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Angular relations between equivalent planes and distances
between equivalent points in symmetrical point groups

By PauL Nicer1
(Ziirich).

FUNDAMENTAL problem arising out of the study of symmetrical
point groups can be formulated as follows: Let NV points in three-
dimensional space be connected two and two in every possible way by
straight lines: what relations must exist between the lengths of these
lines if the points are equivalent members of a symmetrical point group ?
The methods of projection used in crystallography (e.g. the stereo-
graphic projection) at once show that the points may be considered to
be the images of straight lines or planes. The problem formulated above
has therefore a direct application to descriptive crystallography and can
in this connexion be stated as follows:

A complex of N planes is determined by the points of intersection of
the normals with the surface of a unit sphere, i.e. by their poles. What
now must the angular relations between the planes beif all are equivalent,
that is to say, belong to one and the same simple form?

The connecting lines between the points are in this case replaced by
the angles between the normals of the planes, and in treating this problem
it will be useful to substitute these angles by their characteristic cosine
values.

If we proceed from any one plane and determine the angles between
its normal and those of the (N —1) other planes, it is obvious that these
will only be equivalent to the first if certain quite specific relations exist
between the angles (or their cosines). These relations we desire to express
in formulae.

If all N planes are equivalent, it is, of course, immaterial which we
select as the point of departure. Let the planes be numbered from 1 to
N and the cosines of the angles between all possible pairs of planes be
written in the form of a square matrix. Every row and every column of
the matrix must now contain all the cosine values which differ from one
another. When written in the usual way, the matrix possesses symmetri-
cal structure in respect to the chief diagonal which contains the values
cos 0° = 1. With this fundamental condition others are associated
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which determine the symmetry and the special character of the form
constituted by the equivalent planes.

The position of a pole in respect to the elements of symmetry passing
through the centre of the sphere determines the position of the remain-
ing poles and therefore also the angles between the planes. Let the
position of the first pole be expressed in terms of the usual co-ordinate
angles ¢ and p. This is shown in fig. 1 for the complex of planes con-
stituting a dihexagonal pyramid. Our problem now consists in express-
ing the cosines of the angles between plane 1 and the (N—1) other
planes in terms of the ¢- and p-values of the plane of departure.

Fic. 1.

In order to obtain the matrix in an easily defined form, it is proposed
to use the groupings into cycles commonly employed in the investigation
of symmetry. The study of point symmetry leads, as is well known, to
the distinction of three principal cases: (1) symmetries with a unique
axis (including the orthorhombic, monoeclinic, and triclinic symmetries
as trivial specializations); (2) the isometric cubic symmetries; (3) the
isometric symmetries.

1. Matrix representation of symmetries with a unique axis.

In symmetries of this sort we select the highest rotation cycles and
proceed to number the poles anti-clockwise from 1 to %, n being the
valency of the axis. The unique axis as the rotation axis with the
highest valency having thus the valency #, the number of equivalent
elements in the derived symmetry groups can at most be 4n = N. For
instance, 2 planes of symmetry parallel to the unique axis, or # binary
axes perpendicular to the same, or a centre of symmetry, or a plane of
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symmetry perpendicular to the unique axis may be present. If N = 4n,
which implies that the group has holohedral character, the total matrix
may be resolved into 4 x 4 submatrices comprising # X # constituents.
Let the n poles required to augment an n-gonal pyramid to a di-n-gonal
one be termed 1°. . .&’.. .n/, the count being taken in the same anti-
clockwise sense as hitherto (see fig. 1). Further let the mirror images of
1. . @ . . with respect to planes of symmetry perpendicular to the
unique axis be called (1). . .(z). . .(n) and those of 1". . .&". . .»" bear the

numbers (1). . .(2').-. .(n"). For the dihexagonal bipyramid, for

Fia. 2.

