THE MINERALOGICAL MAGAZINE

AND

JOURNAL OF
 THE MINERALOGICAL SOCIETY.

No. 113. June, 1926. Vol. XXI.

On the chemical classification of the mica group.
II. The basic micas.

By A. F. Hallimond, M.A., F.G.S.
Assistant Curator, Musemn of Practical Geology, London. ${ }^{1}$
[Read January 19, 1926.]

IN the first part of this paper ${ }^{2}$ it was shown that the acid section of the mica group could be divided into two main series, the potash micas and the lithia micas. The molecular ratio of potash to silica was 1:6 and the micas were therefore represented as salts of an acid characterized by this value. The present section coutains the result of a similar investigation of the basic micas, especially biotite and phlogopite ; here again it will be seen that the grouping $\mathrm{K}_{2} \mathrm{O} .6 \mathrm{SiO}_{2}$ is present throughout. For comparison of the molecular composition, the analyses of the basic micas have been recalculated in molecalar ratios, ($\mathrm{Si},{ }^{\prime} \mathrm{Ti}$) O_{2} being made equal to 600 according to the method already used for the acid micas. To economize space, however, figures have not been tabulated for the older analyses, but the values for $\mathrm{R}_{2} \mathrm{O}_{3}$ and RO, which are the only 'solid' variables when the ratio $\mathrm{K}_{2} 0.6 \mathrm{SiO}_{9}$ is fixed, have been
${ }^{1}$ Communicated by permission of the Director.
${ }^{2}$ A. F. Hallimond, Min. Mag., 1925, vol. 20, pp. 305-318.
plotted in fig. 5. This diagram renders it possible to ascertain at once those published analyses which approximate to a given composition; similarly, any new analysis can be classified and compared with earlier

Fig. $3 .{ }^{4}$ Frequency diagrams showing the incidence of $\mathrm{R}_{2} \mathrm{O}$-values in the published analyses of muscovite, lithia micas. and basic micas; also the incidence of values for $\mathrm{RO}+\mathrm{R}_{2} \mathrm{O}_{3}$ in muscovite (SiO_{2} $=600$). The upper line for lithia micas includes a few analyses not listed in Part I. The ordinates represent the number of analyses occurring in each division of the base-line. data. The analyses used in this paper are (1) the biotites and phlogopites cited by Dana, ${ }^{1}$ (2) those given by H. E. Boeke (complete analyses later than 1890), ${ }^{2}$ (3) a number of recent analyses by W. Kunitz and others; ratios for these are tabulated at the end of the paper.

Ratio of SiO_{2} to $\mathrm{K}_{2} \mathrm{O}$. - While the first part of this paper was in the press a discussion of the mica group was published by A. N. Winchell, ${ }^{3}$ who assigns formulae with the ratios $\mathrm{K}_{2} \mathrm{O} .6 \mathrm{SiO}_{2}$ (phlogopite), $\mathrm{K}_{2} \mathrm{O} .5 \mathrm{SiO}_{2}$ (' eastonite '), and $\mathrm{K}_{2} \mathrm{O} .8 \mathrm{SiO}_{2}$ (' phengite '). It is of special interest, therefore, to examine what proportion of the mica analyses deviate from the ratio $\mathrm{K}_{2} \mathrm{O} .6 \mathrm{SiO}_{2}$. This is conveniently done by means of frequency diagrams (fig. 3), in which the base-line is divided into compartments, corresponding with intervals of, say, 60-65, 65-70, $70-75, \& c$., in the value for $\mathrm{R}_{2} \mathrm{O}$, when $\mathrm{SiO}_{2}=600$. Above each compartment an ordinate is drawn representing the number of amalyses for which the $\mathrm{R}_{2} \mathrm{O}$-value falls within the interval. The resulting points yield a curve showing the relative frequency of analyses for the respective values of $\mathrm{R}_{2} \mathrm{O}$. Three
${ }^{1}$ Dana's 'System of Mineralogy', 6th ed., 1892, pp. 650, 631, 633.
${ }^{2}$ H. E. Boeke, Nemes Jahrb. Min., 1916, vol. 1, pp. 89-95. [Min. Abstr., vol. 1, p. 245.]
${ }^{3}$ A. N. Winchell, Amer. Journ. Sci., 1925, ser. 5, vol. 9, pp. 309-327, 415-450, diagram p. 321. [Min. Abstr., vol. 3, p. 12.]
${ }^{4}$ Figs. 1-2 were given in Part I of this paper.
such curves are shown in the figure, the first two being for the potash and lithia micas given in the first part of this paper, while the third represents the basic micas now plotted. The ratio $\mathrm{K}_{2} \mathrm{O} .5 \mathrm{SiO}_{2}$ requires the value $120 \mathrm{R}_{2} \mathrm{O}$, while $\mathrm{K}_{2} \mathrm{O} .8 \mathrm{SiO}_{2}$ requires 75 , and it is at once clear that few analyses contain $\mathrm{R}_{2} \mathrm{O}$ in these proportions; the majority lie close to the value 1,00 and are symmetrically grouped in a mamer which suggests that the deviations are due to accidental canses. The fourth curve in fig. 3 shows a similar distribution of the values for $\mathrm{R}_{2} \mathrm{O}_{3}+\mathrm{RO}$ in muscovite; these were shown in Part I to approximate to the simple value 300 . Taken together, the four curves offer very strong

