lines touches the sides of the
common self-conjugate triangle of the tangential pencil. Taking two
positions of the fixed point, we get two real conics touching the sides of
the common solf-conjuga.te triangle.

§ 7. The above graphical method is solely of theoretical interest. The
following method is far more practical, and is also interesting, though it
is not theoretically so simple as that of § 6, since it involves the drawing
of two cubic curves.

The locus of a pair of points PP’ such that 4P and 4 P’ are harmonic
conjugates for ¢ and a’, BP and BP’ for b and ¥/, CP and CP’ for ¢ and
¢, is a cubic curve on which P and P’ are a ‘ conjugate pair of points’;
namely the Jacobian of the three line-pairs aa’, bV, ec’

The cubic can be drawn with a high degree of accuracy, if a sufficient
number of points on the curve is obtained.

Now in general an indefinite such number of points is obtainable with
ruler only.

First of all, let the harmonic conjugate of AL for b and.¥’, and the
harmonic conjugate of AC for ¢ and ¢’ meet at 4. Then 4 and 4’ are

1 See Hilton’s ‘Plane Algebraic Curves,” 1920, ch, xv. The method of con-

structing the cubic will be intelligible without a knowledge of the theory of
cubic curves, if the proofs of some of the statements are taken for granted.
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a cohjugate pair on the cubic, the tangent at 4 being the harmonic
conjugate of AA4” for a and a’. Similarly for B and C.

Next let the harmonic eonjugate of BC for b and ¥/, and the harmonic
conjugate of BC for ¢ and ¢’ meet at 4. and let the harmonic conjugate
of Ad, for « and ¢’ meet BC at 4,". Then 4, and d,” are a conjugate
pair on the cubic. Similarly for B and C.

We have thus six pairs of conjugate points Ad’, BB, CC’, A, 4/, BB/,
C,CyY, and the tangents at 4, B, C. Since nine points determine a cubic
and we have already fifteen (counting a tangent and its point of contact
as two points), it will probably be easy to trace the cubic even now.
However, more points are at once found using the fact that, if P27, QQ’
are any two conjugate pairs of points on the cubic, so are the intersections
of PQ and P/, PQ" and P’Q). Taking any two pairs of conjugate
points once found as PP, QQ’, we get in general an infinite number of
conjugate pairs of points on the cubic by ruler only.

Again, take any fixed pair of lines pp’ through A harmonically con-
jugate with respect to aa’. Take any point £ on 3 and let the harmonic
conjugates of EB for bb” and of £C for cc” meet p in § and §; respectively.
Then as £ varies, § and. ) trace out two homographic ranges on p; and
constructing their self-corresponding points we get the remaining inter-
sections of p with the cubic. Their construction requires ruler-and-
compass, or raler only, if p is the line joining A to any poiut of the cubic
already found.

Construct a cubic similarly starting with 4, B, D instead of 4, B, C.
The two cubics meet in A, B, C; and in three pairs of conjugate points.
The lines joining each pair are the sides of the common self-conjugate
triangle of § 6. Only one pair is real, and this pair is the pair of points
JTA, which was required.

§ 8. Suppose finally that we have found the positions of X, that OV
bisects the angle /0K whose magnitude is 2a, and that we have pro-
jected gnomomically on to the tangent plane at V. If we now replace
the gnomonic projection by its orthogonal projection on the plane
through the perpendicular bisector of /K making an angle a with the
plane of the original gnomonic projection, the angle between any two
lines through /7 (or K) is equal to that between the original arcs on the
sphere.r  The conics for which aa’, 10/, c¢/, dd’ are all conjugate Lecome
now conics with 7/ and A as real foci, and aa’ are the bisectors of the
angles between /74 and K4, as on the sphere.

1 We leave the simple geometric proof to the reader.
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This method of mapping the sphere seems very convenient for exhibit-
ing the optical properties of the crystal. It is also very convenient when
the constants of the crystal have been obtained by measurements on the
two-circle goniometer of the angles between the zones which pass through
two face-poles 77, K (not the optic axes) and the angles between the faces
in the zone I/X, as suggested by Fedorov. 'This method of mapping bas
also been suggested by Klingatsch! as convenient for the celestial sphere
in astronomy; /7 and A being, for instance, the zenith and celestial
north pole.

1 A. Klingatsch, Sitzungsber. Akad. Wiss. Wien, Math.-naturw. Kl., 1914,
vol. 123, Abt, IT a, p. 745.