instance, fig. 2 with its poles on the lower half of the sphere must now
be considered in conjunction with fig. 1. A summary of the possible
forms resulting from n = 6 can at once be given as follows:
123456 = the hexagonal pyramid or when p = 90° the hexagonal
prism,
12345 6 together with 17 2’ 3’ 4’ 5’ 6’ = the dihexagonal pyramid
or when p = 90° the dihexagonal prism.
123456 together with (1) (2) (3) (4) (5) (6) = the hexagonal bi-
pyramid.
123456 together with (1) (2') (3) () (5’) (6") = the hexagonal
trapezohedron.
12345 6together with 1" 2 3" 4/ 5" 6" and (1) (2) (3) (4) (5) (6) and
(1) (2') (3") (&) (5) (6') = the dihexagonal bipyramid.
If the n of a rotation cycle be even, the cycle can be used to derive the
n/2-gonal classes of symmetry. We obtain for instance:
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1 3 5 = the trigonal pyramid or when p = 90° the trigonal prism.

135 (1) (3) (5) = the trigonal bipyramid.

1351”3 5 = the ditrigonal pyramid or when p = 90° the di-
trigonal prism.

13518 5 (1) (3) () (1") (3') (5') = the ditrigonal bipyramid.

135 (2) (4) (6) the rthombohedron.

135185 (2)(4) (6) (2) (4) (6”) the ditrigonal scalenohedron, ete.

With p = 0 the formulae will become simpler and lead to forms con-
sisting of one plane (pedion) or two plahés' (pinacoids) respectively.

In a matrix comprising the cosines appropriate to any given =, all
forms pertaining to a symmetry class with a unique axis are, therefore,
characterized by the angles between the various planes of the form.
This is true whether the class of symmetry is a crystallographically
possible one or not. A general representation of such a matrix of cosine
values is given in table I a.

TapLE I a. Symbols of the cosine values occurring in the holohedral classes
of symmetry with a unique axis.

1 2 .. 2—1 2|1 2 .. @-1D)n|@AQ) (2 .. (r=1) @) (1) €&) ... (W=1)1
1 (1) TR oz ar | Bo Br wee Bz Br| M A ... Oz ar { b b ... bz
g,
2 o 1 .. op ap[Br By ... By Bzl ar @ .. ag 03| b b ... by
: I II 11T v
n~1 | ay ag . 1 o | By Bs .. Bo Bi| @ as .. ay a | by by ... by
n o Qg ees oy 18, 8, ... Br Bol @1 @y ... ar a | b by ... b
U |8 Bp o B Bl1 o e oy ag| by By e by by | @ @ .. 0y
?’ B1 By .. Bs Balag 1 ... ag ag | bt bo ... bs by | ar @ ... ag
: Ir I v’ III
n’—’l Bs Bs ... Bo Bi| oy o ... 1 af by by ... by b | @y @z ... a
” Br Bz ... B Bojoy s ... ay 1] 0 bg by b |6 @y ... ar
(1) @G @ ... @ aplby by .. by b 1w .. o or| Bo Bi . By
2 ar Gy ... @ ag| by by ... by  bg|ar 1 ... oy ozl Br By eee s
. ITT v I I
-1 a as .. A | by by ... b, by | g g ... 1 af | Bz By .. 8o
(n) G G ... ay @ | by by ... by byl ag .. ay 1 (B B .. Br
(I | b by o b bl@ @ . @y ag) B Br e B Bl e
(2) | b B . by by|ag @ ... @ az| B By .. Bs Bajox 1 .. ag
R v Iir T I
(n —,1) by by ... by br)as as ... @G a| By By ... Bo Br | @2 «s ... 1
(n) by b3 ... b by | @y az ... az a | B Bz ... By Bo | 4 @ ... ar