Fic. 4. Relation of acid to basic micas. Type $\mathrm{K}_{2} \mathrm{O} . m \mathrm{RO}, n \mathrm{R}_{2} \mathrm{O}_{3} .6 \mathrm{SiO}_{2} . \mathrm{PH}_{2} \mathrm{O}$. General diagram showing the limits of composition for muscovite and biotite ; circles indicate the compounds derivable from graphical formulae based on trisilicic acid.
support to the view that both acid and basic micas are essentially compounds of the constant group $\mathrm{K}_{2} \mathrm{O} .6 \mathrm{SiO}_{2}$.

Relation of muscovite to biotite.-Fig. 1 in Part I of this paper showed the composition of the muscovite group, the co-ordinates being the molecular proportions of RO and $\mathrm{R}_{2} \mathrm{O}_{2}$ when $\mathrm{SiO}_{2}=600$. Fig. 5 is a similar diagram for the biotites. The two figures represent on a large scale portions of a general diagran for the muscovite-biotite group. This general diagram is shown in fig. 4, which summarizes the chemical relations of the two species. Only five analyses, tabulated on p. 33, fall in the space between biotite and muscovite, so that there is under normal conditions a wide gap in the range of solid solution.

Basicity of the micas in relation to that of the parent rooks.-The micas, with their widely varied range of RO-content, have presumably formed from silicate melts or solutions with a corresponding range of
composition. Beginning with melts of an acid character (pegmatites) nearly free from RO, we have, first, pure muscovite passing over into phengitic muscovite as the content of RO increases. In this way nearly one-third of the alumina may be replaced by RO. Further increase in RO results in the discontinuous addition of a substantial amount of RO to form the most acid members of the biotite group. 'Phase-rule' considerations would require that these acid biotites should be capable of co-existence with the corresponding muscovite, and they are indeed derived almost without exception from the granites and gneisses, rocks in which the two minerals often crystallize side by side. The range of micas from the granites and intermediate rocks extends about half-way across the biotite area, the remainder being occupied by vein micas, phlogopites, and a few micas from the basic rocks. Thus the chemical composition of the micas closely reflects their mode of origin.

