Crystallography of aramayoite. By HARRY BERMAN and C. W. WOLFE, Harvard University, Cambridge, Massachussetts.

[Read November 9, 1939.]

THE original description of aramayoite by Spencer in 1926¹ contained only a qualitative discussion of the crystallography, because suitable crystals for a more rigorous treatment were not found. The pseudo-tetragonal symmetry was recognized, and cleavages were noted, but only one was defined. Twinning was later observed in polished section by Schneiderhöhn and Ramdohr,² but undefined. Yardley³ demonstrated the triclinic symmetry of aramayoite by the Laue method, and determined the spacings of a considerable number of planes in the crystal. From these data she formulated a unit cell and correlated the X-ray data with Spencer's crystallographic results.

Several specimens of aramayoite found in our recently acquired Ahlfeld Bolivian collection contained small but excellent crystals. Measurement of these indicated that the Yardley X-ray crystallography was not consistent with an adequate morphological treatment of the form-development. The twenty-seven forms found by us lead to an obvious crystallographic unit (fig. 1), bearing a rather complex relationship to the Yardley unit. In order to test the suitability of the latter, we repeated the X-ray examination by the modern Weissenberg method and found complete accordance with our morphological treatment, as will be shown below.

Crystal Measurements.—The axis [001] of the zone containing the perfect platy cleavage (010) and the good cleavage (100) was set vertical for the two-circle measurements in order to facilitate the graphical choice of the proper unit.

Table I is a resume of the measurements, together with observations of frequency and quality for forms, on four of the best measured crystals. Fig. 2 is a drawing of crystal number 8 with the more prominent forms figured. About half of the forms are obtained from 'A' measurements.

¹ L. J. Spencer, Min. Mag., 1926, vol. 21, p. 156.

² H. Schneiderhöhn and P. Ramdohr, Lehrbuch der Erzmikroskopie, 1931, vol. 2, p. 388. ³ K. Yardley, Min. Mag., 1926, vol. 21, p. 163.

F10. 1. Aramayoite: gnomonic projection. F10. 2. Crystal of aramayoite. All of the pinakoidal forms were present on two crystals; 0kl, h0l, and hk0 forms with simple indices were found on most crystals. The indices of no form are greater than 3, indicating a simple relation between the chosen unit and the form development.

TABLE I. Aramayoite: Crystallographic Measurem	avoite: Crystallographic Measuremen	raphic Measureme	Crystallo	Aramayonte:	BLE I.	TA
--	-------------------------------------	------------------	-----------	-------------	--------	----

Forms.		Measured ra	nge.	Iter erj I me	Faces Crystal measured. number.			Weią	General quality ('A'-best).	
		φ.	-			2678		φ.	ρ.	
(001)	-0° 19'	-0° 22'	11° 00′	10° 41′	3	— × × ×	04	00'	10° 41'	B striat.
(010)					8	XXXX	0	00	90 00	A cleav.
(100)	75 52	76 34	90 00	90 00	4	× × — ×	75	52	90 00	C line
										cleav.
(110)	41 25	_	—	—	1	×	41	25	90 00	C line
(110)	-55 36	56 43	·	—	5	$\times \times \times \times$	-56	10	90 00	A med.
(230)	-40 25	_			1	x	-40	25	90 00	C striat.
(320)				_	1	x	50	13	90 00	A med.
(012)			34 32	35 02	3	$\times \times - \times$	0	00	34 43	A med.
(023)			39 39	40 43	3	$\times \times - \cdot \times$	0	00	40 16	B sm.
(011)		_	49 28	49 35	2	$- \times \times -$	0	00	49 32	A sm.
(J 1)			_		1	— — — ×	180	00	38 02	A sm.
(101)			_		1	× – – –	94	35	46 42	D lge,
(201)	- 99 35	-99 42	64 57	65 17	2	$\times \times$	- 99	39	65 07	A lge.
(Ĩ11)		_	_	_	1	×	- 49	44	54 26	C dot
(332)		_	_	_	1	x	-52	04	64 06	C dot
(221)	_			_	1		- 38	46	72 45	C dot
(121)	-28 29	- 29 39	65 04	65 27	2	$- \times \times -$	-29	04	65 16	A lge.
(211)		_			1	× _	- 72	26	67 10	D sm.
$(\overline{111})$		_	-		1	— — — ×	-134	57	56 49	B sm.
$(1\overline{2}2)$		_	_	_	1	×	-150	16	46 50	A med.
$(2\overline{1}2)$					1	×	119	54	50 56	D line
(121)	-152 24	-152 30	66 16	66 46	2	× — — ×	-152	30	66 46	B sm.
(211)	_	—	_		1	<u> </u>	-121	51	68 30	A med
(311)		-	_		1	×	-116	36	74 29	B sm.
(321)	_	_		_	ĩ	x	-129	29	76 49	E dot
$(1\overline{1}2)$			-	_	1	X	+106	42	31 22	D sm.
(132)		—			1		+149	10	53 00	C dot

H. BERMAN AND C. W. WOLFE ON

TABLE II. Aramayoite: Angle Table.