Let the cosines of the angles between the poles 1 and « in the series
1.. @ . .n be symbolized by «,_,. If the angle between the poles 1
and z is greater when measured anti-clockwise, the expression o, ;_, is
used in order always to operate with the cosine of the smaller angle.
Thus 0,y = o, ap_y = oz, ete.
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Similarly, the cosines of the angles between the poles 1 and «’ are
symbolized by 8, _; or B, _y_,, those of the angles between 1 and (z) by
@y_y OT Gy.y_n, and, finally, those of the angles between 1 and (2') by
bac—l or bac——l—n-

If nis even, the angles between 1 and #/2 or 1 and #’/2 or 1 and (#/2) or
1 and (n'/2) separate the positive and negative index values. Assuming

all points or planes to be equivalent, every row or column of a sub-
P el o flall or 1Bl or bl
evidently contains the same number of and at most » different cosine
values. Also the relation obtains

o, = oz (6.8 oy = o5) and @; = a; (e.g. a; = a3).

The square submatrices I and IT1 which each appear four times in the
holohedral general matrix are thus symmetrical in themselves. There-
fore when n is even, the subsquares I can by their very nature contain at
most n/2 different cosine values. These include o, representing the
value of cos 0° = 1 = cos?p+sin% and «,, representing the value of
cos 2p = cos?p— sin®p. If % is odd, the last-named value does not occur
and the number of different cosine values is 14 (rn—1)/2.

In the subsquare III the number of different cosine values is the same,
However, ay = cos(X 1 to (1)) = cos’o+sin® and a,,= —1. The
latter value does not occur when » is odd. Quite generally

. . 360
o = o = cos2p+81nzp.cos2 36
. .360
and a; = a; = —cos2p+s1n2p.cos7' .
n

In the submatrices I the sum of all cosine values belonging to one row
or column (i.e. I o) is given by u cos?p, for the sum cos{(z.360/n) }of
the angles derived from one rotation axis is always zero. Similarly, the
sum ¥ @; of any row or column i1s —n cos?p.

The submatrices or subsquares containing the ng or n, values each
give rise to two matrices, namely, Il and I’ and IV and IV’ respectively,
of which the primed ones are conjugated to the non-primed. The sub-
matrices 1I, I, and IV, IV’ each contain at most » different cosine
values which occur once in each row and column,

By is cos®p+sin®p cos 2¢
and when # 1s even

Bz = Bije = cos?p—sinZp cos 2¢,
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by 1s —cos?p+sinp cos 2¢ and when n is even,
— — 2 a2 :
byjy = by = —cosp—sin®p cos 2.

Bi o longer equals B, nor is b; == b;. The values of these expressions

are now given by

¢.360
7

¢.360

n

+2¢);

B; = cos®p—+sinp cos(

B; = cos?p-sin%p cos(

—295);

1.3

— 2. 1 <in?p eos
b; = —cos®p+sin pCOS( .

6O+2¢);

360
b; = —cos®p+sinp cos(z' 36 — 245)
n

It can, however, easily be shown that the following relations still
obtain:
Sum of all the cosine values in any row or column of II or II

= n cos?p.
Sum of all the cosine values in any row or column of IV or IV’
= —ncos?p

These conditions and the arrangement of the minor squares show that
the general holohedral matrix possesses centrosymmetrical structure.
The chief diagonals contain only ones and the trace has the value N.
Table I gives a summary of these results.

TasLE 1.
General formulae for the Specal case for Special case applicable
cosine values. identity. only when n is even.
. 2 s
ay; = cos®p+sin?p cosiZ” =1 gz = cos®p —sin?p
n
2 ing ;2w ‘ in? 2 in?
B4, = cos’p+sin?p cos{ i=— =2¢ By = cos?*p+sin?pcos2¢ Bn,2 = cos®p —sin’p cos 2¢
n
. L2 :
a,; = —cos®p-+sin®p cos i =~ a, = —cos?p+sinp Apjp = —1
n
. 27 by = —cos? b, = —cos?p—
by; = —cos®p+sinp cos<1— i2¢) o Pt 2 s
n

sin2p cos 24 sin®p cos 2¢

If the arrangement of the points or planes n is centrosymmetrical,
each positive cosine value requires the presence of an equal negative
cosine value. When » is even, the corresponding values may be ex-
pressed as

360 and —cos?p+-sinp cos v.360

.cos®p+4-sin®p cos
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in which ¢ = n/2-+7. We now, however, write 7 instead of ¢ and
? = #/2—4. Thus with n — 6 we obtain the value

1.360 (3+1).360 2.360
COS8 = — 08— = — 8§ ——
6
Therefore o = ~a.

