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On the correlation of physical properties with chemical 
composition in multivariate system, s 

By MAx II. lIE~', H.A., I).Se. 

D e p a r t m e n t  of Mineralogy,  Brit ish Museum (Natura l  History) .  

[Re~l 27 January 1955.] 

Su.m mary.--A systematic and time-saving pr()ce(hu'e for the correlation of optical 
or other physical properties with clmmical comt)osition is outlined, and is applicable 
even where the composition is complex and involves severa.1 variables. The proce- 
dure is applied to anthophyllite, for which the following partial regression equations 
are derived: 

y -: 1.7249 0.0130Si-i O.0140(Ti �9 Fc" i Fe" . Mn) i 0.0012, 
fl 1-7275--0-0142Si . 04~24(Ti : Fe")~ 0.0110(Fe" :-Mn)-i-0.O015, 
,u = 1.6951--0.Oll7Si--0.04t)('I'i �9 Fe") i-O.0133(Fe" : Mn)_=0.(1025, 
b (;k.) = 16.44 ! 0.28Si-- 0.13 Mg . (l-40(Ca-!-Na i K) ! 0.04. 

The a and c cell-dimensions a.ppear to be constant, within the experimental error of 
the availa.ble data. 

B Y far the most  popular as well as the simplest  means  of der iving 

and displaying the  correlat ion of the  physical  propert ies of a 

mineral  with its chemical  composi t ion is the graphical  method,  ei ther 

in the form of a linear graph or a t r iangular  or square contoured correla- 

t ion d iagram;  but  these methods  are necessarily l imited to minerals  

whose wtriat ions in composit ion can be expressed in terms of one or two 

parameters ,  ~ and only the simple linear graph can indicate ett leiently 

the  probable accuracy of the correlation. 

The method  of least  squares is applicable to both linear and non-l inear 

correlat ions with any number  of independent  parameters ,  and is widely 

used in many  branches of the  physical  and biological seienees, trot has 

rarely been applied in mineralogy.  Probably  one reason for this negleet  

is the  lack of any readily available description of the method  as applied 

to nml t ivar ia te  systems, for such well-known textbooks  as a. W. 

Mellor 's ' I l i ghe r  Mathemat ics  for Students  of Chemist ry  and Phys ics '  

(London, 1931) and R. A. Fisher ' s  'S ta t i s t ica l  Methods for Research 

x 'File tria.ngular diagram involves three variables, the square one four, but in 
each case only two are independent. 
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Workers '  ( l l t h  edn., Edinburgh, 1950) only devote a few short para- 
graphs to it, and many only deal with its application to simple correla- 
tions with one independent parameter  (y = a x §  for which the familiar 
graphical method is usually adequate. Another reason for this neglect 
is the assumption tha t  the procedure, as applied to a multivariate 
.system, is necessarily very time-consuming; the evaluation of a deter- 
minant  of high order is at best a slow process and needs careful checks, 
and at  first glance a set of regression equations in n independent variables 
would appear to involve the evaluation of n ~ l  determinants of nth 
order for each dependent variable, plus ancillary calculations: the 
procedure outlined below calls for little more labour than is involved in 
the  calculation of 2 to 4 determinants of the nth order, whatever the 
number of variables. 

In many  minerals the principal physical properties, including unit~ 
cell dimensions, density, refractive indices, and birefringences, appear to 
be reasonably well reproduced by linear partial regression equations in 
which the independent parameters define the chemical composition; 
they may  be weight percentages, empirical unit-cell contents, or atomic 
ratios (the last will usually be most convenient). The possibility of a 
non-linear regression must  always be borne in mind ; perhaps the simplest 
check is, after deriving the best linear correlation, to plot the residuals 
(that is, the differences between the observed values of the dependent 
variable and the value calculated from the regression equation) against 
each of the compositional parameters in turn. The points should lie 
evenly about a straight line parallel to the composition axis; if they 
appear  to lie evenly about a straight line not parallel to the composition 
axis, the regression coefficient for that  constituent has been incorrectly 
estimated, while if they suggest a curve, the correlation is probably non- 
linear in that  const i tuent)  

Before proceeding to discuss methods for deriving regression equations, 
~ertain inherent limitations to their use should, perhaps, be emphasized. 
A regression equation can only be utilized for one particular purpose--  
an  equation or set of equations derived to predict the refractive index 
or indices of a mineral, given the chemical composition, cannot properly 
be used to predict the composition, given the refractive indices. The 
reason for this restriction is clearly explained and illustrated by M. J. 
Moroney. 2 I f  it is desired to predict the chemical composition, given an 

1 M. H. Hey, Min. Mag., 1954, vol. 30, pp. 281 4. 
M. J. Moroney, Facts from Figures, 2nd ecln., Harmondsworth, 1953, pp. 

293-4. 
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adequate number of physical data, a suitable set of regression equations 
must  be calculated for that  purpose. 1 

The derivation of a partial regression equation; selection of data 

The first steps in the investigation of any correlation are to decide oa 
the relevant variables and to review all the available data. As a rule, 
the independent variables will be parameters defining the chemical com- 
position, and the only question will be how many such parameters are 
really essential to the correlation: every additional variable increases 
the order of the determinants involved and adds greatly to the labour of 
calculation; on the other hand, whereas it is a relatively simple matter 
to discard a superfluous variable, the whole investigation has to 
be repeated if it should be found later that  some neglected variable is 
really essential to the correlation (e.g. if some supposedly unimportant  
constituent such as fluorine proves to have an important effect on a 
physical constant such as the refractive index). 

Having decided on the relevant variables and collected all the avail- 
able data, we have to decide whether all the data should or can be used, 
and whether all should be assigned equal weight. Generally speaking, 
it  is desirable to make the fullest use of all available data, bu t  it will be 
obvious that  if part of the data is more accurate than the rest, it should 
be given greater weight, z Occasionally it may happen that  a part  of the 
data is much more accurate than the rest; then it may be desirable to 
derive the regression equation from the more accurate data alone, and 
check the result by comparison of predictions made using this equation 
with the remaining, less accurate data. Similarly, a few sets of data of 
doubtful accuracy are best rejected for the derivation of the regression 
equation. 

If  several physical quantities, such as refractive indices, density, 

x This has been done for the mineral here taken as an example, anthophyllite, 
but owing to the restricted range of variation of the birefringenees the results will 
always be rather inaccurate. The equations derived for the composition, in atoms 
per 24(O,OH,F), and assuming an accuracy of :L0'001 in the refractive indices 
and _~0'03 in the density, are: 

Si -- 165 (9'--fl)--102 (9,--a)--309"--3"3D+60.13• 
A1 = --346 (9"--fi) +229 (9'--a) + 299'+ 10.8D -- 81-70 • 1-0, 

Mg = --33 (9'--~)+37 (9'--a)--619"+0.2 D+I03-87• 
Fe" = 103 (9'--fl)-10 (9'--a)--509'+18.3 D•177 

These equations give a fairly satisfactory representation of the ten superior sets of 
data by J. C. Rabbitt (see below). 

2 The procedure for giving greater or less weight to a part of the data is discussed 
below, p. 91. 
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unit-cell dimensions, &e., are to be correlated with the same group of 
independent variables, such as parameters defining the composition, i t  
will almost always be advantageous to reject any sets of observations in 
which only some of the physical quantit ies were determined (provided 
there are not too many such sets). The reason for this is tha t  if the 
independent variables are the same for all the sets of observations 
utilized, a single covarianee matr ix  can be calculated and applied to 
derive the regression equations for all the physical quantit ies;  and, as 
will be seen below, the calculation of the covarianee matr ix  is the most 
laborious stage in the calculations. But calculated values for any rejected 
da ta  should always be derived and  compared with the observations, as a 
check. 

I t  is perhaps preferable, in discussing the derivation of a set of part ial  
regression equations, to consider a concrete example, and the correlation 
of the refractive indices and unit-cell dimensions of anthophyll i te  with 
its composition is a useful one, because i t  is not too simple, but  i l lustrates 
well many of the possible complications. The available optical da ta  con- 
sist of some thir ty-eight  sets of data  obtained on analysed specimens, 1 
but  in some eases only one refractive index or only the optic axial angle 
was determined;  moreover, ten sets of data,  all determined by  one 
worker and therefore nmre strictly comparable, are of decidedly superior 
accuracy. The X-ray  data  consist of ten sets of cell-dimensions, on a 
group of analysed specimens 2 overlapping the group with optical da ta  
of superior accuracy. The variations in the a and c dimensions are within 
the accuracy of the measurements, but  the b dimension shows significant 
variation. 

