The graphical determination of the constants of a shear.

By Harold Hilton, M.A., D.Sc.
Professor of Mathematics in Belford College (University of London).

[Read June 27, 1922.]

RECENTLY A. Johnsen ${ }^{1}$ has given a graphical solution by means of the stereographic projection of the problem of determining the constants of a homogeneous shear of a crystal, knowing the initial and final indices of two faces or two edges.

The same problem may be solved more easily by means of the gnomonic projection.

In a shear there are two fixed lines l, m intersecting at right angles at O, such that each particle of the crystal moves parallel to l through

a length proportional to its distance from the plane $l m$. The shear is considered given when we know l, m, and the line through O perpendicular to m making supplementary angles with l before and after the shear.

Suppose we form the gnomonic projection of the face-poles and zones of the crystal from a sphere with centre O. Let V be the centre of

[^0]the gnomonic projection, i. e. the point where the plane of the projection II touches the sphere. Suppose also we know the intersections (P, Q before shearing and P^{\prime}, Q^{\prime} after) with Π of the lines through O parallel to two edges of the crystal.

Let $P P^{\prime}$ and $Q Q^{\prime}$ meet in $L ; P Q$ and $P^{\prime} Q^{\prime}$ meet in H.
Let the. line joining H to the intersection of $P Q^{\prime}$ and $P^{\prime} Q$ meet $P P^{\prime}$ in K. Let $V K$ meet $L H$ in U. Let $P U, P^{\prime} U$ meet $L V$ in R, R^{\prime}. Then L is the intersection of l with $\Pi, L H$ is the intersection of the plane $l m$ with Π, and $O R$ is zone-axis brought to $O R^{\prime}$ by the shear, such that $O R$ and $O R^{\prime}$ are perpendicular to m and make supplementary angles with l.

For the proof of the construction we notice that (1) it is a construction which is not altered by ordinary conical (plane-to-plane) projection; (2) a change of the plane of gnomonic projection is equivalent to a conical projection; (3) the construction is evidently correct when II is parallel to the plane $l m$, for then $P P^{\prime}, Q Q^{\prime}, R R^{\prime}$ are equal and parallel.

If the initial and final projections A and A^{\prime}, B and B^{\prime} of two face-poles are given, instead of the intersections with Π of lines through O parallel to two edges, then $A A^{\prime}, B B^{\prime}$ meet in the intersection with II of the line through O perpendicular to the plane $l m$.

Knowing V, we get thus the line LH. Moreover, the initial and final positions $A B$ and $A^{\prime} B^{\prime}$ of a zone are known, so that we can get L and proceed as before.

[^0]: ${ }^{1}$ A. Johnsen, Neues Jahrb. Min., 1921, vol. ii, p. 1 [Min. Abstr., vol. 1, p. 220].