Let the total number of different cosine values be Z and the number
of cosines different in absolute value only (i.e. irrespective of signs) be z.
The following relations can now be established in the series.

n divisible by 4. Beside 1, T, 0, O the other values appear twice with
positive and twice with negative signs. z is therefore given by

n + 4
. + S
Forinstance, in the case of a 12-fold axis the cos{ (7.360)/12 } areas follows:
1 0-866 05 0 —05 —0-866 —1 —0-866

—0b 0 05 0-866.

n only divisible by 2. Beside 1 and 1 every other cosine value appears
twice with positive and twice with negative sign. The total number of
numerical values cos{(¢.360)/n} (irrespective of signs) is

n--2
=
For the series cos{(.360)/6} the values are:
1 05 —05 -1 —-05 03,

n odd. Beside 1 every other cosine value appears twice with the same
sign. Although a given positive numerical value no longer leads to the
corresponding negative numerical value, the expression >, cos{ (2.360) /n}
(in which ¢ varies from O to n—1) remains zero.

As aresult of the conditions contained in the above formulae, the entire
range of cosine values contained in the matrix consists of functions of
p» ¢, or of these and 24. Naturally the following relations obtain:

(z 360+2¢)

08
[
In terms of the theory of matrices the results obtained in connexion

with forms deriving from symmetry with a unique axis may be sum-
marized as follows:

69 cos 2¢—sin 360 sin 26,

”

) 360 cos 2¢ +sin’ 360 sin 2¢.
” 7

X
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Squate N-rowed matrix for holohedral classes with a unique di-n-gonal
awis. I I I IV |
I 1 v 111

=l r v 1 m
lIv T oIr 1
with square n-rowed submatrices as constituents:
I = sin®||a|n+cos?||cik/|n
II = sin2p||biz||n+c0sp|[Cis]|n
10 = sindplby]u-cospl e

III = sin2p||biz||n—c08p)[Cik||n
IV = sintpllyella— costocel
IV — sip|bya s —cosel el

@ = cos[(k—i) 2—77], cr=1
n

|

b = cos[(k—i)2—71:{:2¢] with 4 for &k > «,
n

||bxil|» is the transposed form of |[by||,. Therefore II” and IV’ are the
transposed forms of II and IV.

Because g;; = 1, the trace of ||gix||ly = N.

The necessary and sufficient conditions have now been given which
must be fulfilled by the cosine values of the angles between any plane
and the other equivalent ones if the general matrix figure 1 is to possess
the symmetry corresponding to forms with a unique axis. No distinction
bas been made between crystallographic and non-crystallographic forms.
The results may briefly be stated as follows:

Equipoints as in the di-n-gonal bipyramid. The matrix contains the
L., II-, I1’-, II1-, IV-, IV’-squares. The sum of the constituents in each
Tow or column is zero.

Equipoints as in the n-gonal bipyramid. The matrix contains two
I- and two III-squares. The sum of the constituents in each row or
column is zero.

Equipoints as in the n-gonal trapezohedron. The matrix contains two
I-, one IV-, and one IV’-square. The sum of the constituents in each
row or column is zero.

Equipoints as in the di-n-gonal pyramid. The matrix contains I-, II-,
II’-, I-squares. The sum of the constituents in each row or column is
2n cos®p. For the di-n-gonal prism cosp = O and the sum of the
constituents in each row or column again becomes zero.
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Equipoints as in the n-gonal pyramid. The matrix contains only I
The number of different values is #/2 or (n-+-1)/2. The sum of the con-
stituents in each row or column is 2 cos?p and zero for the n-gonal prism.
For matrices corresponding to scalenohedra and streptohedra (e.g.
rhombohedra) see page 316.

