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An analysis of the movements of shadow-edges on the 
refractometer in the case of biaxial gemstones. 

By E. J. BURBAGE and B. W. ANDERSON. 

[Read March 19, 1942.] 

T HE study and identification of the gem minerals present difficulties which are 
not to he resolved by the ordinary methods of mineralogy. The commercial 

value of the material forbids recourse to chemical reagents and the blowpipe, 
and when faceted and mounted, the criteria of crystal form and specific gravity 
are also inapplicable. Optical phenomena then constitute the sole means of 
discrimination, and the refractometer, spectroscope, polariscope, and dichroscope 
become the only arbiters between gemstones of similar appearance but different 
species. The function of the polariscope is to narrow the field of inquiry by 
differentiating between isotropic and anisotropic gemstones; the verdict of the 
spectroscope is unequivocal in gemstones characterized by absorption spectra, 
which, unfortunately, form a minority ; dichroism, when present, can be regarded 
as supplementary evidence only; the refractometer, an instrument of wider 
application than the spectroscope, and capable of yielding information which is 
usually equally unambiguous, thus assumes a role of primary importance. The 
method of minimum deviation, while furnishing refractive index readings which 
are far more critical, is attended by difficulties which outweigh this advantage, 
since gem material in the rough is usually too valuable to be ground into 60 ~ 
prisms, and after it has passed through the lapidary's hands is seldom found to 
have a pair of facets which are sufficiently plane and suitably inclined to be 
employed for this purpose. Moreover, the accuracy of spectrometric refractive 
index determinations is largely nullified when, as in anisotropic faceted gem- 
stones, optical orientation is difficult or impossible to establish, whereas with the 
refractometer, maximum and minimum readings are obtainable from any facet, 
provided these values lie within the range of the instrument. For ordinary 
identification purposes it is sufficient when using the refractometer to combine 
a reasonable degree of manipulative skill with a knowledge of this fact, ignoring 
the apparently fortuitous behaviour of the shadow-edges in their movements 
between the two limiting values. However, a theoretical explanation of the 
shadow-edge movements is essential when anything beyond an everyday routine 
use of the instrument is proposed, and it is intended in the present paper to 
describe techniques employing the methods of analytical geometry by which 
these movements can be investigated. Some points of practical importance 
which are relevant to this analysis will also be discussed. 

The theory of the refractometer postulates a hemisphere or prism which is 
optically denser than the stone whose refractive indices it is desired to read. In 
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the earlier forms of the instrument, 1 the dense-glass hemisphere had a refractive 
index lower than those of several important gemstones, which were in consequence 
beyond its range, but in later models 2 a greater range has been provided by the 
employment of types of glass having very high refractive indices, and, still more 
recently, a isotropic crystalline materials have been used still further to extend 
this range. Another practical difficulty of a similar kind arises from the necessity 
of effecting optical contact between the stone and the hemisphere by means of 
a liquid of high refractive index, but here again recent years have seen the 
introduction of new liquids for this purpose, which have effectively widened the 
range of the instrument, a 

For the identification of precious stones, the primary function of refractometers 
of this type, no very exacting standards of accuracy are ordinarily required, and 
a tolerance of • is usually permissible. For an experienced observer, using 
a specially calibrated instrument, the limits consistently possible are approxi- 
mately • Data ofthis kind would be hopelessly inadequate for the purpose 
of the present analysis, and their development from empirically determined results 
is impossible. I t  has therefore been developed theoretically from an initial 
consideration of the fundamental principle common to all types of the instrument 
now available. Reference to any extended applications of the refractometer 
suggested by an analysis of this kind would need a full discussion of the possi- 
bilities and limitations of the instrument, a discussion which is beyond the scope 
of the present paper, and the only incursion into this field which has been included 
is that of the determination of fl in biaxial gemstones. I t  is probable that, given 
an instrument of a precision character, such as the Abbe-Zeiss, the absence of 
observational crudities would justify further research, and that  it might be 
possible, for instance, to develop a technique for the ascertainment of the optical 
orientation of any facet of a gemstone from a set of refractive index readings 
derived from it. :Further to pursue these interesting possibilities also lies beyond 
the scope of the present inquiry. 