The first step was to select suitable parameters to define the composi- 
tion. Anthophyll i te  may  have at  least fourteen composition variables:  
Si, Ti, A1, Fe", Fe", Mn, Mg, Ca, Na, K, F ' ,  OH', 0", and interst i t ial  
H20 (as in the Glen Urquhar t  gedrite) ; but  only thir teen of these will 
be independent,  on account of the valency balance. 

The composition would be best expressed in empirical unit-cell con- 
tents, but  the regression equations could then only be used where the 
necessary density and cell-dimensions were available. I f  empirical unit- 

1 Analyses 1, 2, 3, 4, 6, 7, 8, 9, 10, 13, 14, 15, 16, 17, 20, 22, 24, 25, 26, 29, 30, 
33, 34, 35, 38, 39, 40, 4,1, 43, 44,, 4,5, 72, 79a, and 85 of J. C. Babbitt (Amer. Min., 
194,8, vol. 33, p. 263 [M.A. 10-416l); R. Pirani, Atti (Bend.) Aeead. Naz. Lineei, 
el. fis. mat. nat., 1952, ser. 8, vol. 13, sem. 2, p. 83 [M.A. i2-30], and p. 170 [M.A. 12- 
140], and 1953, vol. 15, sere. 2, p. 422 [M.A. 12-374]; G. H. Francis, Min. Mag., 
1955, vol. 30, p. 709. 

2 j .  C. Babbitt's nos. 1, 8, 9, 14, 17, 20, 26, 29, 30, and 43. 
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cell contents are not used, some assumption must be made, and it i~ 
convenient to assume that  ~ (O,OH,F) ~ 96, neglecting the possibility 
of interstitial water ; in fact, none of the ten selected analyses shows any 
interstitial H20 , so this parameter is not required, though, as will be 
seen below, interstitial H20 appears to have a very marked effect on the 
refractive indices. The number of parameters has thus been reduced to  
eleven. Owing to the small number of analyses in which it was sought, 
F '  was necessarily neglected; this is unfortunate in view of the large 
effect it usually has on the refractive indices. Variations in OH' were 
also neglected in view of the uncertainties relating to the water deter- 
minations. Further, in view of the small amounts of Ti and Fe ~ present, 
and their similar optical effects, (Ti§ was taken as one variable 
for the optical data;  similarly, ( C a + N a H K )  was taken as one variable, 
and Mn was included with Fe". The reduced number of independent 
parameters is six: Si, A1, (TiHFe"), (Fe"HMn), Mg, and (CaHNaHK).  
Finally, it has been assumed that  the replacements Ti ~ Fe, Ca ~ (Na, K) 
and O ~- (OH,F) can be set against one another and balanced out with- 
in the probable accuracy of the chemical analyses ; with this restriction, 
the requirement of valency balance reduces the number of independent 
parameters to five. I t  is convenient to discard A1 as an independent 
parameter, leaving for the correlation with the optical data:  Si, (Ti H Fe"), 
(Fe" § Mn), Mg, and (Ca H Na H K), all expressed in atoms per 24(O, OH,F) ; 
the unit of 24(O,OH,F) was chosen to facilitate comparison with the 
clinoamphiboles and the pyroxenes. 

For the correlation with the unit-cell dimensions it may reasonably 
be assumed that  in view of their similar ionic radii the small amounts 
of Mn may be included with Fe", and the Ti and Fe" with A1, while Ca, 
Na, and K may be taken together. And in view of the uncertainty of  
some of the water contents, and the similarity in the radii of F' ,  OH', 
and O", the variations in H~O and F '  have been disregarded. The number 
of variables is thus reduced to five, only four of which are independent ; 
these are the same as for the correlation with the refractive indices, 
excluding Till  Fe". 

The next step is to decide whether to use the whole or a selected 
part of the available optical data (all the X-ray data are useful and of  
about equal weight). The use of incomplete sets of data would have the 
disadvantage that  a complete recalculation of the covariance matrix 
(see below, p. 78) would be needed in respect of that  optical constant for 
which additional data was available, and the incomplete data were not  
numerous, nor did they extend the composition field notably ; they were 
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the re fore  no t  used for t he  ca lcu la t ion  of t he  pa r t i a l  regress ion equa t ions .  

An  a t t e m p t  was m a d e  to der ive  equa t ions  us ing all t he  r e m a i n i n g  da t a ,  

and  ass igning a we igh t  of 2 to  J .  C. R a b b i t t ' s  d a t a  in view of the i r  

super ior  accuracy  ; b u t  the  equa t ions  so deduced  gave  res iduals  ~ for t he  

super ior  d a t a  t h a t  were u n e x p e c t e d l y  h igh  and  d i s t inc t ly  biased,  sug- 

ges t ing  t h a t  no t  enough  weigh t  had  been  g iwm to  the  super ior  da ta .  

I t  would indeed  a p p e a r  t h a t  t he  difference be t w een  t he  accuracy  a n d  

coherence  of J .  C. R a b b i t t ' s  opt ica l  d a t a  a n d  t h a t  of t he  res t  c a n n o t  

a d e q u a t e l y  be m e t  b y  a we igh t ing  factor ,  a n d  as R a b b i t t ' s  d a t a  a p p e a r  

to  cover  t he  compos i t ion  field r e a s o n a b l y  well, a f resh s t a r t  was made ,  

us ing  t h e m  alone (analyses  1, 8, 9, 14, 17, 22, 26, 29, 30, a n d  35);  the i r  

n u m b e r  is u n c o m f o r t a b l y  small ,  and  i t  is p robab l e  t h a t  t he  equa t ions  

now deduced  will requi re  cons iderab le  a m e n d m e n t  and  ex tens ion  w h e n  

more  d a t a  are avai lable .  

Prelimi.~mry preparatiol~ of the data," formatio~ of the matrix equations. 

H a v i n g  a sce r t a ined  the  r e l e v a n t  va r iab les  a n d  selected the  da ta ,  t he  

n e x t  s tep is to reduce  the  d a t a  to  a form su i tab le  for c o m p u t a t i o n .  F i rs t ,  

t h e  m e a n  of each physical  q u a n t i t y  and  compos i t iona l  paramc, te r  over  

all t he  sets  of obse rva t ions  is ca lcu la ted  ; t h i s  is done, for our  example  in 

TAI~r,E [IA. Selected optical data for analysed specimens of anthophyllite, ex- 
pressed as differences fromthe_lncans (Mo) of table I. S = Si-S] ,  7' Ti-~ Fe"--  
T i t F e ' " , F  Fe" !3In Fe" :Mn, M Mg-31g, C = C a : - N a  ! K - C ~  ~Na+K,  
I '  = y--~, B fl--/~, A ~-  ,-i where the bar indicates a mean. 

S• T •  ~. F• M• C• F• B• A• No. 

1 - 104 l 45 --117 25 204 193 169 
8 --74 21 5 - 76 --8 141 153 156 
9 --[~ --2 30 --61 4 118 126 123 

14 --42 3 --7 --20 14 42 68 79 
17 - 23 14 33 --87 13 94 118 143 
22 53 5 70 --45 --12 28 13 56 
26 59 1 7 29 --8 --60 --93 --68 
29 61 --14 --78 141 21 --227 --207 --217 
30 60 --14 --5i  97 0 -167 .-197 -235 
35 72 --14 --56 137 --13 - 173 --176 - 209 

t ab le  I ; i t  will usua l ly  be  sul l ie ient  if  t he  several  means  are t a k e n  to tile 

same n u m b e r  of dec imal  places as the  q u a n t i t i e s  being averaged .  Next ,  

all t i le va r i ab les  are ext)ressed in the  forln of differences f rom the i r  

respec t ive  means ,  as in t ab les  I I h  and  Ili~. 