T. Liebisch! considered the angles 1/1” and-also 1/»" and 1/(1) as
fundamentally important for di-n-gonal di-pyramids. They can be
deduced? from our general formulae for any given » and as functions of
¢ and p. The same applies to all fundamental angles of forms deriving
from symmetry with a unique axis. It is equally easy to determine the
distances between equivalent points arranged around a central point.
This is an important problem in the investigation of co-ordination
patterns within crystal structures. For this purpose the distance of a
point from the chief point of symmetry is taken as 1. If the lines between
equivalent points and the chief point of symmetry comprise the angle e,
the square of the distance between the points is then d? = 2—2 cos e.
For cose we can substitute the a;~, 8;—, a;—, b~values. If in a general
matrix containing the d?-values, the sum of the cosines be zero (when
a;, Bis @i, by are the constituents of the rows and columns), then the
matrix of the d*-values must consist of numbers whose sum in each row
or column of the subsquares is 2n. This 1s true for all non-polar forms.
For groups corresponding to the di-n-gonal di-pyramid the sums of the
rows or columns containing d’-values is 8n.

! Theodor Liebisch, Geometrische Krystallographie. Léipzig, 1881, p. 223.
2 The following formulae are convenient in calculations connected with forms
deriving from symmetry with a unique axis.
b
oy —cos?p - - sinp cos —):—r; Bo—cos?p  sin%p cos 2¢

(12 agleos 2 - - 28y + ag—1 = 2hy—qy ¢ 1

2
(1 i ag)cos —: - 20 tag—1 - 2a5—aq i1

2
(1 ~a0)c0s( e 2¢) 28, +ag -1 = 2bj—ay-+1

2
(1-—a0)0()s(-n7‘z»~2¢) = 28 ag—=1 - 2by- a1

It therefore follows that:

a = oy +@y-1; by -« Bt ag—1; by - B @ag—1, ete.

27
The ¢ angles and cos —= can each be calculated from two angular values. As

27 27 27
sl 22 eosl 2T 2 2 cos -2 cos 2
t,o&(n 2:;5) (()5( P 2¢) €08 == cos &,

further equations can be derived.
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The characteristic values for n = 6 in both representations are given
in the top rows of tables II and III.

TasLE 11
Cosine values of the angles for n = 6.
1
. 1 2 3
1 1 cos'p+ ¢ 8in®p cos?p—3}sin?p
4 5 6
1 cos?p—sintp costp— 4 sin?p cos?p+ ¢ sin?p
II
1’ 27 3
1 cos®p+8in®p cos 2¢ cos®p+sin?p cos(60+ 2¢4) cos®p+8in?p cos(120+ 2¢)
4 5 [

1 cos*p —8in?p cos 2¢ co8?p+8in’p cos(120 —2¢) cos?p+sintp cos(60 —2¢)

IIT

(1) (2) 3)
1 sinp —cos?p —costp+sintp —cos*p —}sin?p
4) (5) (8)
-1 —1 —cos®p— } sin®p —cos?p+ & sin%p
v
1) 29 39
1 —cos?p+sin?p cos 2¢ —cos?p+8intp cos(60 + 24) —cos?p+8in%p cos(120+ 2¢)
[C9] 59 (8"

1 —cos?p —8in?p cos 2¢ —cos®p+sin?p cos(120 —2¢) —cosp -+ sin®p cos(60 —2¢)

TasrLE 111

d? —values for n = 6 (squares of the distances of equivalent points) on
sphere with unit radius.