The biotite group.-Fig. 5 represents very completely the chemical data for this section. Out of 119 analyses of biotite and phlogopite, only the five above mentioned lie outside the area of the figure and six others (p. 33) are omitted because of exceptional alkali-content. All the remainder lie within or very close to the area bounded by the broken lines. This area is therefore taken to represent approximately the normal limits of composition for the biotite group. Recent analyses are scattered fairly uniformly over the whole area, but there is need to supplement the existing data toward the top right and the bottom left corners. The latter contains three very interesting micas (nos. 201-203) from minette, kersantite, and syenite-porphyry, rocks which might be expected to yield biotites of exceptional composition. A rather sparse interval between biotite and phlogopite has now been bridged by recent analyses, so that the whole group seems to be a continuous series as regards composition. Micas usually called phlogopite comprise not only minerals of the accepted formula, but also a number represented by points toward the right of the area, with higher content of $\mathrm{R}_{2} \mathrm{O}_{3}$. 'Anomite' occurs in the centre of the area as well as on the phlogopite side, but a distinction based on the passage of 2 V through zero does not seem to warrant making this a separate species. Lepidomelane, a term sometimes applied to dark ferrous micas, but usually to micas rich in ferric oxide, must certainly include a number of oxidized materials. The composition is well exhibited in the tables given by Doelter. On account of the frequency of alteration, the lepidomelanes given by Dana have not been plotted, but there can be no doubt that a few oxidized micas will have been included in fig. 5. Kunitz suggests that in most analyses some of the
$300 \square 0178$

water has been reduced by FeO during ignition, so that the values for $\mathrm{H}_{2} \mathrm{O}$ tend to be too low. This would not affect the determination of ferrous iron, but Kunitz further suggests that a similar reaction has taken placein the mica after crystallization, and that all the iron was originally in the ferrous state. If the small amounts of ferric iron shown in most biotites were transferred to the RO group, the left-hand boundary of the biotite area would be somewhat narrowed, but the general character of the area would remain the same. There scems no reason, however, to believe that the natural melts are so deficient in oxygen as this assumption would imply, and it is more probable that the average fresh liotite is substantially in the condition in which it crystallized. The state of oxidation of iron and titanium will be discussed later in relation to the molecular volumes.

Chemical formulae.-In Part I the acid micas were referred to hexasilicic acid on account of the symmetry and convenience of the structural formulae. Similarly, the basic micas could be regarded as mixtures of a series of compounds of the type $\mathrm{K}_{2} \mathrm{O} \cdot m \mathrm{RO} \cdot m \mathrm{R}_{2} \mathrm{O}_{3} \cdot 6 \mathrm{SiO}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, as indicated along the co-ordinate axes of fig. 4. Upon consideration of the most basic phlogopites, however, there appear reasons for preferring the half-formulae with KSi_{3} as the common nucleus, similar to that given below. Possible trisilicic compounds are represented in fig. 4 by circles. According to the trisilicate scheme, the basic micas are essentially a series of mixtures extending from phlogopite, $\frac{1}{2}\left(\mathrm{~K}_{2} \mathrm{O} \cdot 6 \mathrm{RO} . \mathrm{R}_{2} \mathrm{O}_{3} \cdot 6 \mathrm{SiO}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right)$ towards a biotite $\frac{1}{2}\left(\mathrm{~K}_{2} \mathrm{O} .4 \mathrm{RO} .3 \mathrm{R}_{2} \mathrm{O}_{3} \cdot 6 \mathrm{SiO}_{2}, 2 \mathrm{H}_{2} \mathrm{O}\right)$. The series is extended laterally by the presence of other analogous compounds and is terminated at the acid esd by the triansition to muscovite. As the RO increases the series as a whole exhibits an increasing degree of substitution of $\mathrm{R}_{2} \mathrm{O}_{3}$ accompanied by an increasing addition of RO , so that the points extend down a rather oblifue line on the diagram.

Biotites are easily represented graphically by a hexasilicate furmula like that already given for protolithionite (Part I, p. 315), putting alumina or RO in place of lithia. Phlogopite, however, could only be represented by substituting RO for the water attached to the alumina, and this water is certainly not displaced. With trisilicic formulae, on the other hand, the valency available for the bases is greater; phlogopite can then be written

and from this the most basic micas on the right of fig. 5 are derived by putting $2\left(\mathrm{AlO}_{2} \mathrm{R}\right)$ or a similar group in place of R .

$$
\begin{gathered}
\text { Basic Micas. Analyses recalculated to molecular proportions when } \\
(\mathrm{Si}, \mathrm{Ti}) \mathrm{O}_{2}=600 .
\end{gathered}
$$

Table III. Recent analyses.