1 That is, differences between the observed optic~l data and the values cal- 
culated from the regression equation. 
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Now in the general case we may have N sets of observations, each set 
referring to m specified physical properties (X, Y, Z ..... ) which are 
dependent variables and each of which is to be correlated with n indepen- 
dent variables such as the parameters of composition (A, B, C,... ; or 
in practice Si02, Al~03, &e.). And all these variables have been expressed 
in the form of differences from their respective means. We can therefore 
set up for each physical quanti ty N equations of the type :1 

X~ = a~A~+bxB~+cxC~...+p~Pi (i -- 1,2,..., N), 

where a~, b,, c~,.., are constants, n in number. 
Considering in the first place only the N equations for the one physical 

quanti ty X, the squares of the coefficients Ai, B~, C~,... and their pro- 
duets in pairs A+B~, A+C+, A~D~,..., B~C~, BiDi,..., C+Di,... are evaluated 
and tabulated as in table IIB (there will be n(n+l) /2  such terms). The 
products X~A+, X+B+, X~C~ .... are also calculated (n terms). Correspond- 
ing products are now summed over the N equations, and from the sums 
a matrix equation in a~, b~, c~,.., can be set up : 

ZA~c~ ZB~c+ Zc~ ... Zc~P~ c~ Zx~c+ 

A similar equation can be set 

1,2,3 ..... ~). 

up for each of the other physical 

* I t  will be noticed tha t  the equations are homogeneous, containing no constant  
term. In  general, a regression equation correlating one dependent  variable with n 
independent  variables will contain a constant  term, making n + l  constants,  and 
in the derivat ion of the equation determinants  of order n § 1 will be involved. But  
if  all  the variables are expressed as differences from the mean, the constant  te rm 
becomes zero. For if we assume tha t  the constant  te rm is ~x, we have X i = ~x + 
a , . 4 i § 2 4 7  N ~ x §  A i §  Bi+cx~_,Ci§ 
( i  = 1 ,2 , . ,  •) ;  but  if  Xi, Ai, &c. are measured from their  several means, the 
sums ~ Xi, ~_, A i .... are all zero ; hence ~x = 0. This el imination of the constant  
r,e~ m reduces the order of the determinants  involved in the derivation of the regres- 
sion equations from n + 1 to n, which amply  repays the labour of expressing all the  
variables as differences from their  means. I t  will also be obvious tha t  if  the number  
of sets of observations, N, is less than  the number of independent variables, n, the 
system of N equations has no definite solution; if N = n a solution is possible; 
and if, as will normally be the case, N > n, the equations will form an inconsistent  
system, from which, however, an opt imum solution can be derived by the method 
of least  squares ; in wha t  follows, we assume tha t  N > n and apply the method of 
least  squares. 
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quantities, Y, Z,... ; but  pIovided 1 that  all the physical quantities relate 
to the same N sets of values of the independent variables A, B, C,..., 
the left-hand matrix will be the same in all the equations, which can 
therefore all be combined into a single equation: 

�9 ~ Z , A : . . .  II �9 Z A ~  ZAIB~ Z A I C i . . . Z A i P  , axayaz . . . [ )=  Z X i A  i Z Y i A ,  
Z A~B i Z B~ Z BIC i ... E BiP i b x b a bz ... Z XIB i Z YiB~ Z ZIB~ ... ll 

II y~'A,P~ 2 B , ~ ,  Y.e,P,  ...'" ~Pi2 P Py z ~ Y , P t  Y"ZiPi 222[1 

In this equation, it will be seen that  the left-hand matrix (which is a 
symmetrical square matrix of order n • n) contains only the sums of 
squares and products of the independent variables ; the central matrix 
contains all the desired coefficients of the regression equations ; and the 
dependent variables, the m quantities X, Y, Z,..., only occur in the 
right-hand matrix; the central and right-hand matrices are both of 
order n • m. 

To solve the equation (that is, to evaluate the central matrix of 
unknown constants), the most satisfactory procedure is to premultiply 
the right-hand matrix by the eovarianee matrix, which is the reciprocal 
of the left-hand matrix and, like it, is a symmetrieM square matrix 
of order n • n. To evaluate the eovariance matrix, we must solve the 
equation: 

1 0 0 . , .  0 

0 1 0 . . .  0 

0 0 1 . . .  0 

T h e  solution of this equation is ~u = D~/Do, where ~ij is the element 
appearing in the ith row and j th  column of the covariance matrix, Do 
is the determinant of the left-hand matrix (the matrix of stun of squares 
and products of the independent variables), and D~- is the determinant 
obtained by replacing the ith column of D o by the j th  column of the 
right-hand unit matrix. 

1 This proviso will usual ly have been met  during the prel iminary selection and  
preparation of the  data.  I f  for any  reason a different group of independent  variables 
mus t  be used for any  particular physical quant i ty ,  the  whole procedure, including 
the  preparatory expression of the  da ta  as differences from their means,  will have  
to be carried out  separately for tha t  physical quant i ty .  This is exemplified in the  
case of anthophyll i te  by the  da ta  for the  unit-cell dimension, b (tables I and  IIB; 
compare table IIA). 
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A systematic procedure for the evaluation of the eovariance matrix 
will be considered below; for the moment, we will assume that  it has 
been evaluated. Then we can write: 

a~ % .~...[[ 
b x by b z : 
~X Cg C z . . .  

Px Pv P~...I! 

!!! i!! .1 

ev, e~,~ ~;3 :22 e~:v 2"g~Pi 2 YiPi 2 Z J ' i  '" 

Multiplying out, any element of the left-hand nmtrix of regression 
coetticients, say that  in the ith row and j th column, is obtained by 
multip]ying the several elements of the corresponding eohmm (the j th) 
of the right-hand matrix by the eh;ments of the corresponding row 
(the ith) of the covariance matrix and adding the products. Thus in the 
second row and thir(t column: 

b, = ~21 ~. Zi A i i-~2. ~, Zi B~ i ~2a. ~- Z~ C~ +...-:@,_~,. ~ ZiPs.  

Finally, we arrive at the desired regression equations: 

X ~ = A ia~. :: B.~b~ +C~e.~- .... § t~p.~.t:d:~ ; 

1:'~ A~av-'-B~b v ! - C ~ % § 1 7 7  

&c., or in matrix form 

Zi 

ax bx 
% by 
az b z 

. 

i i  

% P" I] II Bi 
c~ Pz Ci, 

�9 li l b .  

�9 . .  {I tl. i[ 

A 

dz 

I t  will he noticed that  ~{i, if'i, &e., are used for the estimated values 
of the dependent variables, derived from the regression equations, and 
that  each equation includes a stand'~rd deviation term, d:,:, d,j, &c. The 
standard deviation terms may be derived in two ways, and it may be 
thought desirable to use both as a check, though exact agreement will 
not normally be obtained on account of the approximations used in the 
course of the calculations. One procedure is to compare the observed 
and estimated values of the dependent variables, forming the residuals 



8 0  M. If. HEY O R  r 

Xi - - - ~ ,  Y~--Yl, &e. ; then dx ~ = • (Xi-)~d2/N, &c. The other pro- 
cedure is to use the relation 

Nd~x = Z X~--% Z X~A~--b~ Z XiBr Z X~C~--...--p~ Z X~Pi. 

For our example of anthophyllite, it would take too much space to 
follow through the derivation of the regression equations for all the 
dependent variables in full detail, but the first stage of the procedure 
for the cell-side b is illustrated in table IIB; the sums of squares and 
products in this table, and the corresponding sums for table IIA (the 
derivation of which is not shown) lead to the two matrix equations : 

l 3-6187 --2.2786 4-4288 --0.0125 ] .  s x = 0.3622 1'  a n d  
--2-2786 3.2810 --5-3956 --0.2385 f x  0.0349 

4-4288 --  5.3956 11'6463 0.5298 ~n x 0"1421 
--0"0125 --0 '2385 0-5298 0.2047 c x 0-0109 

:x: 102 

4-1476--0-4356--1.5162 4 . 8 1 4 8 - - 0 . 2 2 2 6 n - '  s!i r sf; B SA = - - 8 . 1 5 0 7 - - 8 . 6 4 9 5 - - 8 . 6 4 7 1  
--0.4356 0.1265 0.3478 0.8315 --0.0175]] t r t g t A 1-2389 1-3102 1.4811]] 
--  1.5162 0.3478 2.0858 --  3.6770 -- 0.0314 ]] ]A 5-3684 5.2956 5.9468 

4.8148--0-8315--3-6770 8.2080--0.1436 I m A --12.5707--12-9211--13.8756 I 
--0.2226 - -0-0175--0-0314--0 .1436 0.1888 c B CA 0-1760 0.2208 0-1167 

In both these equations the coefficients sx, st, sB, sA are the coefficients 
of S in the desired regression equations for X, F, B, and A respectively 
(these symbols are defined in tables I and II), while t, f ,  m, and c are 
the corresponding coefficients of T, F, M, and C; and the power of 
10 written over the first term of a nlatrix is to be understood, here and 
later, as multiplying every term of the matrix. 