I
1 2 3 4 5 6
1 0 sin? 3sin?p 4 sin?p 3sin?p sin?p
11
1 o %
1 | 2s8in?p(1-—cos 24) 2 s8in?p[1 —cos(60+ 2¢)] 2 8in*p[1 —cos(120+ 2¢)]
4’ 5 6"

1 28in*(1+ cos 2¢)

2 8in*p[1 —cos(120 —29)]

28in%p[1 —cos(60 —2¢)]

II1
1) 2) (3) 4) ) (6)
1 4 cos®p 1+3 cos?p 3+ cos®p 4 3} cos®p 1--3 cos®p
v
(1) 29 3"
1 4 —2sin*p(1+ cos 2¢) 4 —2s8in%[1--cos(604-24)] 4—2sin%[1 +cos(120+2¢)_]
&) (5") (6)

1 4 —2sin?p(1 —cos 2¢)

4 —28in%[1+ cos(120 —24)]

4—2sin®0[1 -+ cos(60 —2¢))
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In the case of n = 6, simpler expressions can be obtained by making
use of the relations

cos(120-}-24) = —cos(60—24); cos(604-24) = —cos(120—24).

Also, of course, cos?p can be recalculated in terms of sin®p and vice versa.

2. Matrix representation for tsometric symmetry

Beside the point symmetries characterized by the matrix table Iq,
the following additional equivalent point symmetries now occur:

in cubic symmetry: N =4,6,8,12, 24, 48
In icosahedral symmetry: N = 12, 20, 30, 60, 120.

The special forms of the matrix can be deduced for these cases also, but
here it is not proposed to go beyond a general discussion of the forms
deriving from cubic symmetry.

In the case of the cubic 48-point group we restrict ourselves to giving
the cosine values of the top row of the complete matrix out of which
everything else follows. The crystallographer will easily follow the
sequence used here if the indices of the planes are states whose angles
with Akl correspond to the given cosines (table IV a). However, the

TABLE IV a
Top row of the subsquares I-IV for cubic 48-point group

Number
Cosine of the angle of differ-
included between ent 2
hkland: values
Rkl klh IRk hE] EIR LRE REkI kLR IRk REL RIR TRk
I{Scyorsnlgzl A4, B, B, 4, By, B, A, B B, Ay, B, B 8
RIE Ikk ®RT RIKk Ikh KRl R1Ek LER KRL hIE LkR kRl
H{g’;ﬁ] ¢ ¢ ¢ D, E. E, E D, E, B E D 9
REL kIR TRE REL Klh 1Rk REL RIR lRE REL KELR lhE
III[SIS;{I)EI —4, —By —By —4, —B, - B, —4, —B, —B, —A; —B, —B, 8
) hlk lkh khl Rik lkER khI Rlk 1kk khl Rik 1kh khl
Iv{g"z;{:gl —C, ~C, —Cy —D, —E, -E, —E, —Dy —E, —FE —E, —D, 9

rules apply quite irrespectively of the rationality of the indices. I con-
taing the tetartohedral equipoints which together with II produce the
enantiomorphic, with ITI the paramorphic, and with IV the hemimorphic
classes of symmetry. Tto IV are required for cubic holohedral symmetry.
Where the same numerical values with negative signs occur in different
submatrices, the same letter preceded by a negative sign has been used
for the cosine. Tt is apparent that the 48-point form possesses 17
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different values, each appearing positive and negative. Thus there are
34 angular values in all. The matrix of the cubic holohedral 48-plane
form (or point group) contains as submatrices all the matrices of the
subgroups contained in the group and belonging to the cubic hypo-
syngony. The ¢- and p- values of the plane of departure are, of course,
those corresponding to the cubic setting. The composition of the top
row in the matrix in each individual case can be taken from table IVb
in which N, Z, and z of the general form or point group are given.

