Optical dispersion of three intermediate plagioclases.

By Seltarô Tscbol,
Of the Geological Institute, Imperial Cniversity of Tokyo, Japan.

[Read June 19, 1923.]

Introduction.

THE optical dispersion phenomena of felspars at the alkalic and calcic ends of the plagioclase series have been investigated by C. Viola ${ }^{1}$ and S. Kôzu, ${ }^{2}$ but for those of intermediate composition the data bave been lacking. In view of the usefulness of the dispersion data of felspars for their determination in cleavage-flakes by the method to be described in the next paper, the present writer has made a study of the dispersion of certain intermediate plagioclases. The materials examined are :
(1) Oligoclase from Hawke mine, Bakersville, North Carolina.
(2) Andesine from Maeyama, Shinano, Japan.
(3) Labradorite from St. John's Point, County Down, Ireland.

These were put at the disposal of the writer by Professor W. J. Lewis and Dr. A. Hutchinson, of the Cniversity of Cambridge, England. My hearty thanks are due to them for this as well as for their great kindness in granting me the use of the Mineralogical Laboratory and also for constant interest and help throughout the work.

I. Oligoclase.

The material used was a large cleavage mass of oligoclase, about 5 cm . across, from Hawke mine, Bakersville, North Carolina. It is highly fresh and homogeneous, and is very suitable for optical and chemical investigations. The oligoclase here treated of belongs no doubt to a species distinct from the felspars 'from Bakersville, North Carolina'
${ }^{1}$ C. Viola, Zeits. Kryst. Min., 1899, vol. 30, p. 437 ; 1900, vol. 32, p. 305.
${ }^{2}$ S. Kôzu, Sci. Rep. Tôhoku Imp. Univ. Sendai, Japan, 1914, ser. 2, vol. 2. p. 7 ; Min. Mag., 1915, vol. 17, 1. 189.
investigated by A. Offret, ${ }^{1}$ C. Viola, ${ }^{2}$ and H . Tertsch, ${ }^{\text {s }}$ the present one being higher in refractive indices.

Chemical Composition.
A chemical analysis made by the writer gave the result as shown in column I of Table I.

Table I.-Chemical Composition of Oligoclase.

					I.	II.
SiO_{3}	..	\ldots	\ldots	\ldots	61.70	62.34\%
$\mathrm{Al}_{2} \mathrm{O}_{3}$		\ldots	\ldots	...	23.99	23.74
$\mathrm{Fe}_{2} \mathrm{O}_{3}$	+ Fe 0	as		\ldots	0.43	-
MgO	\ldots	$0 \cdot 40$	-
CaO	...	\ldots	\ldots	\ldots	5.09	5.04
$\mathrm{Na}_{2} \mathrm{O}$	\ldots	...	\cdots	...	8.81	8.72
$\mathrm{K}_{2} \mathrm{O}$...	\ldots	\cdots	\ldots	$0 \cdot 17$	$0 \cdot 16$
	Total	100.59	100.00

From the analysis in column I, assuming all of the $\mathrm{CaO}, \mathrm{Na}_{2} \mathrm{O}$, and $\mathrm{K}_{2} \mathrm{O}$ to enter into felspar molecules 'and neglecting $\mathrm{Fe}_{2} \mathrm{O}_{3}$ and MgO , the composition of the mineral is represented as $O r_{0 \cdot 9} A b_{75 \cdot 1} A n_{244^{\circ}}$, the theoretical percentages for which are given in column II of the above table.

Refractive Indices and Birefringencies.

The principal refractive indices of the oligoclase for light of different wave-lengths were determined on a carefully polished plane surface by means of the Abbé-Pulfrich refractometer, the constants of which were determined by S. Kôzu.4 A Hilger's wave-length spectrometer was used to get light of various colours from a Nernst lamp. The readings of wave-lengths on the spectrometer were checked by employing the bright lines of lithium ($671 \mu \mu$), sodium ($589 \cdot 3 \mu \mu$), and thallium ($535 \mu \mu$).

The results of the measurements are given in Tuble II. Each of the values in the table was calculated from the mean of four readings of the critical angle corresponding to a principal refractive index, taken at two

```
A. Offret, Bull. Soc. Franc. Min., 1890, vol. 13, p. 648.
\({ }^{2}\) C. Viola, Zeits. Kryst. Min., 1900, vol. 32, p. 333.
\({ }^{3}\) H. Tertsch, Tscherm. Min. Petr. Mitt., 1903, vol. 22, p. 159.
\begin{tabular}{lcccl} 
& & \multicolumn{1}{c}{\(a_{\mathrm{D} .}\)} & \multicolumn{1}{c}{\(\beta_{\mathrm{D} .}\)} & \(\gamma_{\mathrm{D} .}\) \\
offret... & \(\ldots\) & 1.5389 & 1.5431 & 1.5469 \\
Viola \(\ldots\) & \(\ldots\) & 1.52898 & 1.53290 & 1.53915 \\
Tertsch & \(\ldots\) & 1.5388 & 1.5428 & 1.5463
\end{tabular}
```

- S. Kòzu, Min. Mag.. 1916, vol. 17, p. 255.
azimutis opposite to each other, with the telescope first on one side and then on the other. Each reading of the critical angle was taken to the tenth of a minute.