The two eovarianee matrices, which are the reciprocals of the left- 
hand matrices of these two equations, are next found by the procedure 
outlined below (p. 93): 

fss fay f,~m fse ]] ~ ] 0-6759 0.1898 --0.1875 0,7248 (for X ) a n d  
~-~ss 0 . ,  fso I/ o.1898 1.2858 0-5423 0-1558 

/ --0,1875 0.4276 --0.4945 f m f  fmm fme / 0.5423 
fcs fe$ fcrn fee 0"7248 0'1556 --0"4945 6"3390 

fss fat fsy fsm fse  = 6.891 --18-836 --12.072 --11-434 --4-325 II (for F, B, and A). 
fts f i t  fry ~tm fte --18-836 82-349 36.260 35-962 18"808 [[ 
~ ff~ f z  e~ e~o -12.072 36.260 24.058 21.699 9.634 II 
fins scmt fm$ from f, me --11-434 35'962 21-699 20-348 8"939 I 
fcs fct fef  f~n fee --4"325 18"808 9-634 8"939 10.342 

Applying the covariance matrix for X: 

0.1898 1285s  0.5423 0.15581/ I/ 0.0349 
- - 0 . 1 8 7 5  0 . 5 4 2 3  0 . 4 2 7 6  - - 0 . 4 9 4 5  / t [ - - 0 . 1 4 2 1  

0 . 7 2 4 8  0 -1558  - - 0 . 4 9 4 5  6 .3390  0 . 0 1 0 9  

= 0 . 6 7 5 9 • 2 1 5 2 1 5  0.286 H. 
0 .1898  • 0 . 3 6 2 2 +  1 .2858  • 0 . 0 3 4 9 - - 0 . 5 4 2 3  • 0 .1421  + 0 . 1 5 5 8  • O.Ol091/ II ~176  

- 0 .1875  • 0 . 3 6 2 2 - t - 0 . 5 4 2 3  • 0 . 0 3 4 9 - 0 . 4 2 7 6  • 0 . 1 4 2 1 -  0 .4945  • 0 .0109  / I I -  0"11511 
0 .7248  • 0 . 3 6 2 2 + 0 . 1 5 5 8  • 0 , 0 3 4 9 + 0 . 4 9 4 5  • 0 .1421  + 6 . 3 3 9 0  x 0 .0109  0 .407  
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Hence we derive the regression equation for X :  

2; = 0"286 S+0-038 F - -  0-115 M+0.407 C, 

with a variance 

A2 = ( Z  X2-s~ Z xs - f x  ~ • Z XM-c~ Z XC)/N (Tze 

= (0.1425--0.286 • 0.3622--0.038 • 0.0349--0.115 x 0-1421 -- 

--0.407 x 0.0109)/10 
= 0.0017, 

and standard deviation d~ = 0-04. Lastly, we replace the differences 
from the mean, S, F, M, C, and X, by the measured quantities Si, 
Fe"+Mn,  Mg, C a + N a + K ,  and b, arriving at the final form of our 
regression equation for b: 

b-- 17.95 = 0.286 (Si-- 7.18) 4- 0"038 (Fe"4-Mn-  1.64) -- 

-0 .165  (Mg--4.41)+0.407 (Ca+Na+K--0-19) :~0.04 ,  

= 16.484-0.286 Si+0-038 (Fe"+Mn)--0"165 M g +  

+0"407 ( C a + N a + K ) i 0 " 0 4 .  

Similarly, we arrive at regression equations for y, fl, and a: 

= 1-7273-0"0134 Si4-0"0145 (Ti+Fe")+0"0140 (Fe"+Mn)+  

+ 0"0002 Mg-- 0"0030 (Ca + Na + K) -s 0"0009, 

= 1"7299--0-0143 Si4-0"0232 (Ti+Fe")4-0.0108 (Fe"+Mn)--  

--0.0002 Mg--0.0015 (Ca+Na+K)•  

= 1"7009--0"0113 Si+0"0368 (Ti+Fe")4-0.0120 (Fe"+Mn)--  

--0-0012 Mg--0.0028 (Ca+Na+K)~:0 .0021.  

This completes the derivation of the desired regression equations. But 
we notice that  they contain several very small coefficients, and we may 
reasonably doubt whether these differ significantly from zero. I t  is not  
difficult to test whether this is so, to test whether two coefficients that  
are nearly equal differ significantly from one another, and to decide how 
many significant figures are justifiable in each coefficient. 

The standard deviations of the regression coe~cients ; tests of the significance 
of the regression coe~cients. 

An estimate of the standard deviations of the regression coefficients 
can very readily be made by using the covariance matrix. For if the 
estimated standard deviation of the dependent variable, X, is d~, and 

B 5381 G 

8 1  
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the  estimaVed s tandard  deviat ions  of the  regression coefficients a~, b~, 
A ~ A 2  2 c ..... are a .... %.b, &c., then  az,~ = %~:11 N / ( N - - n - - 1 ) ,  where N is the  

number  of observed values of X and n the number  of independent  

variables a, b, &c. ; or in general  for the kth in the  series d~,~, dx,~,.., 
we have  ~2 ~ d 2 ~kkN/ (N  n - - l ) .  (Y x,lc 

For  the  coefficients of the  regression equa t ion  der ived above fo~ the  

b cell-dimension of anthophyl l i te ,  we have :  

d 2 d ~ s N / ( N - n - - 1  ) 0.0017 • 0"6759 • 10/5 = 0.0023; 
~2 ab,f = 0.0017 • 1.2858 • 10/5 = 0.0044; 

%,~2 ~ 0.0017 • 0.4276 • 10/5 = 0-0014" 

d 2 = 0.0017 • 6.3390 • 10/5 0.0215 b~c 

(note t h a t  the  second factor  in each is an e lement  of the  pr incipal  

diagonal  of the  covar iance matr ix) .  Hence  we have  

db, ~ = 0.048, db, f = 0"066, rib, m = 0'037, rib, ~ ~ 0.147, 

and 

s b = 0"286~:0.048, fb = 0.038• m b ~ --0.115~:0.037,  

% = 0.407--0"147. 

I t  is obvious t h a t  the  coefficient f~, wi th  a s tandard  devia t ion  much  

greater  t h a n  the  coefficient itself, is not  significantly different f rom zero ; 

bu t  some quan t i t a t ive  tes t  for the  significance of the  coefficients is 

desirable, and is, in fact ,  readi ly  available.  Most collections of t abu la t ed  

s tat is t ical  funct ions include a table  of 'S tuden t ' s  ra t io ' ,  t. This is the  

rat io of a quan t i t y  to its s tandard  deviat ion,  and the  t abu la t ed  figures 

are the  probabili t ies,  for given values of S tudent ' s  ra t io  and given 

numbers  of degrees of freedom, tha t  the  quan t i t y  under  considerat ion 

does no t  differ significantly f rom zero. I t  is not  necessary for our pur-  

pose to consider the  exac t  meaning of the t e rm 'degrees of f reedom'  in 

stat is t ical  theory  ; i t  will suffice to say tha t  in this connexiol l  the  number  

of degrees of f reedom is N - - n -  1 : N and n are defined above. 1 Apply ing  

this procedure to our example,  the  values of S tudent ' s  rat io are 

tb, ~ = s~/db, ~ = 6"0, tb, f = 0"57, tb, m = 3.1, tb, ~ 2.8, 

and there  are 5 degrees of f reedom ; f rom the  tables  the  corresponding 

1 In  this connexion, i t  must  not be forgotten tha t  n is the number  of independent  
variables r e m a i n i n g ,  not  necessarily the original number the invest igat ion s ta r ted  
with ; if any terms h~ve been rejected from the regression equation as not significantly 
different from zero, n will be reduced accordingly. 
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probabilities tha t  the several coefficients are not  significantly different 
from zero are Pb,s < 0'01, Pb,/0"6, P0,,,~ 0-03, Pb,c 0.04. The degree of 
probabi l i ty  tha t  a coefficient is significantly different from zero is of 
course a mat ter  for the judgement of the individual worker, but  this 
simple technique does provide an objective measure of tha t  probabil i ty.  
We have accepted a probabi l i ty  of 0.40 or less as justifying the inclusion 
of the term in question, and on this basis the term in F may be rejected 
from the equation for b as not justified by the da ta  at  present available, 
while the terms in S, M, and C must  be retained. 1 This does not imply  
tha t  b does not vary  with F e " §  but  merely tha t  the da ta  at  present 
available are not adequate to prove any such variation. 

When any coefficient of a regression equation has been shown not to  
differ significantly from zero, we proceed to eliminate tha t  term and 
readjust  the remaining coefficients to give the best  representation of the 
observations. But before considering the procedure for this readjust-  
ment  i t  is desirable to consider the possibility tha t  two coefficients may  
not  differ significantly from one another, when it  would be proper to  
replace the two separate terms in two independent variables, say B and 
G, by  a single term in their sum, B+G, adjusting all the coefficients 
accordingly. 