A refractive index reading, or pair of readings, obtained from a facet of a 
gemstone on the refractometer, corresponds to a direction at right angles to the 
normal to that facet. In the Tully refractometer, the hemisphere can be rotated 
to give values corresponding to all directions at right angles to this normal, and 
in other models with a fixed stage, the stone itseff can be rotated with the same 
result. In terms of the optical indicatrix, the refractive indices for any direction 
through a crystalline medium are graphically represented by the lengths of the 
semi-axes of the ellipse formed by the intersection of the indieatrix and that 
plane through its centre which has this direction as normal. Thus the values 
given in a rotation through two right angles of a gemstone are represented by 
the semi-axes of the ellipses formed by a family of planes passing through the 
centre of the indieatrix and sharing a common line of intersection, which is 
the normal to the facet being employed. 

Upon this basis it is possible, given the values of the principal axes of the 
indicatrix, and the optical orientation of the normal to the facet, to calculate all 
the refractive indices which will be obtained during the complete rotation of the 

1 G. F. Herbert Smith, Min. YIag., 1905, vol. 14, pp. 83-86; 1907, vol. 14, pp. 354-359. 
B. J. Tully, ibid., 1927, vol. 21, pp. 324-328. 

3 B. W. Anderson, O. J. Payne, and J. Pike, ibid., 1940, vol. 25, pp. 579-583. 
S 
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stone on the refractometer. For this purpose it is useful to consider the question 
as a problem in analytical geometry, using the conventions and terminology of 
that  subject, rather than those of mineralogy. 1 

The semi-axes of the ellipses formed by the intersection of any plane with an 
ellipsoid are given by the following expression: 

a ~ _ r  ~ I - ~ - ~ - - - c 2 _  r~ = 0 . . . . . . . . . .  (i) 

This equation is a biquadratie in r;  l, m, and n, and a, b, and c have their 
usual significances as direction-cosines of the plane, and the principal semi-axes 
of the ellipsoid, respectively. Applying to it the familiar rule for the solution of 
quadratic equations, two roots in r 2 are given, the square roots of which are the 
required values of the semi-axes. (An alternative and less clumsy method of 
solution is obtainable by manipulating the expressions for the sum and product 
of the roots.) To obtain values of the direction-cosines for successive positions 
during the rotation in terms of those of the normal to the facet, the latter is 
written in the form of the intersection of two planes L and L 1. Then L-I- XL 1 is 
the equation of a plane having a common line of intersection with these two planes, 
and by giving lambda all possible values, the equations of all planes intersecting 
in the normal to the facet are obtained. Writing down the equations of a sufficient 
number of these planes, the angles between which are given by the relationship 
l l l + m m l + n n  1 = cos O, and using equation (i) to calculate the corresponding 
refractive index values, the necessary data are obtained for the construction 
of curves graphically representing the movements of the shadow-edges seen on 
the refractometer scale during a complete rotation. 

A specific instance may be given in illustration. A set of principal values for 
a topaz from Minas Geraes has been recorded as a 1.6294, fl 1-6308, and ~ 1.6375, 
and may be regarded as sufficiently typical for this mineral. A gemstone is cut 
from this material, and refractive index readings are made on the refractometer, 
using for this purpose the table facet, which happ.ens to be equally inclined to 
each of the principal optical directions. I t  is required to construct a pair of 
curves showing the variation in these readings during a rotation with or on the 
refractometer stage. The equation of the normal to the facet may be written 
as x = y = z, or, choosing one of the infinitely many ways of writing this 
straight line in the form of the intersection of two planes, as 

3x - 2 y -  z = 

The equations of the planes which intersect in this straight line are of the form 

3 x - 2 y - z ~ - ~ ( x + y - 2 z )  = 0 . . . . . . . . . .  (ii) 

1 When algebraic methods are used to investigate the behaviour of anisotropic gemstones 
on the refractometer, the retention of the symbols a, b, and c of the ellipsoid is justitled on the 
ground of consistency, since those for the direction-cosines are lower-case members of the same 
alphabet. When the results are used to interpret biaxial phenomena, a, b, and c are equated to 
a, 8, a~nd ~ respectively. Mathematically, an analysis of the properties of uniaxal minerals 
follows similar lines, the appropriate modification being introduced that two of the principal 
semi-axes are equal in length, and the final results are restated in terms of the omega and 
epsflon of mineralogy. 
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From equation (i) the following results are obtained:  