Table II.-Refractive Indices of Oligoclase. (Temperature $20.5^{\circ}-21^{\circ} \mathrm{C}$.)

Wave-lengths (in $\mu \mu$).	\boldsymbol{a}.	β.	$\boldsymbol{\gamma}$.
700	1.5366	1.5408	1.5442
671	1.5373	1.5416	1.5450
644	1.5383	1.5424	1.5460
610	1.5395	1.5438	1.5472
589.3	1.5403	1.5447	1.5481
554	1.5421	1.5464	1.5492
535	1.5431	1.5475	1.5508
527	1.5437	1.5480	1.5513
508.5	1.5450	1.5493	1.5525

Table III.-Birefringencies of Oligoclase. (Temperature $20 \cdot 5^{\circ}-21^{\circ} \mathrm{C}$.)

Wave-lengths (in $\mu \mu$).	$\gamma-\alpha$.	$\gamma-\beta$.	$\beta-\alpha$.
700	0.0076	0.0084	0.0042
671	0.0077	0.0034	0.0043
644	0.0077	0.0036	0.0041
610	0.0077	0.0034	0.0043
589.3	0.0078	0.0034	0.0044
554	0.0076	0.0033	0.0043
535	0.0077	0.0033	0.0044
527	0.0076	0.0083	0.0043
508.5	0.0075	0.0032	0.0043

Positions of the Optic Axes.
To find the positions of the optic axes, A and B, of the oligoclase, two sections, s_{1} and s_{2}, were prepared, one of which $\left(s_{1}\right)$ showed the emergence of A, and the other $\left(s_{2}\right)$ that of B, in the field of the conoscope. The conoscopic figures of these sections were so distinct that the points of emergence of the optic axes could be very accurately determined by means of them.

Position of the Optic Axis A.-The orientation of the section s_{1} was determined with a reflecting goniometer to be as shown in figs. 1 and 2,1 where

$$
\begin{array}{lll}
b^{\prime}(0 \overline{1} 0): c(001) & \ldots & 93^{\circ} 45 \cdot 5^{\prime} \\
b^{\prime}(0 \overline{1} 0): s_{1} & \ldots & 3914 \\
c(100): s_{1} & \ldots & 9745
\end{array}
$$

[^0]Observing this section under a conoscope, the apparent central distance of the point of emergence of A was measured with a micrometer ocular. The readings for it were taken at various positions of zero-isogyre, so as to eliminate the possible error due to the shape of the interference-figure. From the result of this measurement the central angular distance of A within the crystal (ρ or $s_{1} A$ in fig. 1) was calculated by means of Mallard's formula, using the values of β already given. Then the position of the point of emergence of A was determined with a co-ordinate micrometer

Fig. 1.

Fig. 2

Fig. 1. Stereogram showing the positions of s_{1} and A of oligoclase; projected on the plane of $s_{1}, s_{1} A=\rho, P H=\theta$.

Fig. 2. Sterengram showing the positions of s_{1} and A of oligoclase and the relations between ρ, θ, ϕ, and λ; projected on the plane perpendicular to the c-axis. $s_{1} A=\rho, P H=\theta, E A=\phi(-), O E=\lambda$.
ocular, taking the trace of $c(001)$ as abscisea, and from this the azimuth of $A(\theta$ or $P H)$ with the trace of $c(001)$ was calculated. Table IV shows ρ and θ thus obtained for light of five different wave-lengths.

Table IV.

Wave-lengths (in $\mu \mu$),	ρ.	θ.
700	$10^{\circ} 19^{\prime}$	$9^{\circ} 0^{\prime}$
644	$10 \quad 34$	913
589.3	1051	940
535	118	108
508.5	1115	1031

The values ${ }^{1}$ of ϕ and λ for A can be found from those of ρ and θ in the following way:

In the spherical triangle $b s_{1} A$ (fig. 2) we have

$$
\begin{equation*}
\cos b^{\prime} A=\cos b^{\prime} s_{1} \cos s_{1} A+\sin b^{\prime} s_{1} \sin s_{1} A \cos b^{\prime} s_{1} A \tag{1}
\end{equation*}
$$

and $\quad \sin s_{1} b^{\prime} A=\frac{\sin s_{1} A \sin b^{\prime} s_{1} A}{\sin b^{\prime} A}$
By solving the spherical triangle $b^{\prime} c s_{1}$ whose three sides are known we obtain

$$
b_{s_{1} c}^{\prime}=86^{\circ} 26 \cdot 4^{\prime} \quad \text { and } \quad c b^{\prime} s_{1}=97^{\circ} 39 \cdot 2^{\prime} ;
$$

and we have also $\quad c \varepsilon_{1} A=90^{\circ}-\theta$,

$$
\begin{aligned}
& b_{s_{1}}^{\prime} A=b^{\prime} s_{1} c+c s_{1} A=86^{\circ} 26 \cdot 4^{\prime}+90^{\circ}-\theta, \\
& b^{\prime} A=90^{\circ}+\phi, \quad s_{1} A=\rho, \quad b^{\prime} s_{1}=39^{\circ} 14^{\prime},
\end{aligned}
$$

and ${ }^{2}$

$$
\begin{array}{r}
s_{1} b^{\prime} A=c b^{\prime} s_{1}-\left(c b^{\prime} O+O b^{\prime} A\right)=97^{\circ} 39 \cdot 2^{\prime}-\left(\angle \beta-90^{\circ}+\lambda\right) \\
=71^{\circ} 15 \cdot 6^{\prime}-\lambda .
\end{array}
$$

Hence
$-\sin \phi^{\circ}=\cos 39^{\circ} 14^{\prime} \cos \rho-\sin 39^{\circ} 14^{\prime} \sin \rho \sin \left(86^{\circ} 26 \cdot 4^{\prime}-\theta\right) \ldots \ldots(3)$
and $\quad \sin \left(71^{\circ} 15 \cdot 6^{\prime}-\lambda\right)=\frac{\sin \rho \cos \left(86^{\circ} 26 \cdot 4^{\prime}-\theta\right)}{\cos \phi} \ldots \ldots \ldots \ldots \ldots .$. (4)
ϕ and λ for the optic axis A calculated by (3) and (4) are tabulated below (Table V).

Table V.-Position of the Optic Axis A of Oligoclase. (Temperature $21^{\circ} \mathrm{C}$.)

Wave-lengths $($ in $\mu \mu)$.	ϕ.	λ	
700	-40°	39^{\prime}	$+68^{\circ}$
19^{\prime}			
644	-40	25	+68
$589 \cdot 3$	-40	9	+68
535	-39	54	+67
$508 \cdot 5$	-39	47	+67

Position of the Optic Axis B.-The position of the optic axis B of the oligoclase was determined with the section s_{9}, in the same way as above. The section s_{2} was orientated as shown in figs. 3 and 4 , where

$b(010): c(001)$	\ldots	$86^{\circ} 14.5^{\prime}$
$b(010): s_{2}$	\ldots	4041
$c(001): s_{2}$	\ldots	$86 \quad 39.5$

${ }^{1} \phi$ and λ are respectively the latitude and the longitude of the optic axis in the spherical projection, taking the great circle parallel to $b(010)$ as the equator, and the meridian of the c-axis as the initial meridian (cf. fig. 2). In fig. 2, ϕ is positive when measured to the right (i. e. in the first and fourth quadrants) ; and λ is positive when measured upward (i.e. in the first and second quadrants).
$2 \angle B$, the angle between the crystallographic axes $c: a$, for $A b_{76} A n_{24}$ is $116^{\circ} \mathbf{2 3 \cdot 6} 6^{\prime}$ according to E. Schmidt, Die Winkel der kristallographischen Achsen

The values of ρ^{\prime} and θ^{\prime} for B are given in Table VI. ${ }^{1}$

Table VI.

Fig. 3. Stereogram showing the positions of s_{2} and B of oligoclase; projected on the plane of $s_{2}: \quad s_{2} B=\rho^{\prime}, P L=\theta^{\prime}$.
Fig. 4. Stereogram showing the positions of s_{2} and B of oligoclase and the relations between $\rho^{\prime}, \theta^{\prime}, \phi^{\prime}$, and λ^{\prime}; projected on the plane perpendicular to the c-axis. $s_{2} B=\rho^{\prime}, P L=\theta^{\prime}, F B=\phi^{\prime}, O F=\lambda^{\prime}$.