To test  whether two coefficients, say b~ and g~, differ significantly from 
one another, we divide their difference by  its s tandard deviation to 
obtain the appropriate  Student 's  ratio tx, b_g; then from the tables, with 
this value of t and N - n - - 1  degrees of freedom, we derive the probabi l i ty  
R~,b g tha t  the two coefficients do not differ significantly from one 
another. The s tandard deviation d~,b_g of the difference b--g is given, 
in terms of the s tandard deviation d~ of the dependent variable, by  the 
relation : ~2 ~2 ax, b g = %(~22+~7--2~2v) N/(N--n--1);  the appropriate  ele- 
ments of the covariance matr ix  are ~:22, ~:77, and ~27 because b and g are 
second and seventh in the series a, b, c,.... 

Considering the remaining, adjusted coefficients of the regression 
equation for the b cell-dimension of anthophylli te,  after elimination of 
fb (see p. 84) it  is obvious tha t  since all the coefficients have been shown 
to differ significantly from zero, the negative coefficient mb = --0.131 
must  differ significantly from the two positive coefficients s o = 0.280 
and cb = 0.403. The difference of the two positive coefficients, cb--sb, 

i An alternative test, less rigorously based but quite adequate for most in- 
vestigations, is to accept any coefficient as probably significant if it is greater than 
its standard deviation. This test has the advantage of not requiring tables of 
Student's ratio. 
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is 0-123, and the s tandard variat ion of this difference is given by:  

A2 A 
~6 . . . .  = % ( G  + G -  2 G ) N / ( N - n - 1 )  

= 0.00181 (0 .6479+6.3201-  2 x 0.7018) 10/(10--3--1)  

= 0.0168, 

whence db,~ ~ = 0.130; then tr = (c--s)/do,c_s = 0-123/0.130 = 0.95, 
and  with six degrees of freedom, we find from the tables Pb,~-, = 0"38 ; 
this  is on the borderline of significance, but  we retain the separate terms 
because of the chemical contrast  between the independent variables 
involved, Si and Ca + Na + K. 

Procedure for the elimination of a non-significant term from the regression 
equations. 

I f  it  has been established tha t  one of the coefficients, say the kth in 
the series a, b, c,..., does not  differ significantly from zero, i t  can be 
eliminated, and the remaining coefficients adjusted by  recalculating a 

p 
new covarianee matr ix  of reduced order ( n - - l )  ; the general term, ~j, of 
the new matr ix  is derived from the corresponding term, ~:ij, of the old (not 
counting the kth row and column of the old matrix) by  the relation 

p 

The matr ix  of coefficients is then found by  postmult iplying the 
reduced covariance matr ix  by  the matr ix  of sums and products of the 
independent  variables, excluding the row appropriate to the eliminated 
independent  variable. 

Thus with the equations for the refractive indices of anthophylli te,  
we have originally (omitting the terms below the principal diagonal of 
the  covariance matrix,  which may be inserted by  symmetry) : 

• 10 -2 

s r  sB SA = 6.891 - -1 8 .836  - -12 .072  --11.g34 - -4 -325  �9 8,1507 - - 8 .6495  - - 8 .6471  I. 

t ~ t f : ~ :  82.349 36.260 35.962 18.808 1.2389 1.3102 1.4811 11 

m r m B  mA[ 24.058 21.699 9-634 5-3684 5-2956 5,9468 l] 
203~8 8 . 9 3 9  1 2 5 . ~ - 1 2 9 2 1 1 - 1 , 8 ~ 5 6 i i  

cp CB CA 10"342 0-1760 0-2208 0"116711 

To adjus t  the coefficients when we eliminate the terms in M we must  
eliminate the fourth row and fourth column of the covariance matr ix  (the 
italicized temls) by  the above procedure, and delete the fourth row of 
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the other two matrices. For  the reduced covariance matr ix  we may  
write: 

Tl~ll = 
STFN 

(11.434• 8.939) ~. 6 �9 891 --~(11"434)3 --18.8364 (11"434• --  12 .,,~-2 ~' (11-434• --4-3254 ~ tt 

(35.962) ~ (35.962 • 21"699) . . . . .  (35.962 • 8"939) [| 
82.349 20.348 36-260-- ~ 1~ '~ ,~-  ~ H 

(21.699) ~ (21.699 • 8.939)| |  
24.058 20.348 9-364-- 20.348 I I  

1~. ~4~ (8"939) 3 |1' 

The pa t te rn  in this expression should be readily apparent.  After evaluat -  
ing i t  and making a second reduction by  the same procedure to el iminate 
the terms in c, which also prove to be non-significant, we arrive at  an 
equation for the remaining coefficients: 

• 10 -2 
list s~ SA/ ~ 0"3901 1-0443 0'1103 " --8'1507 --8"6495 --8"6471 
i tr ts tA l 17.3789 --2.1372 1.2389 1.3102 1.4811 
I f r  XB fA 0-9166 5"3684 5"2956 5"9468 

= - 0 . 0 1 2 9  - 0 . 0 1 4 2  -0.011  II. 
0.0180 0.0242 0.04oo I 
0.0143 0 - 0 1 1 0  0"0133 

When the new regression equations with these coefficients are tested, 
i t  is found tha t  while all the coefficients are significantly different from 
zero, t r andJ~ v (0.0180 and 0"0143) are not  significantly different from one 
another. We can therefore compound these terms if we wish, and we 
now consider how to do so. 

Procedure for compounding two terms of a regression equation whose" 
coe~cients do not differ significantly from one another. 

If  i t  has been established tha t  two of the coefficients of a regression 
equation, say the kth and the qth of the series a, b, c,..., do not differ 
significantly from one another, they  can be adjusted to equality, and 
the remaining coefficients adjusted,  by  recalculating a new covariance~ 
matr ix  of reduced order (n - - l ) .  The new, adjusted column and row, 
replacing the kth and the qth of the old matrix,  can retain the place o f  
either, the other being deleted ; if we retain i t  in the kth place, the general 
term, ~ ,  of the new matr ix  will be derived from the corresponding 
term, ~:~j, of the old (not counting the qth row and qth column of t he  
old matrix) by  the relation: 

i $.  = ~ , -  ( $ ~ - - f ~ q ) ( $ i k - - $ j q ) / ( $ k k + $ ~ q - - 2 $ k q ) ,  
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except when i or j = ]~ or q ; the terms (except ~kk) of the new kth row 

and kth column are given by: 

while the new term ~kk = (~kk~qq--~q)/(~kk+~qq--2~kq). The sum of 

products matrix I]~ X~A~II will also be modified, the term ~ X ~ K  i being 
replaced by ~ X i K~ + ~, X.~Q~, and ~ Xi Q~ omitted. 

If we apply this procedure I to the coefficients of the regression equation 
for Y, two of which (t r and Jr) have been found not to differ significantly, 
we shall start from the equation: 

X 10 -2 

Sr 11=ll0.3901 1 -0443  0-1103 ~ . 
tr 17.3789 --2.1372 1.2389 
fr 0.9166 5.3684 

The second and third rows (and columns) of the eovarianee matrix 
are to be compounded. Only one term of the new matrix, ~Js, is derived 
by the first of the above formulae: 

~'~.~ = 0"3901 -- (1.0443-- 0"1103)2/(17"3789 +0.9166 + 2 x 2.1372) 

0-3525. 

The symmetrically equal pair of terms, se'~ and ~ ,  are derived by the 
second formula : 

~Jt = 1.0443+0-1103-- 

--{1-0143 • 17.3789+0"1103 • 0-9166+ 2.1372 (1-0443+0.1103)}/ 

(17"3789+0.9166+2 • 2"1372) 

= 0-2365. 

And the last term is derived by the third fornmla: 

~'tt -- (17-3789 • 0-9166--2-13722)/(17"3789+0"9166q-2 • 1"1372) 

= 0.5026. 

We now have: xlO 2 

(t+srf)r = 0.3525 0.2365 [~" --8.1507 giving s =  0.0130, 
0.2365 0 - 5 0 2 6  1.2389--5-3684 (t@f) 0-0142. 