TaBLE IV b. Values for the subgroups of Oy,

N Z 2

Oy TIHINIIT 1V 48 34 17
0 III 24 17 17
Ty 11V 24 17 17
Ty IIII 24 16 8
T I 12 8 8
Dy, =Ay 4, A; A, Cy Dy E 16 14 7
A +A4y 4, 4, A, Cy D By 8 7 7
Cin +4, A3 B, 8 6 3
Cyy ~Adg A3 Eg—A; A, Cy Dy 8 7 7
2d +Ag A Ay A3—C3 D, E, 8 7 7

A +Ay Ay Ey 4 3 3
S, +Ay A;—E, 4 3 3
Dy, +A,4; A; A, 8 8 4
D, +A4yA4; A, A, 4 4 4
Cap +Ayg As—A4, 4, 4 4 4
Can +4, A4, 4 4 2
C, —Ay A, 2 2 2
C, 4 Ag—Ag 2 2 2
C; - A, 2 2 1
o + 4, 1 1 1
Dyy 44y By C; C, Cy 12 10 5
D, Ay By Cy Cy Cy 6 5 5
Csy -+ Ay Be—C, Cp Cy 6 5 5
Cy +A44 By 6 4 2
Cq +-4q By 3 2 2

The composition of the cosine values symbolized by 4;, B;, C;, D;, E;
is given in table V which consists of four parts. Of these section (a)
contains a number of computation values which can usefully be derived
at the outset of and used during a calculation. Section (b) then shows in
what manner the 17 cosine values derive from these preliminary ones.
The formulae are independent of the law of rationality, but section (c)
of the table shows the connexions between %, k, and [ and the product
of two indices on the one hand, and the ¢-, p-values on the other in
cases where the law is applicable. In substituting for other planes due
care must be given to the signs and sequences of the indices.
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The cosines of the angles between (kkl) and the other equivalent
rational planes can, as shown by section (¢) of table V, always be written
in the form N/(A%*4-%%+12) in which N can assume the various values
given in section (d) of table V.

TaBLE V. (Explaining Table 1V)
(@) Computation values

p = cos?p r = sin®p 8in¢ t = sin®p sin 2¢ v = sin 2p sin ¢
¢ = sin®p cos®d § = sin®p cos 2¢ % = 8in 2p cos ¢ w = cos 2p = cos?p—sin?p
(b) Formation of the cosine values
4,=1 By = t+u+v) C= —r—u Dy = —p+it
A, = —p—s B, = ¥{(—t+u—v) €= —q—v E,=r
Ay = —p+s B, = {(~t—u+v) Ci= —p—t E,=¢
Ay =w Bs = #t—u—v) Dy = —r4u Ey=172
Dy = —g+v
(¢) Indices expressed in p and ¢
h® = gin®p sin’¢ (A2-+%24-1%) kl = %} sin 2p cos ¢ (A*--k241%)
k?* = gin®p cos?p (h2+Kk2+1%) lh = % sin 2p 8in ¢ (B3 +k241%)
1* = cos’p (h2+k*+12) hk = % sin®p 8in 2¢ (R4 &2+ 1%)

(@) Calculations of the cosine values for planes with rational indices. Value of
Nin_ & N(B)) = Kl+h+hk*  N(C)) = —h —2kl  N(D;) = —I*+2Hk
PR N(B) = K—h—hk*  N(C) = —k*~2h  N(E) = k**

N(do) = B+E*+1  N(B) = —kl+lh—hk* N(Cs) = —P—2hk  N(E;) = k*

Ny = B—k*~8  N(By) = ~K—lh+hk* N(D) = ~k+2k N(Es) = *

N(dy) = B4R —P N(D;) = ~k*+20h

N(4y) = ==k 4D

* Can be formed in two different ways.

For the transitional and special forms of the cubic system new condi-
tions arise. They appear whenever p or ¢ or both assume special values.
Table VI contains all the necessary data. Of course the matrices corre-
sponding to cases with N < 48 (e.g. 6, 12, 4, 8, 24) are correspondingly
smaller. The complete matrix representation is only required for the
hexahedral, tetrahedral, octahedral, and rhombic-dodecahedral point
groups in which the angular values are uniquely determined. Tables
VII, VIII, and IX give these matrices in the order selected for the
48-point group.