2 2 a212( b~ + c~) + b~m2( a~ + c2) + c2n2( a2 + bg) 
r l - ~ r l l  = 

a21~ ~b~m~ +c~n~ 

a2b2c 2 

r~l = a~l~ + b~m ~ + c~n2 " 

Put t ing 2 = 0 in equation (ii), which then becomes 3 x - - 2 y - - z  ~--0,  i t  is 
possible, on inserting the values of a, b, c, l, m, and n in the equations writ ten 
above, to calculate r 1 and rn ,  which prove to be 1.6304 and 1-6370. Sin~larly 
for 2 = 1, equation (ii) becomes 4 x - y - 3 z  -~ 0, and the refractive indices are 
1.63075 and 1.6347. The angle between this plane and tha t  for ~ = 0 iS 27 ~ 
Repeat ing this process, taking a number of values of 2, selected a t  random, 
and choosing the plane for )l = 0 as giving the initial point  from which degrees 
of rotat ion are measured, these results are obtained:  

from 
~. ~ = O. Equation. r 1. r n. 
0 0 ~ 3 x - 2 y - z  = 0 1.6304 1.6370 
1 27 4 ~ v - y - 3 z  = 0 1.63075 1.6347 
2 40 54" x - - z  = 0 1-6308 1.6334 
6 58 17 9x+4y- -13z  = 0 1.6305 1.63255 

o0_- 70 54 z + y - - 2 z  = 0 1-6300 1.6327 
--�89 --19 6 x - - y  ~ 0 1.6301 1.6375 
--1 --38 14 2x--3y+~ = 0 1.6300 1-6368 
--2 --65 14 x - - 4 y + 3 z  ~ 0 1.6295 1.6352 
--3 --79 8 y - - z  = 0 1.6294 1.63405 

From these figures the curves shown in fig. 1 can then be plotted. 
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:FIO. 1. Curves of refractometer shadow-edges on a facet of topaz.. 

I t  may  be noted tha t  the ordinates of this graph are evenly spaced, whereas 
the divisions of the scale of the refractometer become increasingly widely spaced 
with increase in refractive index. I t  is easily seen t ha t  this compression of the 
refractometer scale a t  the  ' l ow '  end is imposed by  the fundamental  principle 

s 2  
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of the instrument ; it can be verified tha t  the spacing is a function of the cotangent 
of the critical angle. Fortunately, there are few gemstones having refractive 
indices less than 1"5, so tha t  in practice this tends to be an advantage rather 
than  a demerit, permitting greater accuracy in the region where it is of most 
use. In  the graphs of shadow-edge curves accompanying this paper, it would be 
pointless to mirror this practical exigency, which is therefore ignored. I t  is 
scarcely necessary to add tha t  fourth-figure accuracy, which is easily attainable 
in the calculated values employed for the construction of these curves, is un- 
fortunately impossible of achievement in practice, except with the more elaborate 
and costly total  reflectometers of the Abbe or Pulffich type. 

There are four turning-points in a typical pair of biaxial shadow-edge curves, 
~hree of which are coincident with the principal values for the mineral under 
examination. These are the a, b, and c of the ellipsoid, or, in mineralogical 
terms, ~, fl, and 7- The analysis makes it evident tha t  any facet of a biaxial 
gemstone must give readings of ~, ]~, and Z during a rotation through two right 
angles. 1 I t  has been seen tha t  the equation of the normal to the facet may  be 
written in the form of the joint equation of two planes L and L1, and it will be 
evident that,  whatever the coefficients of x, y, and z in these two planes, it is 
always possible to find a plane passing through their intersection in whose 
equation the x-term is missing. This is effected by  assigning a suitable value 
to /~ in L+XL1, the equation representing the pencil of planes intersecting in 
the normal to the facet. For exampIe, when ;~ = --3, equation (ii) reduces to 
y--z  = 0. All such planes whose equations lack an x-term intersect in the x-axis, 
and hence in their intersection with the ellipsoid form ellipses all of which share 
a common axis, of length 2a. ~ Thus at  one point during the rotation of any 
biaxial gemstone on the refractometer, a reading of ~ must be given, and, by  
a similar reasoning, readings of fl and 7 are also furnished. 

