
276 

The Holmes effect and the lower limit of modal analysis. 

By F. CHAYES. 

Geophysical Laboratory, Carnegie Insti tut ion of Washington, 
Washington, D.C., U.S.A. 

[Taken as read 7 June 1956.] 

Summary.--Thin-section analysis is essentially an areal measurement, the 
measurement area usually being the upper surface of the section. If transmitted 
light is used for the measurement, the apparent areas of opaque grains will in 
general be somewhat larger than their true areas on the meastlrement surface. For 
strictly spherical opaque particles in a transparent matrix the expected excess of 
apparent over true areais shown to be (Trr2]c)/(2r + ]~) where r is the spherical radius and 
/c is the thickness of the thin section. A table shows the relation between true and 
apparent area as a function of r/k. 

A HOLMES 1 seems to have been the first to note the bias involved 
�9 in measuring areas of opaque grains in a transparent medium by 

means of t ransmitted light. The apparent area of the opaque grain will 
always be that  of its maximum cross-section in the slide, whereas one 
should be measuring only its ' t rue '  area, e.g. its area at the surface of 
the thin section. Thus in general one will overestimate the relative 
area of opaque granules on the measurement surface. 

For particle shapes of low symmetry the size of the Holmes bias is 
rather troublesome to calculate. This is true also for highly symmetrical 
shapes oriented in such a way that  the symmetry cannot be utilized. 
For spherical particles, however, the calculation is straightforward, 
though somewhat tedious. I t  is worth carrying through as an indication 
of the general order of magnit;ude of the effect for particle shapes of lower 
symmetry. 

A sphere of radius greater than the thickness of the thin section 
(r > k) is shown in fig. 1; the observer is situated somewhere along 
the positive region and the light source along the negative region of the 
Y-axis. The distance of the measurement surface (the upper surface of 
the thin section) from the base of the sphere is given by y, and an opaque 
area will appear in the field of vision whenever 0 < y < (2r+k). For 
y ~ r the apparent opaque area will be identical with the true one. In the 

1 Petrographic methods and calculations. Thomas Murby and Co., London, 
1920, p. 317. 
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region r ~< y ~ (r +k) the apparent area will be constant and equal to 
the area of the equatorial plane, while the true area, the one the observer 
should be measuring, decreases steadily as y-> (r+k). In  the region 
(r+k) <~ y <~ 2r both the true and the apparent areas decrease steadily 
as y-+ 2r, but  they do so at different rates and the apparent area is 

u 

FIG. 1. Thin section of thickness/~ cutting opaque sphermat particle 
of radius r. The true opaque area at the measurement surface is a 

circle of radius t;the apparent opaque area is a circle of radius a. 

always larger than the true. Finally, in the region 2r ~< y ~< (2rd-k), 
the true area is zero--the sphere does not intersect the measurement 
surface of the thin section but  the apparent area persists until  
y -- (2r§ at which point it vanishes. Thus at any y value in the 
region 0 < y < (2r+]~) the apparent area is never less than the true, and 
in the region r < y < (2rq-/~) it is always larger. Areal measurements 
made in transmitted light will inevitably be subject to a positive bias 
and our problem is to estimate the size of this bias. In  order to do so 
we first find the expected or average values for the true and apparent 
opaque areas. The bias is simply the difference between the two. 

Our interest is only with those sections of the sphere in which the 
apparent area is greater than zero ; this wilt be true of all sections in the 
region 0 < y <  (2rq-k) and only of such sections. We therefore specify 

that  elevations of measurement areas above the base of the sphere are 
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to be chosen simply at random, but with the limitation 0 ~ h ~ (2rd-k), 
so that  the probability that  some particular elevation, y, is equal to or 
less than any arbitrary value, h, is simply Pr {0 < y ~ h} = h/(2r § 
The cumulative frequency is accordingly 

h 

F(h) - -  2r-l-kl f dy (1) 
0 

which is clearly equal to unity when h -- (2r-~k). 
Now the area of any particular circular section at tlle measurement 

surface will be: 

A t ~-- ~{r 2 -  ( r - -y)  2} = ~{r ~ -  (y - -  r) 2} ---- ~(2ry _y2) 

in the region 0 ~ y -~ 2r, l"  (2) 

and A t = 0 in the region 2r ~ y ~ (2rq-k) 

From equations (1) and (2) we have that  the expected value or long- 
range average for the true area is 

2r  

rr f 4 ~  a E(At) - -  2r--~k (2ry--y 2) dy - -  3(2r-}-k) (3) 
o 

The apparent area will be 

~-(2ry--y 2) if 0 ~ y ~ r, ~rr 2 if r ~  y ~ (r+k), 
and 

7rff2--(y--r--k)  2} : 7r{2r(y--k)--(y--k) 2} if (rq-k) ~ y ~ (2rq-k). 

Hence the expected value of the apparent area will be 
v r + k  

E(Aa)-- (2ry--~)dy +2 ~ dy+ 
0 ~" 

2 r + k  

~r [ 4wr a ~v2k 
- ~ - ~  J {2r(y- -k) - - (y- -k)  2} dy - -  3(2rq-k)-4 2r+k" (4) 

r + k  

The bias, or expected excess of apparent area over true, obtained by 
subtracting eq. (3) from eq. (4), is B = E(Aa)--E(At)  = rrr2k/(2r-~-k). 
The apparent area will be E(A~)/E(At) times the true one, so that  in the 
rather special case in which a correction would be justified the proper 
procedure would be to multiply the observed value by 

C ~- E(At)/E(Aa) ~- 4r/(4r-~-3k). 
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Although the figure illustrates only the case in which r > k, it can 
readily be shown that the proof holds also for r < k. We are thus in a 
position to calculate the appropriate correction factor, C, for any ratio 
of spherical radius to thin-section thickness. Table I shows C for selected 

TABLE I. Correction factors for cross-section areas of opaque spheres in a trans- 
parent matrix, measured in transmitted light, r/k = ratio of spherical radius (r) 
to section thickness (k); 'cmTeetion' factor C 4r/(4r+3k). 

r (mm.) r (mm.) 
f o r  

r//c. ]c = 0 . 0 3  m m .  C. 