From the spherical triangle $b c s_{2}$ (fig. 4) we have

$$
b s_{2} c=88^{\circ} 7 \cdot 3^{\prime} \quad \text { and } \quad c b s_{2}=89^{\circ} 14 \cdot 6^{\prime}
$$

We have also

$$
c s_{2} B=90^{\circ}-\theta^{\prime}
$$

$$
b s_{2} B=88^{\circ} 7 \cdot 3^{\prime}+90-\theta^{\prime}
$$

$$
b B=90^{\circ}-\phi^{\prime}, \quad s_{2} B=\rho^{\prime}, \quad b s_{2}=40^{\circ} 41^{\prime}
$$

and

$$
s_{2} b B=89^{\circ} 14 \cdot 6^{\prime}-\left(\angle \beta-90^{\circ}+\lambda^{\prime}\right)=62^{\circ} 51^{\prime}-\lambda^{\prime}
$$

Hence the relations in the spherical triangle $b s_{2} B$ corresponding to (3) and (4) are :

$$
\begin{equation*}
\sin \phi^{\prime}=\cos 40^{\circ} 41^{\prime} \cos \rho^{\prime}-\sin 40^{\circ} 41^{\prime} \sin \rho^{\prime} \sin \left(88^{\circ} 7 \cdot 3^{\prime}-\theta^{\prime}\right) \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\sin \left(62^{\circ} 51^{\prime}-\lambda^{\prime}\right)=\frac{\sin \rho^{\prime} \cos \left(88^{\circ} 7 \cdot 3^{\prime}-\theta^{\prime}\right)}{\cos \phi^{\prime}} \tag{6}
\end{equation*}
$$

der Plagioklase. Chemie der Erde, Jena, 1915, vol. 1, p. 351 ; Inaug.-Diss., Heidelberg, 1916. [Min. Abstr., vol. 1, p. 390.]
${ }^{1}$ Throughout this paper, ρ, θ, ϕ, and λ for B are denoted as $\rho^{\prime}, \theta^{\prime}, \phi^{\prime}$, and λ^{\prime} respectively, to avoid confusion with those for A.

The results of the calculation of ϕ^{\prime} and λ^{\prime} from the values of ρ^{\prime} and θ^{\prime} in Table VI by (5) and (6) are as follows:

Table VII.-Position of the Optic Axis B of Oligoclase. (Temperature $21^{\circ} \mathrm{C}$.)

Wave-lengths (in $\mu \mu$).	ϕ^{\prime}.	λ^{\prime}.
700	$+42^{\circ} 33^{\prime}$	$+61^{\circ} 1^{\prime}$
644	+4229	+6111
589.3	+4225	+6122
585	+4218	+6138
508.5	+4218	+6144

Fig. 5. Stereogram showing the relations between the positions of A and B and the optic axial angle; projected on the plane perpendicular to the c-axis. $E A=\phi(-), O E=\lambda, F B=\phi^{\prime}, O F=\lambda^{\prime}$.

Optic Axial Angle:

The optic axial angle ($2 V$) of the oligoclase was calculated in two different ways: (i) from the three principal refractive indices by the well-known relation

$$
\begin{equation*}
\tan \Omega=\frac{\gamma}{\alpha} \sqrt{\frac{(\beta+\alpha)(\beta-\alpha)}{(\gamma+\beta)(\gamma-\beta)}} \tag{7}
\end{equation*}
$$

where Ω denotes the angle between the optic elasticity axis Z and one of the optic binormals, and (ii) from $\phi, \lambda, \phi^{\prime}$, and λ^{\prime} by the relation ${ }^{1}$
$\cos A B=\sin \phi \sin \phi^{\prime}+\cos \phi \cos \phi^{\prime} \cos \left(\lambda-\lambda^{\prime}\right)$
which is obtained from
$\cos A B=\cos b A \cos b B+\sin b A \sin b B \cos A b B$
in the spherical triangle $b A B$ (fig. 5), by putting

$$
b A=90^{\circ}-\phi, \quad b B=90^{\circ}-\phi^{\prime}, \quad A b B=\lambda-\lambda^{\prime}
$$

${ }^{1}$ This relation holds good for any positions of A and B, taking signs of ϕ, λ, ϕ^{\prime}, and λ^{\prime} into consideration.

The optic axial angles of the oligoclase calculated by (7) and (8) are given respectively in columns I and II of Table VIII.

In the present case, Ω is greater than 45°, i.e. the mineral is optically negative for light of the wave-lengths $700-508.5 \mu \mu$, and

$$
2 V=180^{\circ}-2 \Omega=A B
$$

Table VIII.-Optic Axial Angle of Oligoclase. (Temperature $20.5^{\circ}-21^{\circ} \mathrm{C}$.)