Being maxima and minima, the turning-points at  7 and ~ are immediately 
recognizable, but  to distinguish between fl and the fourth turning-point is less 
simple. As has been pointed out by  Dr. Herbert  Smith ( 'Gemstones. '  London, 
1940, p. 54 et seq.), a comparison of results obtained from two  non-parallel 
facets will enable this distinction to be made, ~ being tha t  median turning- 
point which will be common to both. I f  this is impracticable, as in the case of 
most mounted gemstones, it is possible to calculate fl from d a t a  provided by  
readings from one facet only, and a formula for this purpose may  b e  given. 
When the stone on the stage of the refractometer has been rotated into the 
position giving the maximum reading Y, the other shadow-edge provides a 
second reading, and similarly there is an associated value seen when one edge 
is a t  the a position. Calling these associated readings R and r, and the angle 
between the points at  which they occur r an approximation to the value of fl is 
given by  the following expression: 

cos~r = ~ (]~ '-r~)(~--R2) . . . . . .  (iii) 
,-~R~" ( t r - ~ ) ( ~ - ~ )  . . . .  

I t  will be seen tha t  this method does not require considerations of the values of 

1 L. J. Spencer, Gemmologist, London, 1937, vol. 6, pp. 231-236. 
2 This can be checked by rewriting equation (i) as a straightforward biquadratic, equating l 

to zero, and showing that the resultant equation has a root r ~ = a ~ by the factor theorem. 
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the median turning-points to be taken into account, but it is clear that a check 
is afforded by comparison with the appropriate value. 

Another criterion by which fl can be separated from the second median point 
in cases when the Herbert Smith test is inapplicable is furnished by observation 
of the behaviour of the shadow-edges when a polarizing filter is employed. Such 
filters are commercially available for one type of instrument, in the form of a cap 
for the eyepiece, but an accessory of this kind can be improvised without 
difficulty for use with any refraetometer. When, in a doubly-refractive stone, 
an insufficient separation of the shadow-edges makes critical readings difficult, it 
is useful to make separate observations of each edge by extinguishing the other 
by means of a polarizing cap. This is rotated into a position which is visually 
judged to effect optimum extinction of the unwanted shadow-edge, a position 
which is variable for a biaxial stone and constant for a uniaxial--an effect which 
is analogous to the behaviour of minerals in thin section between the crossed 
nicols of a petrological microscope. In terms of the indicatrix, it will be apparent 
that, for successive positions during the rotation of a biaxial stone, the corre- 
sponding ellipses of section will in general have their axes occupying skew posL 
tions with regard to the principal optical directions; the skew directions will be 
coincident with the positions of maximum extinction. Straight extinction with 
respect to the principal optical directions is shown at positions in which a princi- 
pal value (c~, fl, or ~) is given. For a uniaxial stone, the indicatrix becomes a 
spheroid, and the directions of maximum extinction are invariant. 

Hence a way of discriminating between fl and the other median turning-point 
is afforded by the following means: the stone is placed in a position to give 
a reading of a, and the polarizing cap is adjusted to extinguish the shadow-edge 
giving this reading. The stone is then rotated into the position giving the lower 
median turning-point reading, and the angle through which the polarizing cap 
has to be rotated to extinguish this reading is noted. A similar procedure is 
followed to find the angle of rotation of the polarizing cap between the ~ position 
and that affording the upper median turning-point. The angle of rotation of the 
cap for the median turning-point which is not fl will differ from that which is, 
in being sensibly different from zero. 