A quite similar treatment can be devoted to the icosahedral group,
but the comparative unimportance of the 20-, 30-, 60-, and 120-point
groups does not warrant their discussion in this paper.

The regular pentagonal dodecahedron of I and I, which ean also appear
as a non-crystallographical form in T and T, has as p-value 90° and as
¢-values 31° 43’ or'180° —31° 43’. Five neighbouring planes form angles
of 63° 26" with each plane of the regular pentagonal dodecahedron. As

cos 24 = Lsin 24, 4, = B, = B, = —0-4473
and 4, = B, = By = 0-4473 (see table VI, col. 4).
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TaBLE VII. Hexahedral matrix. (Cosine values.)

{ 001 010 100 00T o0I0 Io0

i1 2 3 4+ 5 6
11 o o0 -1 o0 o0
2,0 1 0 o0 —1 ©
3]0 o0 1 o0 0 -1
4 ‘—1 0 0 1 00
5 ‘ 0 -1 0 0 1 o
610 0 -1 0o 0 1

TaBLE VILI. Tetrahedral and octahedral matrix. (Cosine values.)

‘ 1 ! I
r A —_—A N
111 11T 111 I | TiT 111 11 11
1 2 3 4|5 & 1 8
r 1 -3 -3 -4 -1 & 4
[ S SR St St T N S ST B O
34 -4 1 -3 |y o3 -1
¢ = -3 1y )
59—t 4 3 31 % - -]
I ﬁl&—l%&|—&1»%—§[
7103 4 -1 3 =4 1 1 4
8 | &% ¥ 4 -1 |-} -} -+ 1
_ | I I
I =. Tetrahedron. I:II. Octahedron

TasLe 1X. Rhombic dodecahedral matrix. (Cosine values.)
011 110 101 OIT 110 101 olT Tlo Tel o1l IIo 1ol
1 2 3 4 5 6 7 8 9 10 11 12

by p =1 = =F 0 4 =3 0 -} 1}
AT T ST SR SRS S S Y
3] 4 3 1 =% 4 0 4 -} -1 } —} 0
4l-1 - —4 1 % 4 0 —k & 0 b —i
51 0 4 4 1 4 -} -1 -3 4 0 -1
61—k + 0 & b 1 4 —4 0 —f -3 —I
710 4 -3¢ 0 -4} 1 1 4 -1 —F —}
8| ¢+ 0 —f -} -1 - } 1} -} 0 4
9/~ —4 -1 } -3 0 } 4 1 —}p 4 0
10 0 —3 3 0 I - -1 -3 —} 1 3 i
Wi—d -1 =} F 0 —4 3 0 4 3 L 4l
12} 3 0 —p -} -1 —} 4 0 } & 1]

There are in sll only four different angles and the top line of the matrix
in the usual arrangement therefore reads as follows:

A, B, B, | 4, B, B, A, B, B,
1 04473 04473 | —0-4473 0-4473 —0-4473| 04473 —0-4473 0-4473
A, B, B,

—1 -04473 —0-4473
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Z = 4, 2z = 2. The number of equations governing the conditions is
four or twelve.

We thus obtain an exact formulation of the laws to be obeyed by a normalized
sequence of numbers in a square matrix if the matriz is to be an image of the
properties of an equivalent complex within a symmetrical point group.
This representation in matrix form is analogous to those called ‘vector
sets’ and ‘vector set matrices’ by D. M. Wrinch! and M. J. Buerger®
respectively. However, the matrices employed here are restricted to
angular values or distances, i.e. to scalar quantities. The application
of these methods to the symmetry of vector set matrices of symmetrical
point groups presents no difficulties and would elaborate the remarks
made by Buerger on this subject.

1 D. M. Wrinch, Phil. Mag., 1939, vol. 27, p. 98.
2 M. J. Buerger, Acta Cryst., Cambridge, 1950, vol. 3, p. 87.