Wave-lengths (in $\mu \mu$).	I.	II.
700	$83^{\circ} 45^{\prime}$	$83^{\circ} 28^{\prime}$
671	834	-
644	$\begin{array}{ll}83 & 57\end{array}$	$83 \quad 9$
610	835	-
589.3	8225	8247
554	8214	-
535	8135	8224
527	8214	
508.5	8122	8211

I. Calculated from α, β, and γ. II. Calculated from $\phi, \lambda, \phi^{\prime}$, and λ^{\prime}.

II. Andesine.

The material examined was a small crystal of andesine from Maeyama, Shinano, Japan, 5 mm . in the longest diameter, bounded by $b(010), c(001)$, $m(110), M(110), f(130), z(1 \overline{3} 0)$, and $y(\overline{201})$, flat parallel to b, and twinned according to the Carlsbad-law. This audesine is said to form phenocrysts in a dacitic rock, and its chemical composition is represented by $O r_{7} A b_{56}$ $A n_{37}$ according to the analysis by T. Nishikawa. ${ }^{1}$

The optical constants for sodium-light of andesine from the same locality were determined by F. Becke and M. Goldschlag ${ }^{2}$ with the results:

$$
\alpha=1.5461 \quad \beta=1.5498 \quad \begin{aligned}
& \lambda=+80 \cdot 4^{\circ} \\
& \phi=-36 \cdot 3^{\circ}
\end{aligned} \quad B\left\{\begin{array}{l}
\lambda^{\prime}=+40.0^{\circ} \\
\phi^{\prime}=+37.1^{\circ}
\end{array}\right.
$$

The material available to the present writer was not very suitable for making a complete study of the dispersion, owing to the small size of the crystal, its twinning and zonal structure ; and so only the dispersion of the principal refractive indices was observed.

[^1]
Refractive Indices and Birefringencies.

A polished plane surface practically parallel to $b(010)$ of the andesine was employed for determining refractive indices. On working with the refractometer it was found difficult at certain azimuths to observe accurately the boundary lines of total reflection, especially for the light near the blue end of the spectrum. The refractive indices of the andesine in the following table should therefore be regarded as approximate.

Table IX.-Refractive Indices of Andesine. (Temperature 2:웅.)

Wave-lengths (in $\mu \mu$).	a.	β.	$\boldsymbol{\gamma}$
700	1.5408	1.5449	1.5486
671	1.5419	1.5459	1.5497
644	1.5427	1.5468	1.5506
610	1.5442	1.0482	1.5519
589.3	1.5450	1.5491	1.5529
554	1.5468	1.5508	1.5547
535	1.5478	1.5518	1.5559
527	1.5484	1.5523	1.5564
508.5	1.5496	1.5536	1.5574

The refractive indices for light of the wave-length $589 \cdot 3 \mu \mu$ in the above table are a little lower than those determined by F. Becke and M. Goldschlag. This may probably be accounted for as due largely to the difference of the materials examined.

Birefringencies calculated from the above values of the refractive indices are as follows:

Table X.-Birefringencies of Andesine. (Temperature $\mathbf{2 2}^{\circ} \mathrm{C}$.)

Wave-lengths $($ in $\mu \mu)$.	$\gamma-\alpha$.	$\gamma-\beta$.	$\beta-\alpha$.
700	0.0078	0.0037	0.0041
671	0.0078	0.0038	0.0040
644	0.0079	0.0038	0.0041
610	0.0077	0.0037	0.0040
589.3	0.0079	0.0038	0.0041
554	0.0079	0.0039	0.0040
535	0.0081	0.0041	0.0040
527	0.0080	0.0041	0.0039
508.5	0.0073	0.0038	0.0040

III. Labradobite.

The material examined was a labradorite of high degree of homogeneity from County Down, Ireland. It is the same material as that described by A. Hutchinson and W. Campbell Simith. ${ }^{1}$ According to them the specimen

[^2]came from large phenocrystic constituents ($\mathbf{3}$ by 5 cm . or larger) of the dykes (4 to 6 feet wide) occurring just below the lighthouse at St. John's Point, near Ardglass. The groundmass in which the phenocrysts are embedded is very compact, and consists largely of short laths of labradorite, the interstices between which are filled up by augite, magnetite, and green glass. The chemical composition of the felspar now under consideration is represented by $0 r_{5 \cdot 0} A b_{32} \cdot 7, A n_{82 \cdot 3,}$, according to the analyses by G. G. Knighton and M. C. Burkitt. ${ }^{1}$

The main optical data (for sodium-light) of the labradorite determined by A. Hutchinsou and W. Campbell Smith are as follows:

$$
\begin{gathered}
\alpha=1.5630 \quad \beta=1.5665 \quad \begin{array}{c}
\gamma=1.5712, \\
\text { Optically positive. }
\end{array} \quad 2 V=81^{\circ} 48^{\prime}
\end{gathered}
$$

Refractive Indices and Birefringencies.
The refractive indices of the labradorite were determined in the same way as in the case of the oligoclase.

Table XI.-Refractive Indices of Labradorite. (Temperature $21.5^{\circ} \mathrm{C}$.)