This second method of obtaining fl from readings given by one facet of a biaxial 
gemstone is simpler in practice and theoretically preferable to the first, since the 
degree of error in a calculated result based upon a set of five observations which 
cannot be critically accurate is likely to be high. An example may be given in 
illustration. A step-cut peridot from the Congo gave these readings: a 1.643, 
associated value 1-665 ; y 1.681, associated value 1.650 ; angular distance between 
the positions giving these readings, 15 ~ The calculated value of fl given by 
formula (iii) is 1.657--probably somewhat too low. The other method, which 
avoids the tedium of arithmetical calculations, has proved to be fairly satisfactory 
in practice. Observations from a random set of eight gemstones yielded the 
following results:'in five cases (two peridots, two topazes, and a hambergite), the 
test was applicable, and its correctness was confirmed; three other stones gave 
indeterminate results (a peridot required no appreciable shift in position of the 
polarizing cap for extinction at either median turning-point, and in a peridot 
and a diopside the extinction positions were not determinable with sufficient 
accuracy). 
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The degree of rotation of the polarizing cap for the extinction of a shadow- 
edge is a function of the orientation of the normal-to-facet position with respect 
to the principal optical directions of the stone. I f  the direction-cosines of the 
axes of the ellipse formed by the intersection of the plane lx+my+nz = 0 and 

y2 2~2 
the ellipsoid ~ + ~ ~ - ~  ---- 1 a r e  A1, i l l ,  and vx, and Au, ~hx, and vn, then their 

ratios are expressible as follows: 

and similarly for An, Pu, and v n. After the determination of their direction- 
cosines, the angles which these axes make with the principal axes are calculable, 
and hence also the degree of rotation of the polarizing cap necessary for extinction 
when one of these directions is selected as the initial position. 

I f  the selected facet of a biaxial gemstone has its normal coincident with a 
principal optical direction, the refractive index curves assume special forms in 
each of which one of the shadow-edges traces out a straight line. In practice 
these 'special'  cases occur with an unexpected frequency, and therefore merit 
separate consideration. 

(i) When the normal to the facet is coincident with X, one shadow-edge moves 
between fl and y, and the other remains constant at ~. 

(ii) Normal to facet coincident with Y, one shadow-edge remains constant at fl, 
the other moves between a and ~,, and thus coalesces with the stationary shadow- 
edge at two points. 

(iii) Normal to facet coincident with Z, one shadow-edge remains constant 
at ~, and the other moves between ~ and ft. 

In  fig. 2 the shadow-edge curves for these 'special' orientations are sketched. 
A partial explanation of the relative frequency with which these 'special' cases 
are encountered is to be found in the lapidary's choice of a principal optical 
direction as the symmetry axis of the stone, to take advantage of the habit of 
the crystal, to display colour to best advantage, or to utilize a cleavage trend. 
For this reason, an additional case in which coalescence of the shadow-edges at 
fl takes place is much more infrequent ; it occurs when, in a gemstone whose cutting 
is not specially related to its principal optical directions, the median turning- 
points are coincident. The degree of probability is low that, for a line chosen at 
random through the centre of an ellipsoid, the pencil of planes intersecting in 
this line should include one cutting the ellipsoid in a circular section, and here, 
unlike the other cases discussed in which coalescence at fl occurs, chance operates 
to the exclusion of choice. In practice a simulation of this behaviour may result 
from the impossibility of obtaining sufficiently critical readings to differentiate 
between readings showing a separation of the order of 0.001. This may be illus- 
trated by reference to fig. 1. Here a minimum separation of about 0.002 occurs, 
a degree of birefringence which might be overlooked on casual scrutiny of the 
stone on the refractometer. This might appear to indicate a close approach to 
an optical axial position, but in point of fact the angular distance between the 
plane giving this minimum birefringence and the nearest optic axial plane is 
about 16 ~ . I t  seems reasonable to infer that  cases in which apparent coalescence 
of this kind occurs are not infrequent. 
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Finally, reference must be made to the forms assumed by the shadow-edge 
curves of isotropic and uniaxial gemstones. The straight line traced out by the 
stationary shadow-edge of an isotropie medium calls for no comment. An 

i 
N 
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Fro.. 2. Curves of refractometer shadow-edges on the three principal planes 

of a biaxial crystal. 

analysis of the behaviour of the uniaxial division can follow similar lines to that  
described earlier in this paper, when a more general case was considered, the 
necessary modification being introduced that  the maximum or minimum principal 
refractive index shall be coincident with the intermediate principal refractive 
index. I t  will be evident that  the shadow-edge curves traced out assume the forms 
of a straight line, given by the refractive index r and a curve sweeping between 
this line and a maximum or minimum at E. These curves are sketched in fig. 3. 

Fla. 3. Curves of refractometer shadow-edges of unlaxial crystals. 