Triclinic; pinakoidal $-\overline{1}$.

$a:b:c=0.8753:1:0.9406; \ \alpha=100^{\circ}\ 22',\ \beta=90^{\circ}\ 00',\ \gamma=$	103° 54
$p_0: q_0: r_0 = 1.0889: 0.9690: 1; \lambda = 79^{\circ} 19', \ \mu = 87^{\circ} 24\frac{1}{2}', \ \nu = 1.0889: 0.9690: 1; \lambda = 1.0889$	75° 52
$p_0' = 1.1081, q_0' = 0.9861; x_0' = 0^\circ 00', y_0' = 0.1887$	

4	5.		ρ.	4	4.	E	3.		С.	\boldsymbol{Z}_{i}	.*
0°	00′	10°	41′	87°	24 ‡ ′	79°	19′	-		90°	00'
0	00	90	00	75	52	_	•	79°	19′		-
75	52	90	00		•	75	52	87	24]	0	00
40	32	90	00	35	20	40	32	81	54	0	00
49	11	90	00	26	41	49	11	83	$02\frac{1}{2}$	0	00
123	39‡	90	00	47	47 1	123	39 1	95	54	180	00
138	21]	90	00	62	29]	138	21 1	97	58	180	00
0	00	34	17	82	05 1	55	43	23	36	90	00
0	00	40	14	80	55]	49	46	29	33	90	00
0	00	49	35 1	79	17^{-}	40	241	38	541	90	00
180	00	38	34	98	45 1	128	34	49	15	270	00
- 94	21 1	47	08 1	136	04	93	111	48	57	-42	561
- 99	19	65	$20\overline{\frac{1}{2}}$	154	54	98	27]	67	29 1	- 24	57
-134	49 1	56	34]	135	52	126	$02\frac{1}{2}$	64	23]	42	56]
107	28	29	$23\frac{1}{2}$	65	171	98	28	34	01	-118	15
-49	55]	54	33	118	27	58	22	48	09	137	03]
-51	56 1	63	58	123	$25\frac{1}{2}$	56	22	57	43]	148	11
-53	00	69	37	126	01 1	55	39 1	63	27‡	155	03
-150	03 1	47	$06\frac{1}{2}$	120	$38\frac{1}{2}$	129	24]	56	33	-61	45
155	03 1	51	52	81	31	135	30	61	40 1	-118	15
-118	09	50	38	138	35 1	111	23]	56	141	-42	$56\frac{1}{2}$
-152	23	66	40	127	411	144	27	76	12 1	-42	56]
- 29	37	65	18	104	02^{-}	37	50	56	09	137	03]
121	55	68	27	152	20	119	27	74	21	-24	57
-73	30	65	57 1	141	$47\frac{1}{2}$	74	58	63	211	155	03
-116	31 1	74	$29\frac{1}{2}$	160	14 1	115	29]	79	271	-17	14
-128	50	76	25	152	01	127	33]	83	14	-17	14
	$ \begin{array}{c} 4\\ 0\\ 0\\ 0\\ 75\\ 40\\ 49\\ 123\\ 138\\ 0\\ 0\\ 0\\ 180\\ -94\\ -99\\ -134\\ 107\\ -499\\ -51\\ -53\\ -150\\ 155\\ -118\\ -152\\ -29\\ -121\\ -73\\ -116\\ -128\\ \end{array} $										

* Z = meridian co-ordinate with (010) polar and meridian co-ordinate of (100) = 0° 00'. 'B' or its supplement = angular distance to (010) as pole. The relationship is $Z = \cot X' = \cot \xi_0$.

The elements in table II were calculated from measurements of 'A' quality forms. In addition to the co-ordinate angles and interfacial angles to the pinakoids, the last column, 'Z', is the meridian co-ordinate from (100) as zero when (010), the platy face, is polar; the column 'B' gives the angular distance in this orientation. For purposes of comparison between measurements of different crystals these co-ordinate angles for the polar face-adjustment, following Hey,¹ have been found useful. The angle table, therefore, serves as a means of checking measurements in both settings.

¹ M. H. Hey, Min. Mag., 1934, vol. 23, p. 560.

The orientation here given differs from that of Yardley in the following way:

Yardley.	Berman & Wolfe.
(331)	(600)
(001)	$(0^{3}_{2}0)$
(331)	(006)
(010)	(101)
(101)	$(\overline{1}2\overline{1})$
(100)	

The transformation formulae are:

Yardley to Berman & Wolfe $(\overline{110})/(\frac{1}{2}0\frac{3}{2})/(\overline{110})$ Berman & Wolfe to Yardley $(\frac{1}{2}0\frac{1}{2})/(\frac{1}{2}0\frac{1}{2})/(\frac{1}{2}\frac{3}{2}\frac{1}{2})$

The cleavage, observed by Spencer and made $(\overline{33}1)$ by Yardley, is (100) in our orientation. As will be shown in the X-ray discussion, the second-order reflection (002) of Yardley is our third-order reflection (030); the ($\overline{33}1$) of Yardley is our (006); the ($\overline{33}1$) of Yardley is our (600). These relations introduce the complexities of the transformation formulae.