$\stackrel{\dot{4}}{\dot{4}}$			$\begin{aligned} & \dot{\infty} \\ & 0 \\ & \mathbf{x}^{\prime} \end{aligned}$	O		$\begin{gathered} \dot{\sim} \\ \underset{\sim}{m} \end{gathered}$	*	$\begin{aligned} & \mathbf{s i n}^{+} \\ & + \\ & 0_{-}^{+} \end{aligned}$	$\begin{aligned} & \square \\ & \dot{\theta} \\ & \stackrel{y}{\theta} \end{aligned}$	$\begin{aligned} & \frac{3}{5} \\ & \frac{9}{6} \\ & > \end{aligned}$	
1	Kunitz, ${ }^{2}$ 1		151	578	103	325	-	325	323	312	11
2	, 2		114	595	83	55	119	174	299	300	-1
3	, 3		158	605	100	120	65	185	313	319	-6
4	4		113	580	89	42	92	134	-	-	-
5	5		139	577	103	137	52	189	310	307	3
6	, 6		149	578	114	162	42	304	316	311	5
7	, 7		156	544	108	175	-	-	-	-	--
8	: 8		152	567	100	152	44	196	309	311	-2
9	" 9		171	524	109	167	-	-	309	312	-3
10	" 10		188	511	110	171	4	175	319	317	2
11	, 11		199	464	99	217	-	-	315	314	1
12	" 12		180	489	101	239	-	-	314	310	4
13	Grout, ${ }^{3} 1$		150	475	94	62	-	-	300	296	4
14	,, 2		178	433	63	160	-	-	298	301	-3
15	, 3	...	153	523	89	59	-	-	300	304	-4
16	" 4		226	469	73	67	-	-	301	300	1
17	Seidel, ${ }^{4}$...	153	496	133	228	-	-	334	300	34
18	" 2		197	488	90	199	-	-	320	317	3
19	,, 3		178	410	117	161	-	-	311	298	13
20	" 4	\cdots	159	475	128	187	-	-	333	300	33
21	" 5	...	198	502	98	237	-	-	324	320	4
22	,, 6		268	368	132	253	--	-	359	327	32
23	Pilipenko ${ }^{5}$		183	369	100	190	-	-	305	294	11
24	Stanley ${ }^{6}$..	216	415	95	126	19	145	. 303	313	-10

${ }^{1}$ These values, for the molecular volumes, will be dealt with in a later part of the paper. Tables I-II were given in Part I.
${ }^{2}$ W. Kunitz, Neues Jahrb, Min., 1924, Beilage-Band 50, p. 386. [Min. Abstr., vol. 2, p. 4ヨ4.]
${ }^{3}$ F. F. Grout, Amer. Min., 1924, vol. 9, p. 161. [Min. Abstr., vol, 3, p. 53.] Potash seems to be replaced by lime in nos. 14, 15, and 16.
${ }^{*}$ P. Seidel, Diss. Univ. Zürich, 1906. Refs. 4-8 are cited in Zeits. Krist., 1923, vol. 57, pp. 416-421.
${ }^{5}$ P. P. Pilipenko, Izvestiya Univ. Tomsk, 1915, no. 63, pp. 553-55́4. [Min. Abstr., vol. 2, p. 109.$\}$
${ }^{6}$ E. R. Stanley, Trans. Roy. Soc. South Australia, 1916, vol. 40, pp. 268-271. [Min. Alstr., vol. 1, p. 70.]