200 6.0 0.996 
100 3"0 0.993 
50 1.5 0.985 
33 1.0 0.978 
20 0.6 0.964 
10 0.3 0.930 
5 0.15 0.897 
4 0.12 0.842 
3 0-09 0.800 

f o r  
r/k. k 0"03 mm. C. 
2 0.06 0"727 
1 0'03 0.571 
0.50 0"015 0'400 
0"33 0'010 0-308 
0"25 0.0075 0"250 
0.20 0'0060 0.210 
0"10 0"0030 0'118 
0"067 0"0020 0.082 
0"033 0"0010 0'043 

values of r/k in the range 200 ~> r/k ~ 0"033. The second column of the 
table shows r in millimetres for k - 0.03 ram., the standard section 
thickness used in most petrographic laboratories. The third column of 
the table, of course, applies strictly only to opaque spherical particles in 
a transparent matrix. 

The Hohnes effect is not likely to be of much importance if opaque 
constituents are present only in small amount, and in grains of reasonable 
size, as in most common rocks. Whenever the amount of opaque 
material is large or the ' grain size' of the opaque particles is small, how- 
ever, the situation is very different. Estimates of magnetite dust in 
plagioclase, for instance, could easily be absurdly high. If the radius 
were 0'015 mm., a value not unreasonably small, one would overestimate 
the dust by a factor of 2"5. For a radius of 0"01 ram. the 'observed'  
amount would be high by a factor of 3"25. And for a radius of 0"003 
ram., one-tenth the thickness of the slide, the ~rue opaque area would be 
a little less than one-eighth of the apparent area. 

Similar difficulties may be anticipated in the analysis of fine-grained 
sediments, such as black shales, which contain considerable amounts 
of finely divided organic or other opaque material. Under such circum- 
stances microscopic analyses may be internally consistent--and hence 

useful for many geological purposes--provided specimens being com- 
pared with each other do not differ materially in grain size. I t  is not to 
be expected, however, that  the results will tell much about the modal 



280 F. CHAYES ON 

compositions of the parent materials. In general they will overestimate 
the amount of opaque material ; even a good guess as to the size of the 
overestimate, however, will require more information than is ordinarily 
available and perhaps more than can be obtained. 

R. B. Elliott I has argued that something similar to the Holmes effect 
may be generated by the juxtaposition of transparent minerals differing 
greatly in refractive index. Although relief is strictly a property of the 
contacts between grains, we do generally identify i t  with the mineral 
whose index differs more from tha t  of the mounting medium. Accord- 
ingly, if we are unable to locate the  intersections of grain contacts with 
some specific measurement p lane--usual ly  the upper surface of the thin 
sect ion--our  measurements may well be subject to the Holmes effect, 
even though all the constituents involved are transparent.  

Even when index difference is not enough to produce strong relief, 
inabil i ty to locate the measurement surface may introduce large con- 
stant  errors. Most of the members of a swarm of perthitic albite blebs, 
for instance, may be below the surface of the thin section, yet  all may 
show the appropriate  Beeke line against the host, and differences in 
birefringence or extinction will not be obscured by  the fact tha t  many 
of the blebs are par t ly  or entirely beneath the measurement surface. 

Provided there is no tendency for some particular t ransparent  
mineral to mantle the opaque granules, the Holmes effect could be over- 
come by measuring the amount of opaque material  in reflected rather 
than t ransmit ted  light. This procedure would always eliminate the bias 
as far as the opaques are concerned, but  if some one of the t ransparent  
minerals systematically mantled tile opaque particles, the amount  of 
this material  relative to other t ransparent  minerals would be under- 
estimated in t ransmit ted  light. 

The general case, in which neither mineral is opaque, is considerably 
more difficult and, I believe, more important .  There is need of a good 
experimental s tudy of the problem, and without such a s tudy we are not 
likely to know just  how serious i t  is. The difficulty arises because the 
analyst  either does not or cannot confine his observations to the surface 
of the thin section. I f  the rock is so fine grained tha t  individual particles 
are of the order of magnitude of imperfections in the surface (or depth 
of focus of the microscope), the lower limit of modal analysis has been 
reached. Even if we knew the appropriate corrections in the lat ter  case, 
they would probably be so large tha t  most of us would hesitate to use 
them. 

i Min. Mag., 1952, vol. 29, p. 833. 
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I t  may be useful to point out in closing that  what is involved is not 
grain size in any absolute sense. Rather, it is the ratio of grain size to 
thin-section thickness that  governs the size of the bias. I t  may be cal- 
culated from table I, for instance, that  particles of spherical radius 
0'06 ram. will be subject to a 37"5 % overestimate in thin sections of 
standard thickness. If, however, the thickness of the thin section could 
be reduced by a factor of 3, the bias would be reduced to something 
less than 15 %. And if it were possible to prepare slides one-fifth of the 
standard thickness, the bias would be only 7"5 %. 