Wave-lengths $($ in $\mu \mu)$.	α.	β.	$\boldsymbol{\gamma}$.
700	1.5577	1.5619	1.5668
671	1.5587	1.5629	1.5679
644	1.5596	1.5637	1.5686
61.0	1.5614	1.5654	1.5703
589.3	1.5623	1.5663	1.5713
554	1.5640	1.5680	1.5731
535	1.5652	1.5691	1.5742
527	1.5657	1.5696	1.5743
508.5	1.5671	1.5709	1.5761

Table XII.—Birefringencies of Labradorite. (Temperature $21 \cdot 5^{\circ} \mathrm{C}$.)

Wave-lengths $($ in $\mu \mu)$.	$\boldsymbol{\gamma}-\boldsymbol{\alpha}$.	$\boldsymbol{\gamma}-\boldsymbol{\beta}$.	$\boldsymbol{\beta}-\boldsymbol{\alpha}$.
700	0.0091	0.0049	0.0042
671	0.0092	0.0050	0.0042
644	0.0090	0.0049	0.0041
610	0.0089	0.0049	0.0040
589.3	0.0090	0.0050	0.0040
554	0.0091	0.0051	0.0040
535	0.0090	0.0051	0.0039
527	0.0091	0.0052	0.0039
508.5	0.0090	0.0052	0.0038

${ }^{1}$ The analyses are given in the above cited paper (p. 270) by A. Hutchinson and W. Campbell Smith. The mean of the three analyws:
$\mathrm{SiO}_{2} . \quad \mathrm{Al}_{2} \mathrm{O}_{3} . \quad \mathrm{Fe}_{2} \mathrm{O}_{3} . \quad \mathrm{CaO} . \quad \mathrm{Na}_{2} \mathrm{O} . \quad \mathrm{K}_{2} \mathrm{O} . \quad$ Ign. loss. Total.
$\begin{array}{llllllll}52.33 & 30.22 & 0.40 & 12.52 & 3.62 & 0.85 & 0.36 & 100.30\end{array}$

Positions of the Optic Axes.

The positions of the optic axes of the labradorite were determined with a section (s) orientated as shown in figs. 6 and 7, where

$b(010): c(001)$	\ldots	\ldots	86°	$\mathbf{8}^{\prime}$
$c(001): m(110)$	\ldots	\ldots	65	51
$b(010): m(110)$	\ldots	\ldots	58	30
$m(110): s$	\ldots	\ldots	62	20
$c(001): s$	\ldots	\cdots	86	9

Fig. 6.

Fig. 7.

Fig. 6. Stereogram showing the positions of s and A of labradorite and also the directions of extinction ($s X^{\prime}$ and $s Z^{\prime}$) and of the trace of the optical plane $(Q R)$ in the section s; projected on the plane of $s . s A=\rho, P H=\theta, P X^{\prime}=\epsilon$, $P Q=\delta$.

Fre. 7. Stereogram showing the positions of s and A of labradorite and the relations between ρ, θ, ϕ, and λ; projected on the plane perpendicular to the c-axis. A in this figure corresponds to the antipode of A in fig. 6. s $A=180^{\circ}-\rho$, $P K=180^{\circ}-\theta, E A=\phi(-), O E=\lambda$.

From the above it follows that

$$
\begin{array}{lllrr}
\angle \beta & \ldots & \ldots & 116^{\circ} & 4 \cdot 4^{\prime} \\
b(010): s & \ldots & \ldots & 4 & 14 \cdot 8
\end{array}
$$

The section did not show the emergence of the optic axes, A and B, in an ordinary conoscope, but the point of emergence of A was within the field of a large aperture conoscope provided with a $\frac{1}{12}$-inch objective immersed in cedarwood oil. With this conoscope, ρ and θ for A of the labradorite were measured in the same way as in the case of the oligoclase.

Since the section s was the only one whose orientation could be determined accurately, the writer tried to find ρ^{\prime} and θ^{\prime} for B also with this section. For this purpose the directions of extinction and of the trace of the optical plane in s were determined. They are represented in fig. 6, where $8 X^{\prime}$ and $s Z^{\prime}$ are respectively the vibration-directions of the faster and slower waves in the section, and $Q R$ the trace of the optical plane. The results of the measurements are given, with ρ and θ, in Table XIII, where ϵ denotes the angle between $s X^{\prime}$ and $s P$ (the trace of c), or $P I^{\prime}$, and δ the angle between $Q R$ and $s P$, or $P Q$.

For determining the extinction position a Bertrand quartz-plate ocular was used, and the angle was read at four azimuths in a complete rotation of the stage on which the section was put, the section being brought to extinction by rotating the stage first from one direction and then from the other. δ was determined also at four azimuths of the stage, such that the trace of the optical plane was parallel to one of the vibration-directions of the crossed nicols. Here, too, the section was brought to this position from both directions. Each reading of ϵ and δ was taken to 2.5^{\prime} by means of a vermier attached to the stage. The values given under ϵ and δ in Table XIII are the mean values obtained from repeated measurements.