I f  the covariance matrix is of low order, as in the present case, it may be simpler 
to recompute the new matrix from the beginning rather than find it by this process. 
Referring back to the original matrix of sums of squares and products (the fifth- 
order square matrix on p. 80), the fourth and fifth columns and fourth and fifth rows, 
containing M and C, are simply suppressed; to write the second and third rows 
and columns, they are just added together, ~A.;(B~+C~)-~A~B.~+~A~C,, 
except for the four terms where the second and third columns cross the second and 
third rows ; these four terms Z T~, Z F~, and Z TF (twice) are united by the 
relation Z (T + F) 2 = ~-, T2 + Z F2+2 Z FT. 
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The regression equations for anthophyllite. 

In  the foregoing discussion tile selected example, anthophyllite, has 
been discussed at considerably greater length than will normally be 
necessary, in order to illustrate the general techniques. For instance, 
it may often be thought undesirable, or at least unnecessary, to unite two 
terms of a regression equation whose coefficients are not significantly 
different ; it will often be quite obvious that  certain coefficients are not 
significantly different from zero, without formal calculation of their 
standard deviations, Student 's  ratio, and the appropriate probabilities; 
and when terms are to be deleted or compounded and the coefficients 
adjusted, it will often be simpler to start anew from a reduced matrix 
of sums and products rather than to reduce the covarianee matrix. But 
it was felt desirable to set out the procedure for all these operations, 
since they will sometimes be necessary. 

So far as the selected example, anthophyllite, is concerned, we may 
set out our conclusions in four regression equations, 1 each with its 
standard deviation ; and as a kind of appendix we may add the standard 
deviations of the several coefficients. 2 

Y = 1-7249-0"0130 Si +0.0140 (Ti-l-Fe"+ Fe" +Mu) j:0-0012, 

fi = 1-7275-0"0142 Si+0"024 (Ti+Fe")+0"0110 (Fe"+Mn):~ 0.0015, 

a = 1.6951 0.0117 Si+0 .0 i0  (T i+Fe ' )+0 .0133  (Fe"-~Mn)E:0.0025, 

b(~.) = 16.44+0.28 S i -0 .13  Mg+0.40 (Ca+Na+K): t :0"0{,  

d,.~ = 0.0007, @.t = 0.0008, dr = 0.0009, dr t = 0.004, 

d-~,~ = 0-0015, 5 ,  8 = 0.0015, d., t = 0.009, d-.), = 0-0025, 

rib, ~ = 0.05, d0, m = 0.03, dr. c = 0.14. 

I t  should, perhaps, be emphasized that  the standard deviations of the 
dependent variables (7, fi, a, and b) cannot be taken as a true measure 
of the accuracy with which the given equations reproduce the true 
correlation1 of the physical data with the chemical composition of antho- 
phyllite; they merely measure the accuracy with which the equations 
reproduce the selected data from which they are derived. I t  is therefore 
desirable to compare the whole of the availabte observations with the 
calculated values derived from the regression equations. 

t The a and c cell-dimensions appear to be constant, within the experimental 
error of the available data. 

2 These serve as an indication of the amounts by which the several coefficients 
can be varied without gravely upsetting the agreement between observed and cal. 
culated values (after appropriate adjustment of the constant term). 
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Graphs have been prepared in which the residuals (the differences 
between observed and calculated values) arc plot ted against  each of the 
five composition parameters,  but  these do not reveal any evidence of 
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FIG. 1. Departures of tbe physical properties of anthophyllite from the values 
calculated from the regression equations, plotted against Si atoms per 24(O, OH,F). 
The numbers against the points are those used in J. C. Rabbitt's paper; c, D, and 

E refer to R. Pirani's data. 

non-linear variat ion ; one set of these graphs is shown in fig. 1. Graphs 
of the residuals plot ted against the hydroxyl  groups per 24(O,OH,F) 
and against fluorine have been prepared, and suggest tha t  these variables 
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do not  affect the  optics, b u t  in v iew of the  l imi ted number  1 of sets of  

observat ions  and the  doubtful  accuracy of the  chemical  da ta  on (OH) '  

and F ' ,  conclusions f rom these graphs mus t  be v iewed wi th  great  caut ion ; 

on general  grounds,  we should expec t  F '  to lower the  ref rac t ive  indices 
notably.  

On comparison of the  observed and calculated refract ive  indices 2 i t  

is noticeable t h a t  (except  among the  sets of superior data)  there  is a 

marked  tendency  for all three  ref rac t ive  indices to be high or low as a 

group, re la t ive  to the  calculated values,  ra ther  t han  for one index  to be 

high and another  low (see analyses 6, 7, 10, 25, 33, 38, and 39). This  

result ,  which is emphasized by  the  fact  t ha t  wi th  only five except ions  

(of which three are perhaps doubtful  analyses) optic axial  angles der ived 

f rom the  regression equat ions  th rough the  calculated refract ive  indices 

agree unexpec ted ly  well wi th  the  observed values,  a s t rongly suppor ts  

the  general  accuracy of the regression equations,  and suggests t h a t  several  

of the  sets of observed refract ive  indices are subject  to a sys temat ic  

error. Two sets of data ,  for analyses 38 and 39, are probably  low owing 

to the  presence of 1"6 ~ and 2.4 ~ of adsorbed water  respect ive ly  ;4 

assuming the  mix ture  law, this should lower their  ref ract ive  indices by  

0.005 and 0"007 respect ively  ; actual ly,  t h e y  give values  of a 0"012 and  

0"016 low, and of ~ 0.009 and 0"011 low respect ively.  

There are two sets of da ta  for which the  above regression equat ions  

do not  give sat isfactory refract ive  indices : the  Glen U r q u h a r t  gedri te and 

analysis no. 25. The la t te r  is the  'p icroamosi te '  of Serdyuchenko (1936), 

1 Where a large number of observations are available, the neglect of a variable 
will normally lead to fairly large residuals, which if plotted against the neglected 
variable will show a distinct trend. But if the neglected variable tends to follow one 
of those taken into account, its effect will be largely or wholly absorbed by the 
latter ; and if there are only a few observations, false constants will probably be de- 
duced, and the residuals will show only an irregular scatter. It  is desirable that 
there should be at least ten times as many sets of observations as there are variables 
to be taken into account. 

As all the observed data have been published before, and all the calculated 
data may be derived from the regression equations, it seemed unnecessary to print 
a table of observed and calculated data, but such a table has been drawn up and 
deposited in the library of the Mineral Department of the British Museum (Natural 
History), where it may be consulted, together with a full set of graphs of the resi- 
duals plotted against the composition parameters, including OH' and F'. 

a The mean difference, excluding the above five analyses, is only 4 ~ against an 
expected 10 ~ as calculated from the standard deviations of a, fi, and y. If the cited 
2V( § ) for 1~. Pirani's anthophyllite from Alpe de Brez is a misprint or error for 
2V(--), there would be good agreement in this case also. 

r G. H. Francis and M. H. Hey (in the press). 
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and has a remarkably high content of F%O~ ; the disagreement suggests 
that  it may not be an ortho-amphibole, or alternatively that the chemical 
analysis is in error. For the Glen Urquhart gedrite, we know that the 
regression equations neglect the variation in total oxygen atoms per 
unit-cell, which in this material is definitely outside the limits of experi- 
mental error ; if the observed data for this gedrite are taken, together 
with the empirical unit-cell contents, to establish approximate additional 
terms for the effect of extra oxygen (H20) in the regression equations, 
we find, approximately: 

a = %--0-023 [~ '  (O,OH,F)--24]; 

fi = fi0--0.020 [•' (O,OH,F)--24]; 

y = 7o--0.016 [~ '  (O,OH,F)--24]. 

Here a0, rio, 70 are the values derived from the above incomplete regres- 
sion equations (but with the composition in terms of one-quarter the 
empirical unit-cell contents), and E '  (O,OH,F) is expressed for one- 
quarter the unit-cell contents. If  these relations are even approximately 
true, they suggest that any anthophyllite having interstitial oxygen, as 
the Glen Urquhart gedrite has, will have strikingly low refractive indices 
in relation to its composition and should readily be detected by this 
property. 

I t  may be of interest to note, in general terms, what tile above regres- 
sion equations imply regarding the variations in the cell-dimensions and 
optical properties of anthophyllite with composition (excluding possible 
variations in ~ (O,OH,F)). The b-axis of pure magnesio-anthophyllite 
should, from the regression equation, be 17.77 X. ; it is lowered by the 
substitution of A12 for MgSi, by 0"15 ~-. for each MgSi per quarter unit- 
cell replaced, and raised by the substitution of A12 for Mga, by 0"13 X. 
for each Mg per quarter unit-cell replaced ; substitution of Ca, 3Ta, or K 
for Mg appears to increase b markedly. 