Twinning.—Many cleavage plates from our specimens showed a sharp line running diagonally across the plate. Several inferior crystals with poor faces showed that this line on the cleavage surface represented the trace of the composition-plane of a twin. The measurements indicated that the twinning is about the axis [$\overline{101}$] with the composition plane near ($\overline{101}$).

A gnomonic projection with $[\overline{1}01]$ as pole shows an axis of two-fold pseudosymmetry. Under these circumstances twinning on the axis produces a near superposition of the projection of one individual on the other. In the Friedel sense the twinning has an index of 1, with a small obliquity. When no re-entrant angle shows on the crystals, twinning may well be concealed. A well-defined parting is developed parallel to the composition-plane ($\overline{1}01$).

X-ray measurements.—A crystal plate showing the two cleavages was used for the X-ray examination with the Weissenberg goniometer. Rotation was about the [001] axis; zero-layer and first-layer pictures were studied (figs. 3 and 4). The periodicity along [001] was obtained from the rotation picture. On the zero-layer, fifty-three reflections were indexed. For 0k0, reflections at k = 3, 6, 9 were observed; for h00, reflections for h = 2, 6 were observed. In general, the reflections with h odd were weak or missing. In the first-layer series hk1, the reflections for h = odd were well shown. The projected reciprocal lattice, derived

F10, 3. Aramayoite: zero-layer Weissenberg picture about [001]; Cu-K_a unfiltered radiation; camera radius 90 π mm.: reciprocal lattice axes are indicated.

F10. 4. Aramayoite: first-layer Weissenberg picture about [001]; Cu-K $_{\alpha}$ radiation, nickel filter.

from the X-ray pictures, gave good agreement with the morphological data:

$$a^*: b^*: c^* = 1.0856: 0.9741: 1$$

 $p_0: q_0: r_0 = 1.0889: 0.9690: 1$

Angular elements of the reciprocal lattice projection are generally not as reliable as morphological measurements; we have, therefore, used the angular relations of the pinakoids, derived from our morphological elements (see table II), for the calculation of the unit cell. The following are the dimensions:

$a_0 = 7.76$ Å.	$\alpha = 100^{\circ} 22$
$b_0 = 8.79$	$\beta = 90 00$
$c_0 = 8.34$	$\gamma = 103 54$

with $a_0: b_0: c_0 = 0.8828: 1: 0.9488$.

This cell contains $Ag_6(Sb,Bi)_6S_{12}$ in the unit and is thus three times the volume of the Yardley cell. Our third-order (010) with the measured spacing 2.81 Å. is equivalent to the second-order (001) of Yardley, with the spacing 2.81 Å. Also the ($\overline{331}$) reflection of Yardley with the spacing 1.26 Å. corresponds to our sixth-order (100) with the measured spacing 1.25 Å.

Fig. 3 shows the axial directions as chosen. The periodicities along these directions define the smallest cell consistent with all the reflections. The first-layer picture (fig. 4) corroborates the evidence in fig. 3.

The following table gives a further comparison of some of our spacings and angles with those measured by Yardley:

Index		Measured	l spacings	Angle to best cleavage				
Yardley.	Berman & Wolfe.	Yardley.	Berman & Wolfe.	Yardley (001).	Berman & Wolfe (010).			
(010)	(101)	5·67 Å.		86° 52'	86° 481'			
(001)	$(0^{3}_{2}0)$	5.61	5·62 Å.	0 00	0 00			
(111)	$(\bar{2}\bar{2}0)$	3.24	3.25	56 10	56 20 1			
(331)	(600)	1.26	1.25	75 44	75 52			
(331)	(006)	1.355	1.36	79 07	79 19			

Recalculating the Yardley cell dimensions into our orientation:

$$a_0 = 7.80, b_0 = 8.86, c_0 = 8.26$$
 Å.,

in close agreement with our values, as given above.

Relation to other minerals.—Miargyrite, aramayoite, and matildite have the type formula ABX_2 . In the following table a comparison of cell dimensions is given:

472

	Cell contents.	a ₀ .	b ₀ .	с ₀ .	Reference.
Miargyrite	 8AgSbS ₂	13.17	4·3 9	12·83Å.	Hofmann ¹
Aramayoite	 6Ag(Sb,Bi)S ₂	7.76	8.79	8.34	Berman & Wolfe
Matildite	 4AgBiS ₂	8.14	7.87	5.69	Ramdohr ²

Aramayoite and matildite are similar in two dimensions and the c_0 of the latter is about $2/3b_0$ of the former. The b_0 of miargyrite is almost half of the b_0 of aramayoite, but the other dimensions are not simply related.

¹ W. Hofmann, Sitzungsber. Preuss. Akad. Wiss., Phys.-math. Kl., 1938, p. 111. [M.A. 7-387.]

² P. Ramdohr, Fortschr. Min. Krist. Petr., 1936, vol. 20, p. 56; Sitzungsber. Preuss. Akad. Wiss., Phys.-math. Kl., 1938, p. 82. [M.A. 7-104, 304.]