Table Xili.

Wave-lengths (in $\mu \mu$)	ρ.	θ e	ϵ.	ס.
700	$39^{\circ} 58^{\prime}$	$174^{5} 34^{\prime}$	$24^{\circ} 27^{\prime}$	$36^{\circ} 51^{\prime}$
644	3937	17415	2435	3717
$589 \cdot 3$	394	$173 \quad 58$	2445	3741
535	3830	17340	2454	3817
508.5	3813	17381	2458	$38 \quad 29$

Position of the Optic Axis A.-By solving the spherical triangle bcs we oltain

$$
b s c=89^{\circ} 37.9^{\prime} \text { and } c l s=90^{\circ} 4.9^{\prime}
$$

we have also

$$
c s A=270^{\circ}-\theta
$$

$$
b s A=360^{\circ}-b s c-c s A=\theta+0^{\circ} 22 \cdot 1^{\prime}
$$

$$
b A=90^{\circ}-\phi, \quad s A=180^{\circ}-\rho, \quad b s=4^{\circ} 14 \cdot 8^{\prime}
$$

and ${ }^{1}$

$$
s b A=\lambda-(c l s-c b O)=\lambda-\left\{90^{\circ} 4 \cdot 9^{\prime}-\left(\angle \beta-90^{\circ}\right)\right\}=\lambda-64^{\circ} 0 \cdot 5^{\prime}
$$

Hence we have in the spherical triangle $b s A$

$$
\begin{equation*}
\sin \phi=-\cos 4^{\circ} 14 \cdot 8^{\prime} \cos \rho+\sin 4^{\circ} 14 \cdot 8^{\prime} \sin \rho \cos \left(\theta+0^{\circ} 22 \cdot 1^{\prime}\right) \tag{9}
\end{equation*}
$$

and $\quad \sin \left(\lambda-64^{\circ} 0 \cdot 5^{\prime}\right)=\frac{\sin \rho \sin \left(\theta+0^{\circ} 22 \cdot 1^{\prime}\right)}{\cos \phi}$

$$
\begin{equation*}
1 \angle \beta=116^{\circ} 4 \cdot 4^{\prime} \text { as was given before. } \tag{10}
\end{equation*}
$$

Table XIV gives ϕ and λ for A, calculated from ρ and θ in Table XIII by (9) and (10).

Table XIV.-Position of the Optic Axis A of Labradorite. (Temperature $21.5^{\circ} \mathrm{C}$.)

Fig. 8. Steregram showing the relations between $\rho, \theta, \rho^{\prime}, \theta^{\prime}, \epsilon$, and δ in the section s of labradorite; projected on the plane of s. $s A=\rho, P H=\theta, s B=\rho^{\prime}$, $P L=\theta^{\prime}, P X^{\prime}=\epsilon, P Q=\delta$.
Fro. 9. Stereogram showing the relations between $\rho^{\prime}, \theta^{\prime}, \phi^{\prime}$, and λ^{\prime} of labradorite; projected on the plane perpendicular to the c-axis. $s B=\rho^{\prime}, P L=\theta^{\prime}$, $F B=\phi^{\prime}, O F=\lambda^{\prime}$.

Position of the Optic Axis B.-The position of the optic axis B was found from the data in Table XIII in the following way:

In the stereogram of fig. 8 , which was constructed in the same way as fig. $6, B$ must lie on the lgreat circle $Q A R$ which represents the optical plane. B must also lie on the line $s L$, drawn so that the angle $Z^{\prime}{ }_{8} L=$ $Z^{\prime} s H$ on the opposite side of $s Z^{\prime}$ with $s H$, by the Biot-Fresnel's law. The intersection of $Q A R$ and $s L$ is therefore B; and $s B$ and $P L$ are. respectively ρ^{\prime} and θ^{\prime} for B.

We have here, by construction,

$$
\begin{equation*}
\sigma^{\prime}=180^{\circ}-\theta+2 \epsilon \tag{11}
\end{equation*}
$$

In the spherical triangle $s A N$ (N being the intersection of $Q B A R$ with the perpendicular to $Q s R$ at s) we have

$$
\tan s N=\tan \rho \cos A s N
$$

and in $8 B N$

$$
\tan \rho^{\prime}=\frac{\tan s N}{\cos B s N}
$$

while $\quad A_{8} N=(\theta-\delta)-90^{\circ}$ and $B_{8} N=90^{\circ}-\left(\theta^{\circ}-\delta\right) ;$
therefore

$$
\begin{equation*}
\tan \rho^{\prime}=\frac{\tan \rho \sin (\theta-\delta)}{\sin \left(\theta^{\prime}-\delta\right)} \tag{12}
\end{equation*}
$$

ρ^{\prime} and θ^{\prime} calculated by (11) and (12) are given in the table below.
Table XV.