Turning to the optical properties, replacement of Mg by Fe" leads to 
an increase in all three refractive indices, as usual, hardly any change in 
y - a ,  and a moderate increase in ~ - f i ,  and hence decrease in 2V7; for 
one Fe" replacing Mg per 24(O,OH,F) the increase is 0-014 for y, 
0.011 for fi, and 0.013 for a. Replacement of MgSi by Al~, in gedrites, 
leads to an unexpectedly large effect ; A1 z replacing MgSi increases a by 
0.012, fi by 0.014, y by 0.013; : r  and 2V r are increased, but y--fl is 
decreased. Replacement of A1 by Fe" or Ti (the data are insufficient to 
distinguish these) increases the refractive indices markedly. Replace- 
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merit of Mg by Ca or Na appears to have little effect. Replacement of 
3Mg by 2A1 also has no noticeable effect. 

This work had just been completed wheu the author received a reprint 
of a paper by F. Hori, 1 who has applied sinlilar methods to the correla- 
tion of the optical properties and chemical composition of the clino- 
pyroxenes; in this group several substitutions that only occur to a 
minor extent in the anthophyllites go much farther, and it may be of 
interest to compare the general results of the two studies, though the 
structures are not so closely related that any close correspondence is to 
be expected. Hori's equations indicate that a replacement of Mg by 
Fe" will increase the refractive indices markedly; for one atom Fe" 
replacing Mg per 24 oxygen, the increases will be a 0.014, fi and ? 0.016, 
a little greater than the effects in anthophyllite. Replacement of MgSi 
by Al~, again on a comparable basis of 2Al per 24 oxygen, leads to 
increases in the refractive indices, namely a 0.017, fl 0"025, ? 0"020, 
again greater effects than in anthophyllite. Replacement of Mg by Ca, 
Hori found, increases all three refractive indices in the clinopyroxenes 
by 0.003 to 0.005 ; it is possible that the effect is about the same in the 
anthophyllites, but the data are as yet inadequate to draw definite con- 
clusions, and the same applies to most of the other possible replacements. 

The use of weighting factors. 

I t  may occasionally happen that there are a few sets of observations 
of superior or inferior accuracy, and it is desirable to weight such data 
appropriately. This is readily done by the use of a weighting factor, but 
in choosing this factor it should be remembered that, for example, 
physical data of special accuracy do not merit special weight unless the 
accompanying chemical analyses are of comparable quality to the rest 
of the analyses. 

If it is decided to use a weighting factor for certain sets of data, those 
sets should be multiplied by their appropriate weighting factors, which 
may be fractional for inferior data, before adding them to derive 
the weighted means, which will be given by relations of the type 

~ ~_, ~Vix~/~, W~. The data are now tabulated in the form of differ- 
ences from the weighted means, and a column of weighting factors is 
added; the squares and products are formed as usual, except that each 
square or product is multiplied by the appropriate weighting factor 

1 F. Hori, Sci. Papers  Coll. General Educat ion Univ.  Tokyo, 1954, vol. 4, no. l .  
p. 71. 



92 M .  H .  H E Y  O N  

M 

X 

* x  ~ ' ~  ~ - "  I ,.., I I , I ? 
o .2 

~ * x  i ', ~ ,  

o x 

8 2  x 

"8 ~., -t x 

~ 

I ~ I I I 

B 
i x ~ X ~ S ~  ~ 

4 

< 5 & 6  .~  

P ~ 

~ -  I I I ~ i ~ o  ~ ~ ~"  
I . -  ~ ~ j: 

m 

~5 

e II 

N "  

I I ~  ~ ' ~  I ~1~ 



CORRELATIOI~I OF PHYSICAL PROPERTIES 93  

b e f o r e  s u m m a t i o n  ( t ab l e  I I I ) ,  a n d  t h e  m a t r i x  e q u a t i o n  is  s e t  u p ,  t h e  

c o v a r i a n c e  m a t r i x  c a l c u l a t e d ,  a n d  t h e  c a l c u l a t i o n  o f  t h e  coe f f i c i en t s  

c o m p l e t e d  as  a b o v e .  T h e r e  is,  h o w e v e r ,  o n e  f u r t h e r  c o m p l i c a t i o n  ; in  t h e  

c a l c u l a t i o n  o f  t h e  s t a n d a r d  d e v i a t i o n s  o f  t h e  d e p e n d e n t  v a r i a b l e s  w e  

h a v e  d~ ~ W~ = ~ VV~X~-a~  ~_, W i X i A ~ - b ~  ~_, W~X~B~-- . . .  i n s t e a d  o f  

N ~  = ~, X ~ - - a ~  y_, X ~ A ~ - - . . . .  T h e  f o r m u l a  for  t h e  s t a n d a r d  d e v i a t i o n s  

o f  t h e  r e g r e s s i o n  coef f i c ien t s  is  n o t  a f f ec t ed ,  a n d  t h e  n u m b e r  o f  d e g r e e s  

o f  f r e e d o m  r e m a i n s  N - n - - 1 .  

The evaluation of the covariance matrix; a systematic procedure. 

In  the  above discussion, the  solution to the equation for the  eovariance mat r ix  
was short ly s tated (p. 78) in the  form: ~ij -- DiSD,,  where ~ijis the  element in t he  
i th  row and j t h  column of the  covariance matr ix,  D o is the  de terminant  of  the  matr ix  
of  sums of squares and products of the  independent  variables, and  Dij is the  deter- 
minan t  derived by replacing the  i th  column of D o by the  j t h  column Of a un i t a ry  
square matr ix  of order n, the number  of independent  variables. I f  n = 2 or 3, the  
formation and evaluation of these determinants  presents no part icular  difficulties, 
bu t  if there are m a n y  independent  variables this  process m a y  become very tedious, 
and there are m a n y  opportunit ies for errors unless some systematic  procedure is 
adopted. The procedure outlined below, based on successive pivotal  reduction, has  
been found veIT effective in practice and includes adequate  checks against  ari th- 
metical  errors. I t  should be added that ,  since eve~ 7 step in the  reduction of the  
determinants  involves a subtract ion of two numbers  of the  same order of magnitude,  
care mus t  be taken  to employ enough significant figures at  each stage to ensure 
adequate  accuracy in the  final coefficients. Wi th  2 or 3 significant figures in the  
observational da ta  when expressed as differences from the  means,  5 or 6 significant 
figures in the  earlier stages of the  reductions, and 4 or 5 in the  last  stages will no t  
come amiss. 

In  the  method  of successive pivotal  reduction for the  evaluation of the  deter- 
minan t s  a de terminant  of order q is reduced to one of order q--  1 by the  following 
relation, which is then  applied again to reduce the  order to q--2,  and so on: 

al bl cl .�9149 ql = B a C 2 ... Q~ 1 
as b2 ca ... q~ Ba Ca Qa • a~ -2-2' 
a3 ba ca ... qa . . . .  [ 

aq bq Cq ... qq 

where B~ = alb a -  a2bl, Ea = ale ~ -  a4el, and similarly throughout .  This method has  
the  great  advantage  tha t  the  quanti t ies B 2, C 2, &c., of  the  'denominator  determi- 
n a n t '  D o recur in all the  derived determinants  Dij except the  group Dlj. For if we 
replace the  third column el, e2 .... of the  left-hand determinant  above by a new 
column sl, s2,... , then  the  de terminant  on the  r ight  will remain unchanged except 
for its second column C2, Ca,..., which will be replaced by a new column $2, Sa, 
where S 2 = a18 a - a 2 s  1, &e. ; and  if  the  kth column of the  left-hand determinant  is 
replaced by s 1, sa,..., the  (k--1) th  column of the  r ight-hand de terminant  will be  
replaced by S 2, Sa,.... The same, of course, applies to subsequent  steps in t he  
reductions�9 On this  basis a systematic  procedure for the  reduction of the  equation 
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for the covariance matrix is possible, in which D o and a proportion of the co- 
variances are evaluated twice, so affording a check on the working. 