Table III（continutd）：

$\dot{8}$		$\stackrel{B}{8}$	\dot{i}		$\stackrel{\dot{B}}{\dot{\prime}}$	䒠		$\begin{aligned} & \dot{1} \\ & \frac{1}{2} \\ & \dot{5} \end{aligned}$	$\begin{aligned} & \dot{5} \\ & \dot{3} \\ & \dot{3} \\ & > \end{aligned}$	淢
25	Thomassen ${ }^{7}$	183	510	102	53	3	56	－	－	－
26	Eckermann ${ }^{*}$	118	633	110	100	73	173	311	307	4
27	Harwood ${ }^{9}$	240	394	97	251	18	269	－	－	－
28	，， $10 .$.	229	386	93	212	19	231	－	－	－
29	， 11	240	421	106	195	25	220	－	－	－
30	Vincent ${ }^{12}$	162	601	104	52	68	120	326	320	6
31	Ginzburg ${ }^{13}$	174	599	96	（ign．） 6	－	－	－	－	－
32	Jakob，${ }^{14} 1$	151	658	101	291	－	－	332	824	8
33	，， 2	134	650	96	186	－－	－	327	316	11
34	， 3	124	594	101	254	－	－	320	304	16
35	， 4	182	587	104	252	－	－	328	326	2
36	， 5	121	600	101	189	－	－	330	302	28
		（180）	（481）						（309）	（21）
37	，， 6	206	545	113	213	－	－	327	329	－2
38	＂ 7	104	670	98	262	－	－	814	305	9
		（119）	（639）						（309）	（5）
39	＂，8	97	669	92	169	－	－	810	302	8
		（126）	（611）						（307）	（3）
40	Eckermann ${ }^{15}$	195	498	100	183	7	190	316	318	－2
42	＂	123	610	108	144	（；7	211	313	305	8
43	＂	139	572	78	99	56	15．）	295	307	－12
44	＂，．．．	139	660	82	11%	78	195	332	818	14

L．Thomassen，Vidensk．Schrift．I．Mat．－naturiv．Kl．，Kristiania，1920－1921． nぃ．9，p． 295.
${ }^{8}$ N．Sahlbom，Geol．För．Fürlı．Stockholm，1922，vol．44，pp．383－385．［Min． Abstr．，vol．1，p．396．］The figures given are for the analysis completed by Eckermann（see ref． 15 below）．
${ }^{9}$ H．F．Harwood，Min．Mag．，1923，vol．20，p． 23.
10 Biotite from Dartmoor granite；unpublished analysis included by courtesy of Messrs．A．Brammall and H．F．Harwood．
${ }^{11}$ H．F．Harwood，Min．Mag．，1924，vol．20，p． 203.
12 Phlogopite from Twinnge，Burma；unpublished analysis included by courtesy of Mr．H．C．G．Vincent（analyst）．
${ }^{1 s}$ I．I．Ginzburg，Min．Abstr：，1925，vol．2，p． 466.
14 J．Jakob，Zeits．Krist．，1925，vol．61，p．157．［Min．Abstr．，vol．2，p．428．］
Lithia and fluorine do not seem to have been estimated．Except in nos．5，7，8， iron and manganese are assigned to sesquioxide，since this brings the total nearer to 100 ．The use of the total in this way does not appear reliable and the values given in brackets have been calculated to show the result of regarding the（ Fe, Mn ）as sesquioxide throughout．Most of these analyses lie on the extreme right in fig． 5 ，but they have not been plotted on account of this uncertainty．
${ }^{15}$ H．Eckermann，Tschermaks Min．Petr．Mitt．，1925，vol．38，p．281．［Min． Abstr．，vol．8，p．81．］Small amounts of $\mathrm{Li}_{2} \mathrm{O}$ are included with $\mathrm{R}_{2} \mathrm{O}_{3}$ ．Manganese

Table 1V. Basic micas not plotted in fig. 5.

$$
\mathrm{R}_{2} \mathrm{O}_{3}
$$

1. Micas with high alkalis.

Boeke, 193	\ldots	195	449	136	230	-	-	
,,	205	\ldots	145	424	135	182	-	-
,,	207	\ldots	226	442	130	266	-	-

2. Micas with low alkalis.

Boeke, 146	\ldots	218	508	51	153	-	-
,$"$	179	\ldots	235	515	61	272	-
",	176	\ldots	242	370	64	148	-

3. Micas intermediate between biotite and muscovite.

Dana,	18	\ldots	278	203	93	86	111	187
,,	21	\ldots	322	296	111	268	7	275
$"$,	32	\ldots	303	255	97	265	-	-
Boeke,	80	\ldots	213	298	125	121	-	-
,	100	\ldots	145	280	92	136	-	-

is not stated, and it seems possible that small amounts of that element may have been included with MgO. No. 43 contains also CaO (30 units) and BaO (7 units) ; the crystals were not transparent in bulk. See also no. 26, ref. 8 , above.