Wave-lengths $($ in $\mu \mu)$.	ρ^{\prime}.	θ^{\prime}	
700	$61^{\circ} 57^{\prime}$	$54^{\circ} 20^{\prime}$	
644	61	48	54
05			
$589 \cdot 3$	61	21	55
535	61	15	56
508.5	61	8	8
			56

As may be seen in fig. 9, we have
and

$$
\begin{gathered}
c s B=90^{\circ}-\theta^{\prime} \\
b s B=b s c+c 8 B=180^{\circ}-\left(\theta^{\prime}+0^{\circ} 22 \cdot 1^{\prime}\right) \\
s b B=c b s-c b O-\lambda^{\prime}=64^{\circ} 0 \cdot 5^{\prime}-\lambda^{\prime}
\end{gathered}
$$

Hence the relations for B corresponding to (9) and (10) for A are respectively:
$\sin \phi^{\prime}=\cos 4^{\circ} 14 \cdot 8^{\prime} \cos \rho^{\prime}-\sin 4^{\circ} 14 \cdot 8^{\prime} \sin \rho^{\prime} \cos \left(\theta^{\prime}+0^{\circ} 22 \cdot 1^{\prime}\right) \ldots(13)$
and

$$
\begin{equation*}
\sin \left(64^{\circ} 0 \cdot 5^{\prime}-\lambda^{\prime}\right)=\frac{\sin \rho^{\prime} \sin \left(\theta^{\prime}+0^{\circ} 22 \cdot 1^{\prime}\right)}{\cos \phi^{\prime}} . \tag{14}
\end{equation*}
$$

The results of the calculation of ϕ^{\prime} and λ^{\prime} from ρ^{\prime} and θ^{\prime} in Tiable XV by the above relations are as follows:

Table XVI.-Position of the Optic Axis B of Labradorite.
(Temperature $21.5^{\circ} \mathrm{C}$.)

Wave-lengths $($ in $\mu \mu)$.	ϕ^{\prime}.	λ^{\prime}	
700	$+25^{\circ} 33^{\prime}$	$+11^{\circ} 2^{\prime}$	
644	+2544	+1029	
589.3	+2613	+9	
535	+2621	+920	
508.5	+2634	+9	

Optic Axial Angle.

The optic axial angles of the labradorite for various wave-lengths were calculated from α, β, and γ by the relation (7), and also from $\phi, \lambda, \phi^{\prime}$, and
λ^{\prime} by the relation (8). The results are as in Table XVII. Here Ω is less than 45°, i. e. the mineral is optically positive for the light of the wavelengths $700-508.5 \mu \mu$; and $2 V=2 \Omega=180^{\circ}-A B$.

Table XVII.—Optic Axial Angle of Labradorite.	(Temperature 21.5 C.)	
Wave-lengths (in $\mu \mu$.)	I.	II.
700	$85^{\circ} 53^{\prime}$	$85^{\circ} 41^{\prime}$
671	85	16
644	85	9
610	84	26
589.3	83	52
554	83	18
535	82	35
527	82	2
508.5	81	18

I. Calculated from a, β, and γ.
II. Calculated from $\phi, \lambda, \phi^{\prime}$, and λ^{\prime}.

[^0]: ${ }^{1}$ In some of the following figures certain points have been displaced a little from their true positions in order to make the figutes clearer.

[^1]: ${ }^{1}$ T. Wada, Minerals of Japan, 1904, p. 135 ; revised edition (in Japanese), 1916, p. 184.

 | SiO_{2}, | $\mathrm{Al}_{2} \mathrm{O}_{3}$, | CaO. | $\mathrm{Na}_{2} \mathrm{O}$. | $\mathrm{K}_{2} \mathrm{O}$. | Total. |
 | :--- | ---: | ---: | :---: | ---: | ---: |
 | 58.21 | 26.46 | 7.58 | 6.32 | 1.28 | 99.85 |

 ${ }^{2}$ F. Becke and M. Goldschlag, Sitzungsber. Akad. Wiss. Wien, Math.-naturw. Kl., 1918, vol. 127, Abt. I, p. 502 ; F. Becke, Tscherm. Min. Petr. Mitt., 1921, vol. 35, p. 31. [Min. Abstr., vol. 1, p. 391 ; vol. 2, p. 61.]

[^2]: ${ }^{1}$ A. Hutchinson and W. Campbell Smith, Min. Mag., 1912, vol. 16, p. 264.