Taking the covariance matrix for the refractive index data for anthophyllite as 
an example, we have: 

= i ~ 1 7 6  

4 . 1 ~ 6  -0-4356 -1.5162 4.814s -0.~2~6[I .11~,  ;,, e,i e~,~ ~ II o o l 
-0-4356 0-1265 0.3478-0.8315-0.017,511 II~t, e,, ca/ el,,, et~ /[ 1 0 0 
- -1 .5162  2.0858--3.6770-0.031411 I/#~ # ,  # ~,'~ #~ I o 1 o 

4 . 8 1 4 8  8 . 2 0 8 0  - - 0 . 1 4 3 6 1  ~rns ~mt ~mf ~mm ~mc 0 0 1 
-o-2226 o-lsss [[ co, e~  e~I e~.~ _o~ o o o o 

The first pivotal reduction of D o, the determinant of the left-hand matrix (the 
matrix of sums of squares and products of the independent variabIes), gives : 

2)o~ 14.1476 x 0-1265-- 4.1476• --4.1476• 4.1476 x 0.0175-- ] 

I 
- -  ( 0 - 4 3 5 6 )  2 - -  0 " 4 3 5 6  • 1 " 5 1 6 2  -5- 0 " 4 3 5 6  • 4 " 8 1 4 8  - -  0 " 4 3 5 6  • 0 - 2 2 2 6  I 

4 g A 7 6  • 2 " 0 8 5 8 - -  - -  4 " 1 4 7 6  X 3 ' 6 7 7 0 [ -  - -  4 - 1 4 7 6  • 0 " 0 3 1 4 - -  / 

- -  ( ~ . . 5 1 6 2 )  2 ~ 1 - 5 1 6 2  • 4 ' 8 1 4 8  - -  1 " 5 1 6 2  • 0"2226 I 
4.1476 • 8-2080-- -- 4.1476 • 0.14365- I 

(4.8148) 2 5- 4.8148 • 0.2226 ] 
4-~.476 • 0.~.888-- 

- -  (0-2226) 2 
• (4.1476) -a. 

To find Dij  , we replace the ith column of the unreduced form of D O by the j t h  
column of the right-hand unitary matrix ; except when i 1, the determinant so 
obtained will, after its first pivotal reduction, be identical with the first pivotal 
reduction of Do, except in its ( i--1)th column, which will be derived from the first 
column of D o and the j t h  colunm of the unitary matrix by the usual relation 
B2 = alb2--a2bl. 

We may therefore write the results of the first pivotal reduction thus : 

Do = 0.33492 0-78208 --1.35140 --0.16955,• 
0.78208 6.35220 --7.95052 --0.46774 

- -  1.35140 10.86120 0.47618 ! 
- -  0.16955 0.73352 ] 

D(i+l)j  oc 0.4356 4.1476 0 0 4.10607 / 1.5162 0 4.1476 0 
--4"8148 0 0 4'1476 

0.2226 0 0 0 

where the expression on the right is taken to indicate that  D(i + 1),j is derived by re- 
placing the ith column of the left-hand expression for D o by the j th  column of the 
right-hand matrix, each column of which is derived from the first column of Do and 

column of the unitary matrix. Since i is necessarily between 1 and 5 inclusive 
and the left-hand expression for D O has only four columns, i + 1 must lie between 
2 and 5 inclusive, so that  the expression on the right cannot define Dij  when i = 1. 

We make further pivotal reductions in exactly the same manner, with the right- 
hand expression for D(~+I), j taking the place of the unitary matrix and combining 
with the first column of the reduced expression for D o to give the new expression 
for D(i-  2),j : 

Do = 1.51586 --1.60592 --0-02406]• 2• 
- 1.60592 1'81139 --0.06964 
--0.02406 0.21693 

D(i+~)5 ~ 0-16714 --3.24375 1"38913 0 0 
- -  1"02392 5.60508 0 1.38913 0 J 0.14841 0.70322 0 0 1.38913 
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Do = l 0.16684 --0.14420 X(4,1476) -3 X(0"33492) s x(l.51586)-a; 
I - -0 .14420 0-32826. 

DIi~.~),j  c~ - 1.28371 3.28732 2.33083 2.10573 2.107305 '" 
0-22899 0.98793 0.03342 0 

F ina l ly ,  we e w d u a t e  

D o = 0-033970/(4.1476) x (0-33-192) 2 > 1-51586 - : 2.8000 • l 0  -3, 

while  D4j and  Dhj ( j : -  1, 2, 3, 4, 5) are ob ta ined  b y  repla.eing the  f irst  a n d  
second co lumns  respec t ive ly  of the  second-order  d e t e r m i n a n t  by  the  co lumns  of t h e  
a~sociated m a t r i x  of order  2 x 5. 

x 10 -2 

D(i+~),.i :- i-i-3 !i - '3 .8837 12.2155 7"3711 6.9122 3.0365 
t ll-l"4~(,'I 6.38,6 3.2727 3.036.~ 3~13t  

1 2 3 4 5 = . 

And as ~;.i = D/y/Do, w e  h a v e :  

SC~d ' i 4  '! " 11.-13-1 35.962 21.699 20.3.t8 8.939 !] 
5 [I " 4-325 18.808 9.634 8.939 10.342 II 

1 2 3 4 5 = j .  

So far, we h a v e  on ly  der ived  the  l as t  two  rows of  the  covar i ance  ma t r ix .  B y  
i n v e r t i n g  the  in i t i a l  m a t r i x  of  sums  of squares  and  p roduc t s  of the  i n d e p e n d e n t  
var iables ,  b r ing ing  0.1888 to the  top  lef t  corner  and  4-1476 to the  b o t t o m  r igh t ,  
a n d  reduc ing  in the  same  way,  we can  der ive  two inore rows ( the  first two). To 
der ive  the  th i rd  row we m u s t  r e tu rn  to t h a t  s t age  of r educ t ion  a t  which D o is ex- 
pressed as a t h i rd  order  d e t e r m i n a n t .  [ f  we replace  the  first co lumn  of th is  de te r -  
m i n a n t  by  each. of the  tlve c o h m m s  of the  assoc ia ted  ma t r i x  of o rder  3 x 5, the  f ive 
resu l t ing  th i rd -o rde r  d e t e r m i n a n t s  wil l  be the five D3. i ; and  since 5 -  2 = 14-2  = 3, 
the  same  five dete.rmin(mts will  r esu l t  by  t r e a t i n g  thc  th i rd -o rde r  s t age  of t h e  
r educ t ion  of  the  i nve r t ed  ma.trix of sums  of  squares  and  pr~,dacts in the  same  w a y :  

Pal = '  0.1671.t --1.(;I,592 ~0.02406: >:.p-a; J:ta~. = ' -3.24375 - 1.6o592 --0.02406]xxv-l; 
--1-02392 1.s1139 - 0.06964 5.(;051,~ 1.81139 --0.0[)964 I 

[ 0']4S41 --0.()6964 )'21;93 i 0"7(~322 - (I-()6i61 0"21695 i 

D~a = 1-35913X[ 1.811','9 - 0.(~;9(/.I x/ : ' - ' ;  l>~4= 1"38913• J.I~059:~ /).02406iX.P-J; 
I --(b(F(ig(;4 ( "21( 3 -- i'0(;,()()4 0 -21693  [ 

I /9~ = 1'38913X i 1-811391"60592 (I.0696ir~'02406 • P =  (4,.1476)~x(O.J3.t92)h 

These  five d e t e r m i n a n t s  are then  e v a l u a t e d  and d iv ided  by  D O to g ive  the  f ive  
e l emen t s  sca). 

I f  our  examp le  had  more  i n d e p e n d e n t  var iables ,  i t  would be neee~ssary to  go  
fa r the r  back  to comple te  the  covar i ance  m a t r i x :  w i t k  seven var iables ,  the first 
s tep,  w i t h  d i rec t  and  i n v e r ~ d  matr ices ,  would  give rows l, 2, 6, and  7; rows 3 a n d  
5 could  be der ived  fl 'om the  th i rd -o rde r  de t c rminan t s ,  bu t  row .I m u s t  be de r ived  
from the  four th-order  s t age  in thc  reduc t ion  of I )  o and  i ts  a~ssociated ma t r i x .  

I n  th i s  procedure ,  eve ry  e l emen t  of  the  cova r i anec  m a t r i x  is d e t e r m i n e d  twice ,  
excep t  those  in the  p r inc ipa l  d iagonal ,  so affording an  a l m o s t  comple t e  check.  I f  
the  n u m b e r  of i n d e p e n d e n t  va r i ab les  is high, i t  m a y  be fel t  t h a t  so comple te  a check  
is superf luous,  and  i t  is qu i t e  a s imple  m a t t e r  to  o m i t  some of the  check ca lcu la t ions .  
Thus  in  our  f i f th-order  example ,  a f te r  the  first  two and  las t  two  rows h a v e  been  
ca lcula ted ,  we m a y  ut i l ize  the  s y m m e t r y  r e l a t ion  ~ij = scjt to wr i t e  in the  f irst  t w o  
and  l a s t  two columns,  l eav ing  on ly  scaa to be de t e rmined .  


